

Lecture Notes in Physics
Founding Editors: W. Beiglböck, J. Ehlers, K. Hepp, H. Weidenmüller

Editorial Board

R. Beig, Vienna, Austria
W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
F. Guinea, Madrid, Spain
P. Hänggi, Augsburg, Germany
W. Hillebrandt, Garching, Germany
R. L. Jaffe, Cambridge, MA, USA
W. Janke, Leipzig, Germany
R. A. L. Jones, Sheffield, UK
H. v. Löhneysen, Karlsruhe, Germany
M. Mangano, Geneva, Switzerland
J.-M. Raimond, Paris, France
M. Salmhofer, Heidelberg, Germany
D. Sornette, Zurich, Switzerland
S. Theisen, Potsdam, Germany
D. Vollhardt, Augsburg, Germany
W. Weise, Garching, Germany
J. Zittartz, Köln, Germany

The Lecture Notes in Physics
The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments
in physics research and teaching – quickly and informally, but with a high quality and
the explicit aim to summarize and communicate current knowledge in an accessible way.
Books published in this series are conceived as bridging material between advanced grad-
uate textbooks and the forefront of research and to serve three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses and
schools

Both monographs and multi-author volumes will be considered for publication. Edited
volumes should, however, consist of a very limited number of contributions only. Pro-
ceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the
electronic archive being available at springerlink.com. The series content is indexed, ab-
stracted and referenced by many abstracting and information services, bibliographic net-
works, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing
editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg / Germany
christian.caron@springer.com

B. Coecke (Ed.)

New Structures for Physics

ABC

Bob Coecke
Parks Road
OX1 3QD Oxford
United Kingdom
coecke@comlab.ox.ac.uk

Coecke, B. (Ed.): New Structures for Physics, Lect. Notes Phys. 813 (Springer, Berlin
Heidelberg 2011), DOI 10.1007/978-3-642-12821-9

Lecture Notes in Physics ISSN 0075-8450
ISBN 978-3-642-12820-2
DOI 10.1007/978-3-642-12821-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010930494

c© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: Integra Software Services Pvt. Ltd., Pondicherry

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to the many bright young theoretical
physicists that failed to escape the fate of having
to work in institutions like banks.

Preface

New? In what sense? Surely I am not the only person who, after extensively justi-
fying why certain mathematical structures naturally arise in physics, gets questions
like: “this is all nice maths but what’s the physics?” Meanwhile I figured out what
this truly means: “I don’t see any differential equations!” Okay, this is indeed a bit
overstated. Nowadays any mathematical argument involving groups, when these are
moreover referred to as “symmetry groups”, stands a serious chance of being eligi-
ble for carrying the label “physics”. But it hasn’t always been like this. John Slater
(cf. the Slater determinant in quantum chemistry) referred to the use of group theory
in quantum physics by Weyl, Wigner et al. as der Gruppenpest, what translates as
the “plague of groups”. Even in 1975 he wrote [14]: “As soon as [my] paper became
known, it was obvious that a great many other physicists were as ‘disgusted’ as I
had been with the group-theoretical approach to the problem. As I heard later, there
were remarks made such as ‘Slater has slain the Gruppenpest’. I believe that no
other piece of work I have done was so universally popular.” Donkeys usually don’t
make the same mistake twice, . . .

. . . and, surely I am not the only person who, after extensively justifying why certain
mathematical structures naturally arise in physics, gets questions like: “this is just
the same thing in a different language!” Well, so was Copernicus’ description of
the planets as compared to Ptolemy’s. Looking back at the facts, Ptolemy’s descrip-
tion turned out to be more accurate, accounting even for relativistic effects. So was
abandoning the view that the Earth was the centre of the universe and that planets
move around it on hierarchies of epicycles a step backward? Of course not. Taking
the superheavy object that the sun is to be a fixed point of reference unveiled the
gravitational force as well as a critical glimpse of Newton’s laws of motion, in
terms of Galilei’s visions and Kepler’s work. Similarly, programming languages
are not just a different way of writing down 0s and 1s, but also capture the flows of
information within a computational process. Surely we wouldn’t want the whole of
mathematics to be written down entirely in terms of 0s and 1s; imagine researching
physics in terms of nothing but 0s and 1s! All this just to say that language means
structure and additional structure means additional content: using group theory is
not just about using a different language but about identifying symmetry as a key
ingredient of physics. The same goes for the structures that are discussed in this

vii

viii Preface

book: they all identify a key ingredient in physics that deserves our attention. They
moreover identify this ingredient as present in a wide range of theories, including
theories of information and computation.

The contributing research landscape. Once a subset of mathematics is accepted by
the general physics community as relevant, many physicists seem to stop making
a distinction between that piece of mathematics and the natural phenomenon this
piece of mathematics aims to describe. For this reason, there is a high entrance
fee for a mathematical structure to be awarded this privilege. But this also means
that progress in physics does go hand-in-hand with the use of new mathematical
structures. This book contains a number of such structures which recently have been
finding their way into quantum information, foundations of general relativity, quan-
tum foundations, and quantum gravity foundations. A surprising feature of many
of these is that these structures are already heavily used in “Euro-style” computer
science, and some were even crafted for this particular purpose. In general relativity
“Scott domains” enable to reconstruct spacetime topology from the causal structure
without making any reference to smoothness [10]. Dana Scott (= male) initially
introduced these domains in the late 60s to provide semantics for the λ-calculus [13],
which plays a key role both in the foundations of mathematics and in programming
language foundations [19]. In quantum information monoidal categories [21] are
becoming more prominent, for example, for the description of particular computa-
tional models such as topological quantum computing (see [11] for a survey), and
measurement-based quantum computing (see for example [5, 6, 8]), in which the
interaction between classical and quantum data is of key importance. Earlier it was
already suggested that topological quantum field theories [2], which are functors
between certain kinds of monoidal categories, could be relevant for a theory of
quantum gravity [3, 7]. Again, these monoidal categories are of key importance
in computer science, for example, they provide semantics for linear logic [20], a
logic which is important in concurrency theory [18], the theoretical underpinning of
mobile phone networks, internet protocols, cash machines etc.

At the n-category café John Baez suggested that a less opportunistic title for this
volume would have been: “Structures you would already know about, had you been
paying proper attention”. While as title poetry this isn’t great, he is of course right,
and for more than one reason. John himself pointed to the fact that, for example,
“Category theory has been important in algebraic topology ever since its intercep-
tion in 1945. It’s just taken a while for these structures to become part of the toolkit
of the average mathematical physicist.” He and Mike Stay have more examples on
page 125 of their chapter entitled “Physics, topology, logic and computation: A
Rosetta Stone” [4]. The other reason is the one I mentioned above: these structures
are already heavily used in theoretical computer science, where the play the role of
“logic of interaction” [1], “discrete (relativistic!) spacetime” [9, 12], among many
other roles.

A personal appreciation. I started my research career in the late eighties in quantum
foundations. If that didn’t already guaranty academic suicide, I moreover studied
hidden variable theories. After my PhD, in an attempt to save my career, I moved

Preface ix

to the dying area of quantum logic within the retiring Geneva group led by Piron.
Having become aware of my mistake I moved into pure mathematics, to category
theory, an area hated by most non-category-theoretic-mathematicians, within the
retiring category theory group at McGill University. The great surprise is that after
all of this I am still standing, while many other scholars, far more brighter than I
am, lost the battle. The worst carnage in terms of academic careers surely must have
taken place in high energy physics [15, 16]. In quantum foundations the academic
death-toll is less, but this mostly has to do with the the style quantum theory is
taught in most places: “Don’t think, just do!”, resulting in not many people end-
ing up in quantum foundations. The reason that I ended up surviving must be that
although each of |quantum foundations〉, |quantum logic〉, |category theory〉 causes
academic disaster, |quantum categorical logic foundations〉 proved to be some kind
of a hit in European computer science circles where, surprisingly, “foundations”
means “cool”. In those circles structural research is indeed highly appreciated, the
reason being that one simply can’t do without. Meanwhile, the membership of
our multidisciplinary group here at Oxford University Computing Laboratory [22]
has grown to 30, which besides Samson Abramsky and myself now also includes
Andreas Döring, and a zoo of DPhil (= Oxford PhD) students with backgrounds in
theoretical physics, computer science, pure mathematics, philosophy, engineering,
and even linguistics.

How did this all came about? In 2005 I organized an event called Cats, Kets and
Cloisters (CKC) at Oxford University Computing Laboratory [23]. The event aimed
to set the stage for an encounter of researchers studying mathematical structures in
computer science, quantum foundations, pure mathematicians including specialists
in logic, category theory and knot theory, and quantum informaticians. It in partic-
ular included twelve tutorial lectures by leading experts. The success of the confer-
ence what witnessed by the fact that since there was no budget to invite speakers,
these twelve leading experts all covered there own expenses. Moreover, a chain of
similar events [24–26] emerged after CKC, the most recent one being Categories,
Quanta and Concepts (CQC) at the Perimeter Institute [27].

But a low in all this was the following. When asked by several PhD students were
they could read about “this kind of stuff”, there simply wasn’t a satisfactory answer.
This is were this volume kicks in: it collates a series of tutorials that do the job.

Contributions to this volume. We start with an ABC on monoidal category theory, by
Abramsky and Tzevelekos, Baez and Stay, and Coecke and Paquette. These bulky
contributions nicely complement each other, the first one being the lecture notes of
the category theory course here at Oxford University Computing Laboratory, the
second one exemplifying how the same structures arise in very different areas, and
the third one establishing that monoidal categories have always been “out there”
in physics. The “linear” feature of these categories is then further emphasized, in
graphical realm by Selinger, and in computational realm by Haghverdi and Scott.
In particular, Selinger’s chapter is the first rock-solid comprehensive account on the
topic of graphical calculi for monoidal categories, in which he fixes several caveats
of the existing literature. Then follows a Blute-Panagaden double which applies the

x Preface

theory to formal distributions and formal Feynman diagrams. After that we have
a living Legend, Jim Lambek, who exposes connections between particle physics
and mathematical linguistics, an area which he pioneered in the 1950s. Next up is
domain theory, starting with a tutorial overview by Martin, followed by a detailed
account of the domain-theoretic structure on classical and quantum states by Coecke
and Martin. This is then followed by a range of structures dealing with spacetime:
first Martin and Panangaden’s application of domain theory to general relativity,
then Hiley’s use of Clifford algebras, and finally Döring and Isham’s use of topos
theory in an 180 page long mega contribution. We end with applications of monoidal
categories in quantum computational models, firstly a general account by Hines,
which is followed by Panangaden and Paquette’s survey of topological quantum
computing.

Acknowledgments We in particular thank John Baez and the attendants of the n-category café for
the “online public review process” of several chapters in this volume. Assistance in producing this
volume was provided by the EC-FP6-STREP Foundational Structures in Quantum Information and
Computation (QICS). We also acknowledge support from EPSRC Advanced Research Fellowship
EP/D072786/1 entitled The Structure of Quantum Information and its Ramifications for IT.

Oxford, England Bob Coecke
August 2009

References

1. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations of typed
concurrent programming. In: Deductive Program Design: Proceedings of the 1994 Marktober-
dorf International Summer School, NATO Advanced Science Institutes Series F, pp. 35–113.
Springer, New York (1994) viii

2. Atiyah, M.: Topological quantum field theories. Publications Mathématique de l’Institut des
Hautes Etudes Scientifiques 68, 175–186 (1989) viii

3. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory.
J. Math. Phys. 36, 60736105. arXiv:q-alg/9503002 (1995) viii

4. Baez, J.C. Stay, M.: Physics, topology, logic and computation: A Rosetta Stone. In: Coecke,
B. (ed.) New Structures for Physics, pp. 91–166, Springer Lecture Notes in Physics, New York.
arXiv:0903.0340 (2009) viii

5. Coecke, B., Duncan, R.W.: Interacting quantum observables. In: Proceedings of the 35th
International Colloquium on Automata, Languages and Programming (ICALP), pp. 298–310,
Lecture Notes in Computer Science 5126. Springer, New York. arXiv:0906.4725 (2008) viii

6. Coecke, B., Paquette, E.O., Pavlovic, D.: Classical and quantum structuralism. In: Mackie,
I., Gay, S. (eds.) Semantic Techniques for Quantum Computation. Cambridge University
Press, Cambridge. arXiv:0904.1997 (2009) viii

7. Crane, L.: Clock and category: Is quantum gravity algebraic? J. Math. Phys. 36, 6180–6193
(1995). arXiv:gr-qc/9504038 viii

8. Duncan, R.W., Perdrix, S.: Graph states and the necessity of Euler decomposition. In: Pro-
ceedings of Computability in Europe: Mathematical Theory and Computational Practice
(CiE’09), pp. 167–177. Lecture Notes in Computer Science 5635. Springer, New York (2009).
arXiv:0902.0500 viii

Preface xi

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 558–565 (1978) viii

10. Martin, K., Panangaden, P.: A domain of spacetime intervals in general relativity. Commun.
Math. Phys. 267, 563–586 (2006) viii

11. Panangaden, P., Paquette, E.O.: A categorical presentation of quantum computation with
anyons. In: Coecke, B. (ed.) New Structures for Physics, pp. 939–979. Springer Lecture Notes
in Physics, New York (2009) viii

12. Petri, C.A.: State-transition structures in physics and in computation. Int. J. Theor. Phys. 12,
979–992 (1982) viii

13. Scott, D.: Outline of a mathematical theory of computation. Technical Monograph PRG-2,
Oxford University Computing Laboratory, Oxford (1970) viii

14. Slater, J.C.: Solid-State and Molecular Theory: A Scientific Biography. Wiley, New York
(1975) vii

15. Smolin, L.: The Trouble with Physics. Houghton-Mifflin, Boston (2006) ix
16. Woit, P.: Not Even Wrong. Jonathan Cape, London (2006) ix
17. categorical logic: http://en.wikipedia.org/wiki/Categorical logic
18. concurrency: http://en.wikipedia.org/wiki/Concurrency (computer science) viii
19. lambda calculus: http://en.wikipedia.org/wiki/Lambda calculus viii
20. linear logic: http://en.wikipedia.org/wiki/Linear logic viii
21. monoidal category: http://en.wikipedia.org/wiki/Monoidal category viii
22. OUCL Quantum Group. http://web.comlab.ox.ac.uk/activities/quantum/ ix
23. Cats, Kets and Cloisters (CKC) conference, organized by Bob Coecke, Oxford

University Computing Laboratory, July 17–23, 2006. http://se10.comlab.ox.ac.uk:8080/
FOCS/CKCinOXFORD en.html ix

24. Quantum Physics and Logic (QPL) workshop series, organized by Bob Coecke, Prakash
Panangaden and Peter Selinger, started 2008. http://web.comlab.ox.ac.uk/people/Bob.Coecke/
QPL 09.html ix

25. Categories, Logic and Foundations of Physics (CLAP) workshop series, organized by
Bob Coecke and Andreas Döring, Imperial College and Oxford, started 2008. http://
categorieslogicphysics.wikidot.com/ ix

26. Informatic Phenomena (IP) workshop series, organized by Keye Martin and Mike Mislove,
New Orleans, started 2008. http://www.math.tulane.edu/_mwm/WIP2009/Workshop on Infor-
matic Phenomena.html ix

27. Categories, Quanta, Concepts (CQC), organized by Bob Coecke, Andreas Döring and Lucien
Hardy, Perimeter Institute, June 1–5, 2009. http://www.perimeterinstitute.ca/en/Scientific/
Conferences/Conferences/ ix

Contents

Part I An ABC on Compositionality

1 Introduction to Categories and Categorical Logic 3
S. Abramsky and N. Tzevelekos
1.1 Introduction . 3
1.2 Some Basic Constructions . 13
1.3 Functors . 23
1.4 Natural Transformations . 30
1.5 Universality and Adjoints . 37
1.6 The Curry–Howard Correspondence . 51
1.7 Linearity . 68
1.8 Monads and Comonads . 79
References . 94

2 Physics, Topology, Logic and Computation: A Rosetta Stone 95
J. Baez and M. Stay
2.1 Introduction . 95
2.2 The Analogy Between Physics and Topology 98
2.3 Logic . 132
2.4 Computation . 149
2.5 Conclusions . 166
References . 168

3 Categories for the Practising Physicist . 173
B. Coecke and É.O. Paquette
3.1 Prologue: Cooking with Vegetables . 173
3.2 The 1D Case: New Arrows for Your Quiver . 177
3.3 The 2D Case: Muscle Power . 194
3.4 Quantum-Like Tensors . 217
3.5 Classical-Like Tensors . 232

xiii

xiv Contents

3.6 Monoidal Functoriality, Naturality and TQFTs 271
3.7 Further Reading . 281
References . 283

Part II Manifestations of Linearity

4 A Survey of Graphical Languages for Monoidal Categories 289
P. Selinger
4.1 Introduction . 289
4.2 Categories . 292
4.3 Monoidal Categories . 296
4.4 Autonomous Categories . 307
4.5 Traced Categories . 322
4.6 Products, Coproducts, and Biproducts . 332
4.7 Dagger Categories . 340
4.8 Bicategories . 350
4.9 Beyond a Single Tensor Product . 351
4.10 Summary . 352
References . 354

5 Geometry of Interaction and the Dynamics of Proof Reduction:
A Tutorial . 357
E. Haghverdi and P. Scott
5.1 Introduction . 357
5.2 From Monoidal Categories to *-Autonomy . 359
5.3 Linear Logic and Categorical Proof Theory . 366
5.4 Traced Monoidal Categories . 375
5.5 What is the Geometry of Interaction? . 385
5.6 GoI Interpretation of MELL . 389
5.7 Partial Trace and Abstract Orthogonality . 398
5.8 Typed GoI for MELL in *-Categories . 403
5.9 Concluding Remarks . 412
Appendix 1: Graphical Representation of The Trace Axioms 412
Appendix 2: Comparing GoI Notation . 414
References . 414

Part III More Example Applications

6 Dagger Categories and Formal Distributions . 421
R. Blute and P. Panangaden
6.1 Introduction . 421
6.2 Dagger Categories and Nuclear Ideals . 424
6.3 Distributions as Relations . 425

Contents xv

6.4 Categories of Formal Distributions . 428
6.5 Vertex Groups and Categories . 433
6.6 Conclusion . 435
References . 435

7 Proof Nets as Formal Feynman Diagrams . 437
R. Blute and P. Panangaden
7.1 Introduction . 437
7.2 Functional Integrals in Quantum Field Theory 438
7.3 Linear Realizability Algebra . 442
7.4 The φ-Calculus . 445
7.5 Exponential Identities for Operators . 453
7.6 Interpreting Proof Nets . 456
7.7 Example Calculations . 459
7.8 Conclusions . 463
References . 465

8 Compact Monoidal Categories from Linguistics to Physics 467
J. Lambek
8.1 Compact 2-Categories and Pregroups . 468
8.2 Pregroups for Grammar . 470
8.3 Free Compact 2-Categories . 471
8.4 In Search of a Compact Feynman Category . 475
8.5 A Pogroup for QED . 477
8.6 From QED to the Standard Model . 479
8.7 From 2-Categories to Bicategories . 481
8.8 Other Operations in Bilinear Logic . 485
8.9 Postscript . 486
References . 487

Part IV Informatic Geometry

9 Domain Theory and Measurement . 491
K. Martin
9.1 Introduction . 491
9.2 The Basic Elements . 494
9.3 Fixed Points . 508
9.4 Instances of Partiality . 524
9.5 The Informatic Derivative . 539
9.6 Forms of Process Evolution . 559
9.7 Provocation . 587
References . 589

xvi Contents

10 A Partial Order on Classical and Quantum States 593
B. Coecke and K. Martin
10.1 Introduction . 593
10.2 Classical States . 595
10.3 Quantum States . 630
10.4 Synthesis . 655
10.5 Applications . 672
References . 682

Part V Spatio-Temporal Geometry

11 Domain Theory and General Relativity . 687
K. Martin and P. Panangaden
11.1 Introduction . 687
11.2 Domains, Continuous Posets and Topology . 689
11.3 The Causal Structure of Spacetime . 691
11.4 Global Hyperbolicity . 692
11.5 Spacetime from a Discrete Causal Set . 694
11.6 Spacetime as a Domain . 695
11.7 Time and Measurement . 699
11.8 Spacetime Geometry from a Discrete Causal Set 701
11.9 Conclusions . 702
References . 703

12 Process, Distinction, Groupoids and Clifford Algebras:
an Alternative View of the Quantum Formalism 705
B.J. Hiley
12.1 The Algebra of Process . 705
12.2 Some Specific Algebras of Process . 709
12.3 Connections with Other Mathematical Approaches 715
12.4 Some Radical New Ideas . 719
12.5 The Conformal Clifford C2,4 . 731
12.6 Connections in the Clifford Bundle . 736
12.7 Expectation Values . 740
12.8 The Symplectic Group . 744
12.9 General Conclusions . 749
References . 750

13 “What is a Thing?”: Topos Theory in the Foundations of Physics 753
A. Döring and C. Isham
13.1 Introduction . 754
13.2 The Conceptual Background of Our Scheme 762
13.3 Propositional Languages and Theories of Physics 770

Contents xvii

13.4 A Higher-Order, Typed Language for Physics 778
13.5 Quantum Propositions as Sub-objects of the Spectral Presheaf 788
13.6 Truth Values in Topos Physics . 809
13.7 The de Groote Presheaves of Physical Quantities 827
13.8 The Presheaves sp(Â)�, R

� and R
↔ . 837

13.9 Extending the Quantity-Value Presheaf to an Abelian
Group Object . 858

13.10 The Role of Unitary Operators . 863
13.11 The Category of Systems . 871
13.12 Theories of Physics in a General Topos . 886
13.13 The General Scheme Applied to Quantum Theory 894
13.14 Characteristic Properties of Σφ , Rφ and T,w 904
13.15 Conclusion . 911
Appendix 1: Some Theorems and Constructions Used in the Main Text . . 916
Appendix 2: A Short Introduction to the Relevant Parts of Topos Theory . 925
References . 934

Part VI Geometry and Topology in Computation

14 Can a Quantum Computer Run the von Neumann Architecture? . . . 941
P. Hines
14.1 Introduction . 941
14.2 The von Neumann Architecture . 942
14.3 Relevant Quantum Information Theory . 944
14.4 Data/Code Interchangeability, and Evaluation 948
14.5 Evaluation in the One-Bit Computer . 950
14.6 Implementing Evaluation by Unitary Operations? 950
14.7 Evaluation as Currying . 953
14.8 Basic Category Theory . 955
14.9 Categorical Closure and Hilbert Spaces . 960
14.10 Abramsky and Coecke’s Categorical Foundations

for Quantum Mechanics . 964
14.11 Evaluation by Teleportation, and the vN Architecture 966
14.12 Naming an Unknown Arrow. 970
14.13 Other Aspects . 972
Appendix . 976
References . 978

15 A Categorical Presentation of Quantum Computation with Anyons . . 983
P. Panangaden and É.O. Paquette
15.1 Introduction . 983
15.2 Spin and Statistics . 987
15.3 Anyons and Braids . 989

xviii Contents

15.4 The Algebra of Anyons: Modular Tensor Categories 992
15.5 An Example: Fibonacci Anyons . 1014
15.6 Universal Quantum Computation with Fibonacci Anyons 1020
15.7 Conclusions . 1022
References . 1023

Index . 1027

Part I An ABC on
Compositionality

Chapter 1
Introduction to Categories
and Categorical Logic

S. Abramsky and N. Tzevelekos

Abstract The aim of these notes is to provide a succinct, accessible introduction
to some of the basic ideas of category theory and categorical logic. The notes are
based on a lecture course given at Oxford over the past few years. They contain
numerous exercises, and hopefully will prove useful for self-study by those seeking
a first introduction to the subject, with fairly minimal prerequisites. The coverage
is by no means comprehensive, but should provide a good basis for further study; a
guide to further reading is included.

The main prerequisite is a basic familiarity with the elements of discrete math-
ematics: sets, relations and functions. An Appendix contains a summary of what
we will need, and it may be useful to review this first. In addition, some prior
exposure to abstract algebra—vector spaces and linear maps, or groups and group
homomorphisms—would be helpful.

1.1 Introduction

Why study categories—what are they good for? We can offer a range of answers for
readers coming from different backgrounds:

• For mathematicians: category theory organises your previous mathematical
experience in a new and powerful way, revealing new connections and structure,
and allows you to “think bigger thoughts”.

• For computer scientists: category theory gives a precise handle on impor-
tant notions such as compositionality, abstraction, representation-independence,
genericity and more. Otherwise put, it provides the fundamental mathematical
structures underpinning many key programming concepts.

S. Abramsky (B)
OUCL, University of Oxford, Oxford, UK
e-mail: samson@comlab.ox.ac.uk

N. Tzevelekos (B)
OUCL, University of Oxford, Oxford, UK
e-mail: nikt@comlab.ox.ac.uk

Abramsky, S., Tzevelekos, N.: Introduction to Categories and Categorical Logic. Lect. Notes
Phys. 813, 3–94 (2011)
DOI 10.1007/978-3-642-12821-9_1 c© Springer-Verlag Berlin Heidelberg 2011

4 S. Abramsky and N. Tzevelekos

• For logicians: category theory gives a syntax-independent view of the fundamen-
tal structures of logic, and opens up new kinds of models and interpretations.

• For philosophers: category theory opens up a fresh approach to structuralist
foundations of mathematics and science; and an alternative to the traditional
focus on set theory.

• For physicists: category theory offers new ways of formulating physical theories
in a structural form. There have inter alia been some striking recent applications
to quantum information and computation.

1.1.1 From Elements To Arrows

Category theory can be seen as a “generalised theory of functions”, where the focus
is shifted from the pointwise, set-theoretic view of functions, to an abstract view of
functions as arrows.

Let us briefly recall the arrow notation for functions between sets.1 A function f
with domain X and codomain Y is denoted by: f : X → Y .

Diagrammatic notation: X
f−→ Y .

The fundamental operation on functions is composition: if f : X → Y and g : Y →
Z , then we can define g ◦ f : X → Z by g ◦ f (x) := g(f (x)).2 Note that, in
order for the composition to be defined, the codomain of f must be the same as the
domain of g.

Diagrammatic notation: X
f−→ Y

g−→ Z .

Moreover, for each set X there is an identity function on X , which is denoted by:

idX : X −→ X idX (x) := x .

These operations are governed by the associativity law and the unit laws. For f :
X → Y , g : Y → Z , h : Z → W :

(h ◦ g) ◦ f = h ◦ (g ◦ f) , f ◦ idX = f = idY ◦ f .

Notice that these equations are formulated purely in terms of the algebraic opera-
tions on functions, without any reference to the elements of the sets X , Y , Z , W .
We will refer to any concept pertaining to functions which can be defined purely
in terms of composition and identities as arrow-theoretic. We will now take a first

1 A review of basic ideas about sets, functions and relations, and some of the notation we will be
using, is provided in Appendix A.
2 We shall use the notation “:=” for “is defined to be” throughout these notes.

1 Introduction to Categories and Categorical Logic 5

step towards learning to “think with arrows” by seeing how we can replace some
familiar definitions couched in terms of elements by arrow-theoretic equivalents;
this will lead us towards the notion of category.

We say that a function f : X −→ Y is:

injective if ∀x, x ′ ∈ X. f (x) = f (x ′) �⇒ x = x ′ ,
surjective if ∀y ∈ Y. ∃x ∈ X. f (x) = y ,

monic if ∀g, h. f ◦ g = f ◦ h �⇒ g = h ,
epic if ∀g, h. g ◦ f = h ◦ f �⇒ g = h .

Note that injectivity and surjectivity are formulated in terms of elements, while epic
and monic are arrow-theoretic.

Proposition 1 Let f : X → Y . Then,

1. f is injective iff f is monic.
2. f is surjective iff f is epic.

Proof We show 1. Suppose f : X → Y is injective, and that f ◦ g = f ◦ h, where
g, h : Z → X . Then, for all z ∈ Z :

f (g(z)) = f ◦ g(z) = f ◦ h(z) = f (h(z)) .

Since f is injective, this implies g(z) = h(z). Hence we have shown that

∀z ∈ Z . g(z) = h(z) ,

and so we can conclude that g = h. So f injective implies f monic.
For the converse, fix a one-element set 1 = {•}. Note that elements x ∈ X are in
1–1 correspondence with functions x̄ : 1 → X , where x̄(•) := x . Moreover, if
f (x) = y then ȳ = f ◦ x̄ . Writing injectivity in these terms, it amounts to the
following.

∀x, x ′ ∈ X. f ◦ x̄ = f ◦ x̄ ′ �⇒ x̄ = x̄ ′

Thus we see that being injective is a special case of being monic. �

Exercise 2 Show that f : X → Y is surjective iff it is epic.

1.1.2 Categories Defined

Definition 3 A category C consists of:

• A collection Ob(C) of objects. Objects are denoted by A, B, C , etc.
• A collection Ar(C) of arrows (or morphisms). Arrows are denoted by f , g, h,

etc.

6 S. Abramsky and N. Tzevelekos

• Mappings dom, cod : Ar(C)→ Ob(C), which assign to each arrow f its domain
dom(f) and its codomain cod(f). An arrow f with domain A and codomain B
is written f : A → B. For each pair of objects A, B, we define the set

C(A, B) := { f ∈ Ar(C) | f : A → B} .

We refer to C(A, B) as a hom-set. Note that distinct hom-sets are disjoint.
• For any triple of objects A, B, C , a composition map

cA,B,C : C(A, B)× C(B, C) −→ C(A, C) .

cA,B,C (f, g) is written g ◦ f (or sometimes f ; g). Diagrammatically:

A
f−→ B

g−→ C

• For each object A, an identity arrow idA : A → A.

The above must satisfy the following axioms.

h ◦ (g ◦ f) = (h ◦ g) ◦ f , f ◦ idA = f = idB ◦ f .

whenever the domains and codomains of the arrows match appropriately so that the
compositions are well-defined. �

1.1.3 Diagrams in Categories

Diagrammatic reasoning is an important tool in category theory. The basic cases are
commuting triangles and squares. To say that the following triangle commutes

A
f

h

B

g

C

is exactly equivalent to asserting the equation g ◦ f = h. Similarly, to say that the
following square commutes

A
f

h

B

g

C
k

D

1 Introduction to Categories and Categorical Logic 7

means exactly that g ◦ f = k ◦ h. For example, the equations

h ◦ (g ◦ f) = (h ◦ g) ◦ f , f ◦ idA = f = idB ◦ f ,

can be expressed by saying that the following diagrams commute.

A
f

g◦ f

B

g
h◦g

C
h

D

A
idA

f

A

f
f

B
idB

B

As these examples illustrate, most of the diagrams we shall use will be “pasted
together” from triangles and squares: the commutation of the diagram as a whole
will then reduce to the commutation of the constituent triangles and squares.

We turn to the general case. The formal definition is slightly cumbersome; we
give it anyway for reference.

Definition 4 We define a graph to be a collection of vertices and directed edges,
where each edge e : v → w has a specified source vertex v and target vertex w.
Thus graphs are like categories without composition and identities.3 A diagram in a
category C is a graph whose vertices are labelled with objects of C and whose edges
are labelled with arrows of C, such that, if e : v → w is labelled with f : A → B,
then we must have v labelled by A and w labelled by B. We say that such a diagram
commutes if any two paths in it with common source and target, and at least one of
which has length greater than 1, are equal. That is, given paths

A
f1−→ C1

f2−→ · · ·Cn−1
fn−→ B and A

g1−→ D1
g2−→ · · · Dm−1

gm−→ B,

if max(n, m) > 1 then

fn ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1 .

�

To illustrate this definition, to say that the following diagram commutes

E
e

A
f

g
B

amounts to the assertion that f ◦ e = g ◦ e ; it does not imply that f = g.

3 This would be a “multigraph” in normal parlance, since multiple edges between a given pair of
vertices are allowed.

8 S. Abramsky and N. Tzevelekos

1.1.4 Examples

Before we proceed to our first examples of categories, we shall present some back-
ground material on partial orders, monoids and topologies, which will provide run-
ning examples throughout these notes.

Partial orders

A partial order is a structure (P,≤) where P is a set and ≤ is a binary relation on
P satisfying:

• x ≤ x (Reflexivity)
• x ≤ y ∧ y ≤ x ⇒ x = y (Antisymmetry)
• x ≤ y ∧ y ≤ z ⇒ x ≤ z (Transitivity)

For example, (R,≤) and (P(X),⊆) are partial orders, and so are strings with the
sub-string relation.

If P , Q are partial orders, a map h : P → Q is a partial order homomorphism
(or monotone function) if:

∀x, y ∈ P. x ≤ y �⇒ h(x) ≤ h(y) .

Note that homomorphisms are closed under composition, and that identity maps are
homomorphisms.

Monoids

A monoid is a structure (M, ·, 1) where M is a set,

__ · __ : M × M −→ M

is a binary operation, and 1 ∈ M , satisfying the following axioms.

(x · y) · z = x · (y · z) , 1 · x = x = x · 1 .

For example, (N,+, 0) is a monoid, and so are strings with string-concatenation.
Moreover, groups are special kinds of monoids.

If M , N are monoids, a map h : M → N is a monoid homomorphism if

∀m1, m2 ∈ M. h(m1 · m2) = h(m1) · h(m2) , h(1) = 1 .

Exercise 5 Suppose that G and H are groups (and hence monoids), and that h :
G → H is a monoid homomorphism. Prove that h is a group homomorphism.

1 Introduction to Categories and Categorical Logic 9

Topological spaces

A topological space is a pair (X, TX) where X is a set, and TX is a family of subsets
of X such that

• ∅, X ∈ TX ,
• if U, V ∈ TX then U ∩ V ∈ TX ,
• if {Ui }i∈I is any family in TX , then

⋃
i∈I Ui ∈ TX .

A continuous map f : (X, TX) → (Y, TY) is a function f : X → Y such that, for
all U ∈ TY , f −1(U) ∈ TX .
Let us now see some first examples of categories.

• Any kind of mathematical structure, together with structure preserving functions,
forms a category. E.g.

– Set (sets and functions)
– Mon (monoids and monoid homomorphisms)
– Grp (groups and group homomorphisms)
– Vectk (vector spaces over a field k, and linear maps)
– Pos (partially ordered sets and monotone functions)
– Top (topological spaces and continuous functions)

• Rel: objects are sets, arrows R : X → Y are relations R ⊆ X × Y . Relational
composition:

R; S(x, z) ⇐⇒ ∃y. R(x, y) ∧ S(y, z)

• Let k be a field (for example, the real or complex numbers). Consider the follow-
ing category Matk . The objects are natural numbers. A morphism M : n→ m is
an n × m matrix with entries in k. Composition is matrix multiplication, and the
identity on n is the n × n diagonal matrix.

� Monoids are one-object categories. Arrows correspond to the elements of the
monoid, with the monoid operation being arrow-composition and the monoid
unit being the identity arrow.

� A category in which for each pair of objects A, B there is at most one morphism
from A to B is the same thing as a preorder, i.e. a reflexive and transitive relation.

Note that our first class of examples illustrate the idea of categories as mathematical
contexts; settings in which various mathematical theories can be developed. Thus
for example, Top is the context for general topology, Grp is the context for group
theory, etc.

On the other hand, the last two examples illustrate that many important mathe-
matical structures themselves appear as categories of particular kinds. The fact
that two such different kinds of structures as monoids and posets should appear
as extremal versions of categories is also rather striking.

This ability to capture mathematics both “in the large” and “in the small” is a
first indication of the flexibility and power of categories.

10 S. Abramsky and N. Tzevelekos

Exercise 6 Check that Mon, Vectk , Pos and Top are indeed categories.

Exercise 7 Check carefully that monoids correspond exactly to one-object cate-
gories. Make sure you understand the difference between such a category and Mon.
(For example: how many objects does Mon have?)

Exercise 8 Check carefully that preorders correspond exactly to categories in which
each homset has at most one element. Make sure you understand the difference
between such a category and Pos. (For example: how big can homsets in Pos be?)

1.1.5 First Notions

Many important mathematical notions can be expressed at the general level of cate-
gories.

Definition 9 Let C be a category. A morphism f : X → Y in C is:

• monic (or a monomorphism) if f ◦ g = f ◦ h �⇒ g = h ,

• epic (or an epimorphism) if g ◦ f = h ◦ f �⇒ g = h .

An isomorphism in C is an arrow i : A → B such that there exists an arrow
j : B → A—the inverse of i—satisfying

j ◦ i = idA , i ◦ j = idB .

�

We denote isomorphisms by i : A
∼=−→ B, and write i−1 for the inverse of i . We say

that A and B are isomorphic, A ∼= B, if there exists some i : A
∼=−→ B.

Exercise 10 Show that the inverse, if it exists, is unique.

Exercise 11 Show that ∼= is an equivalence relation on the objects of a category.

As we saw previously, in Set monics are injections and epics are surjections. On the
other hand, isomorphisms in Set correspond exactly to bijections, in Grp to group
isomorphisms, in Top to homeomorphisms, in Pos to order isomorphisms, etc.

Exercise 12 Verify these claims.

Thus we have at one stroke captured the key notion of isomorphism in a form which
applies to all mathematical contexts. This is a first taste of the level of generality
which category theory naturally affords.

We have already identified monoids as one-object categories. We can now iden-
tify groups as exactly those one-object categories in which every arrow is an iso-
morphism. This also leads to a natural generalisation, of considerable importance
in current mathematics: a groupoid is a category in which every morphism is an
isomorphism.

1 Introduction to Categories and Categorical Logic 11

Opposite Categories and Duality

The directionality of arrows within a category C can be reversed without breaking
the conditions of being a category; this yields the notion of opposite category.

Definition 13 Given a category C, the opposite category Cop is given by taking the
same objects as C, and

Cop(A, B) := C(B, A) .

Composition and identities are inherited from C. �

Note that if we have

A
f−→ B

g−→ C

in Cop, this means

A
f←− B

g←− C

in C, so composition g ◦ f in Cop is defined as f ◦ g in C!
Consideration of opposite categories leads to a principle of duality: a statement

S is true about C if and only if its dual (i.e. the one obtained from S by reversing all
the arrows) is true about Cop. For example,

A morphism f is monic in Cop if and only if it is epic in C .

Indeed, f is monic in Cop iff for all g, h : C → B in Cop,

f ◦ g = f ◦ h �⇒ g = h ,

iff for all g, h : B → C in C,

g ◦ f = h ◦ f �⇒ g = h ,

iff f is epic in C. We say that monic and epic are dual notions.

Exercise 14 If P is a preorder, for example (R,≤), describe Pop explicitly.

Subcategories

Another way to obtain new categories from old ones is by restricting their objects
or arrows.

Definition 15 Let C be a category. Suppose that we are given collections

Ob(D) ⊆ Ob(C) , ∀A, B ∈ Ob(D).D(A, B) ⊆ C(A, B) .

12 S. Abramsky and N. Tzevelekos

We say that D is a subcategory of C if

A ∈ Ob(D)⇒ idA ∈ D(A, A), f ∈ D(A, B), g ∈ D(B, C) ⇒ g◦ f ∈ D(A, C) ,

and hence D itself is a category. In particular, D is:

• A full subcategory of C if for any A, B ∈ Ob(D), D(A, B) = C(A, B).
• A lluf subcategory of C if Ob(D) = Ob(C). �

For example, Grp is a full subcategory of Mon (by Exercise 5), and Set is a lluf
subcategory of Rel.

Simple cats

We close this section with some very basic examples of categories.

• 1 is the category with one object and one arrow, that is,

1 := •

where the arrow is necessarily id• . Note that, although we say that 1 is the one-
object/one-arrow category, there is by no means a unique such category. This is
explained by the intuitively evident fact that any two such categories are isomor-
phic. (We will define what it means for categories to be isomorphic later.)

• In two-object categories, there is the one with two arrows, 2 := • • , and
also:

2→ := • • , 2⇒ := • • , 2� := • • . . .

Note that we have omitted identity arrows for economy. Categories with only
identity arrows, like 1 and 2, are called discrete categories.

Exercise 16 How many categories C with Ob(C) = {•} are there? (Hint: what do
such categories correspond to?)

1.1.6 Exercises

1. Consider the following properties of an arrow f in a category C.

• f is split monic if for some g, g ◦ f is an identity arrow.
• f is split epic if for some g, f ◦ g is an identity arrow.

(a) Prove that if f and g are arrows such that g ◦ f is monic, then f is monic.
(b) Prove that, if f is split epic then it is epic.
(c) Prove that, if f and g ◦ f are iso then g is iso.
(d) Prove that, if f is monic and split epic then it is iso.

1 Introduction to Categories and Categorical Logic 13

(e) In the category Mon of monoids and monoid homomorphisms, consider the
inclusion map

i : (N,+, 0) −→ (Z,+, 0)

of natural numbers into the integers. Show that this arrow is both monic and
epic. Is it an iso?

The Axiom of Choice in Set Theory states that, if {Xi }i∈I is a family of non-
empty sets, we can form a set X = {xi | i ∈ I } where xi ∈ Xi for all i ∈ I .

(f) Show that in Set an arrow which is epic is split epic. Explain why this needs
the Axiom of Choice.

(g) Is it always the case that an arrow which is epic is split epic? Either prove
that it is, or give a counter-example.

2. Give a description of partial orders as categories of a special kind.

1.2 Some Basic Constructions

We shall now look at a number of basic constructions which appear through-
out mathematics, and which acquire their proper general form in the language of
categories.

1.2.1 Initial and Terminal Objects

A first such example is that of initial and terminal objects. While apparently trivial,
they are actually both important and useful, as we shall see in the sequel.

Definition 17 An object I in a category C is initial if, for every object A, there exists
a unique arrow from I to A, which we write ιA : I → A.
A terminal object in C is an object T such that, for every object A, there exists a
unique arrow from A to T , which we write τA : A → T . �
Note that initial and terminal objects are dual notions: T is terminal in C iff it is
initial in Cop. We sometimes write 1 for the terminal object and 0 for the initial one.
Note also the assertions of unique existence in the definitions. This is one of the
leitmotifs of category theory; we shall encounter it again in a conceptually deeper
form in Sect. 1.5.

Let us examine initial and terminal objects in our standard example categories.

• In Set, the empty set is an initial object while any one-element set {•} is terminal.
• In Pos, the poset (∅, ∅) is an initial object while ({•}, {(•, •)}) is terminal.
• In Top, the space (∅, {∅}) is an initial object while ({•}, {∅, {•}}) is terminal.
• In Vectk , the one-element space {0} is both initial and terminal.
• In a poset, seen as a category, an initial object is a least element, while a terminal

object is a greatest element.

14 S. Abramsky and N. Tzevelekos

Exercise 18 Verify these claims. In each case, identify the canonical arrows.

Exercise 19 Identify the initial and terminal objects in Rel.

Exercise 20 Suppose that a monoid, viewed as a category, has either an initial or a
terminal object. What must the monoid be?

We shall now establish a fundamental fact: initial and terminal objects are unique up
to (unique) isomorphism. As we shall see, this is characteristic of all such “univer-
sal” definitions. For example, the apparent arbitrariness in the fact that any singleton
set is a terminal object in Set is answered by the fact that what counts is the property
of being terminal; and this suffices to ensure that any two concrete objects having
this property must be isomorphic to each other.

The proof of the proposition, while elementary, is a first example of distinctively
categorical reasoning.

Proposition 21 If I and I ′ are initial objects in the category C then there exists a

unique isomorphism I
∼=−→ I ′.

Proof Since I is initial and I ′ is an object of C, there is a unique arrow ιI ′ : I → I ′.
We claim that ιI ′ is an isomorphism.
Since I ′ is initial and I is an object in C, there is an arrow ι′I : I ′ → I . Thus we
obtain ιI ′ ; ι′I : I → I , while we also have the identity morphism idI : I → I . But
I is initial and therefore there exists a unique arrow from I to I , which means that
ιI ′ ; ι′I = idI . Similarly, ι′I ; ιI ′ = idI ′ , so ιI ′ is indeed an isomorphism. �

Hence, initial objects are “unique up to (unique) isomorphism”, and we can (and
do) speak of the initial object (if any such exists). Similarly for terminal objects.

Exercise 22 Let C be a category with an initial object 0. For any object A, show the
following.

• If A ∼= 0 then A is an initial object.
• If there exists a monomorphism f : A → 0 then f is an iso, and hence A is

initial.

1.2.2 Products and Coproducts

1.2.2.1 Products

We now consider one of the most common constructions in mathematics: the forma-
tion of “direct products”. Once again, rather than giving a case-by-case construction
of direct products in each mathematical context we encounter, we can express once
and for all a general notion of product, meaningful in any category—and such that,
if a product exists, it is characterised uniquely up to unique isomorphism, just as for
initial and terminal objects. Given a particular mathematical context, i.e. a category,
we can then verify whether on not the product exists in that category. The concrete
construction appropriate to the context will enter only into the proof of existence;

1 Introduction to Categories and Categorical Logic 15

all of the useful properties of the product follow from the general definition. More-
over, the categorical notion of product has a normative force; we can test whether
a concrete construction works as intended by verifying that it satisfies the general
definition.

In set theory, the cartesian product is defined in terms of the ordered pair:

X × Y := {(x, y) | x ∈ X ∧ y ∈ Y }.

It turns out that ordered pairs can be defined in set theory, e.g. as

(x, y) := {{x, y}, y}.

Note that in no sense is such a definition canonical. The essential properties of
ordered pairs are:

1. We can retrieve the first and second components x , y of the ordered pair (x, y),
allowing projection functions to be defined:

π1 : (x, y) �→ x, π2 : (x, y) �→ y .

2. The information about first and second components completely determines the
ordered pair:

(x1, x2) = (y1, y2) ⇐⇒ x1 = y1 ∧ x2 = y2.

The categorical definition expresses these properties in arrow-theoretic terms, mean-
ingful in any category.

Definition 23 Let A, B be objects in a category C. An A,B–pairing is a triple
(P, p1, p2) where P is an object, p1 : P → A and p2 : P → B. A morphism
of A,B–pairings

f : (P, p1, p2) −→ (Q, q1, q2)

is a morphism f : P → Q in C such that q1 ◦ f = p1 and q2 ◦ f = p2 , i.e. the
following diagram commutes.

P

p1 p2
f

A Qq1 q2
B

The A,B–pairings form a category Pair(A, B). We say that (A × B, π1, π2) is a
product of A and B if it is terminal in Pair(A, B). �

16 S. Abramsky and N. Tzevelekos

Exercise 24 Verify that Pair(A, B) is a category.

Note that products are specified by triples A
π1←− A × B

π2−→ B, where πi ’s are
called projections. For economy (and if projections are obvious) we may say that
A × B is the product of A and B. We say that C has (binary) products if each
pair of objects A, B has a product in C. A direct consequence of the definition, by
Proposition 21, is that if products exist, they are unique up to (unique) isomorphism.

Unpacking the uniqueness condition from Pair(A, B) back to C we obtain a more
concise definition of products which we use in practice.

Definition 25 (Equivalent definition of product) Let A, B be objects in a category

C. A product of A and B is an object A × B together with a pair of arrows A
π1←−

A × B
π2−→ B such that for every triple A

f←− C
g−→ B there exists a unique

morphism

〈 f, g〉 : C −→ A × B

such that the following diagram commutes.

A A × B
π1 π2

B

C

f g
〈 f,g〉

(
π1 ◦ 〈 f, g〉 = f

π2 ◦ 〈 f, g〉 = g

)

�

We call 〈 f, g〉 the pairing of f and g.
Note that the above diagram features a dashed arrow. Our intention with such

diagrams is always to express the following idea: if the undashed part of the diagram
commutes, then there exists a unique arrow (the dashed one) such that the whole
diagram commutes. In any case, we shall always spell out the intended statement
explicitly.

We look at how this definition works in our standard example categories.

• In Set, products are the usual cartesian products.
• In Pos, products are cartesian products with the pointwise order.
• In Top, products are cartesian products with the product topology.
• In Vectk , products are direct sums.
• In a poset, seen as a category, products are greatest lower bounds.

Exercise 26 Verify these claims.

The following proposition shows that the uniqueness of the pairing arrow can be
specified purely equationally, by the equation:

∀h : C → A × B. h = 〈π1 ◦ h, π2 ◦ h〉

1 Introduction to Categories and Categorical Logic 17

Proposition 27 For any triple A
π1←− A × B

π2−→ B the following statements are
equivalent.

(I) For any triple A
f←− C

g−→ B there exists a unique morphism 〈 f, g〉 : C →
A × B such that π1 ◦ 〈 f, g〉 = f and π2 ◦ 〈 f, g〉 = g.

(II) For any triple A
f←− C

g−→ B there exists a morphism 〈 f, g〉 : C → A × B
such that π1 ◦ 〈 f, g〉 = f and π2 ◦ 〈 f, g〉 = g, and moreover, for any h : C →
A × B, h = 〈π1 ◦ h, π2 ◦ h〉.

Proof For (I)⇒(II), take any h : C → A×B ; we need to show h = 〈π1 ◦h, π2 ◦h〉.
We have

A C
π1◦h π2◦h

B

and hence, by (I), there exists unique k : C → A × B such that

π1 ◦ k = π1 ◦ h ∧ π2 ◦ k = π2 ◦ h (∗)

Note now that (∗) holds both for k := h and k := 〈π1 ◦ h, π2 ◦ h〉, the latter because
of (I). Hence, h = 〈π1 ◦ h, π2 ◦ h〉.
For (II)⇒(I), take any triple A

f←− C
g−→ B. By (II), we have that there exists an

arrow 〈 f, g〉 : C → A× B such that π1 ◦ 〈 f, g〉 = f and π2 ◦ 〈 f, g〉 = g. We need
to show it is the unique such. Let k : C → A × B s.t.

π1 ◦ k = f ∧ π2 ◦ k = g

Then, by (II),

k = 〈π1 ◦ k, π2 ◦ k〉 = 〈 f, g〉

as required. �

In the following proposition we give some useful properties of products. First, let us
introduce some notation for arrows: given f1 : A1 → B1, f2 : A2 → B2, define

f1 × f2 := 〈 f1 ◦ π1, f2 ◦ π2〉 : A1 × A2 −→ B1 × B2.

Proposition 28 For any f : A → B, g : A → C, h : A′ → A, and any p :
B → B ′, q : C → C ′,

• 〈 f, g〉 ◦ h = 〈 f ◦ h, g ◦ h〉,
• (p × q) ◦ 〈 f, g〉 = 〈p ◦ f, q ◦ g〉.
Proof For the first claim we have:

〈 f, g〉 ◦ h = 〈π1 ◦ (〈 f, g〉 ◦ h), π2 ◦ (〈 f, g〉 ◦ h)〉 = 〈 f ◦ h, g ◦ h〉.

18 S. Abramsky and N. Tzevelekos

And for the second:

(p × q) ◦ 〈 f, g〉 = 〈p ◦ π1, q ◦ π2〉 ◦ 〈 f, g〉
= 〈p ◦ π1 ◦ 〈 f, g〉, q ◦ π2 ◦ 〈 f, g〉〉
= 〈p ◦ f, q ◦ g〉. �

General Products

The notion of products can be generalised to arbitrary arities as follows. A product
for a family of objects {Ai }i∈I in a category C is an object P and morphisms

pi : P −→ Ai (i ∈ I)

such that, for all objects B and arrows

fi : B −→ Ai (i ∈ I)

there is a unique arrow

g : B −→ P

such that, for all i ∈ I , the following diagram commutes.

B
g

fi

P

pi

Ai

As before, if such a product exists, it is unique up to (unique) isomorphism. We
write P = ∏

i∈I Ai for the product object, and g = 〈 fi | i ∈ I 〉 for the unique
morphism in the definition.

Exercise 29 What is the product of the empty family?

Exercise 30 Show that if a category has binary and nullary products then it has all
finite products.

1.2.2.2 Coproducts

We now investigate the dual notion to products: namely coproducts. Formally,
coproducts in C are just products in Cop, interpreted back in C . We spell out the
definition.

Definition 31 Let A, B be objects in a category C. A coproduct of A and B is an

object A + B together with a pair of arrows A
in1−→ A + B

in2←− B such that for

every triple A
f−→ C

g←− B there exists a unique morphism

1 Introduction to Categories and Categorical Logic 19

[f, g] : A + B −→ C

such that the following diagram commutes.

A
in1

f

A + B

[f,g]

B
in2

g

C

(
[f, g] ◦ in1 = f

[f, g] ◦ in2 = g

)

�

We call the ini ’s injections and [f, g] the copairing of f and g. As with pairings,
uniqueness of copairings can be specified by an equation:

∀h : A + B → C. h = [h ◦ in1, h ◦ in2]

Coproducts in Set

This is given by disjoint union of sets, which can be defined concretely e.g. by

X + Y := {1} × X ∪ {2} × Y.

We can define injections

X
in1

X + Y Y
in2

in1(x) := (1, x) , in2(y) := (2, y) .

Also, given functions f : X −→ Z and g : Y −→ Z , we can define

[f, g] : X + Y −→ Z

[f, g](1, x) := f (x) , [f, g](2, y) := g(y) .

Exercise 32 Check that this construction does yield coproducts in Set.

Note that this example suggests that coproducts allow for definition by cases.
Let us examine coproducts for some of our other standard examples.

• In Pos, disjoint unions (with the inherited orders) are coproducts.
• In Top, topological disjoint unions are coproducts.
• In Vectk , direct sums are coproducts.
• In a poset, least upper bounds are coproducts.

Exercise 33 Verify these claims.

20 S. Abramsky and N. Tzevelekos

Exercise 34 Dually to products, express coproducts as initial objects of a category
Copair(A, B) of A,B–copairings.

1.2.3 Pullbacks and Equalisers

We shall consider two further constructions of interest: pullbacks and equalisers.

1.2.3.1 Pullbacks

Definition 35 Consider a pair of morphisms A
f−→ C

g←− B. The pull-back of

f along g is a pair A
p←− D

q−→ B such that f ◦ p = g ◦ q and, for any pair

A
p′←− D′ q ′−→ B such that f ◦ p′ = g ◦ q ′, there exists a unique h : D′ → D such

that p′ = p ◦ h and q ′ = q ◦ h. Diagrammatically,

D′

h

q ′

p′
D

q

p

B

g

A
f

C �
Example 36

• In Set the pullback of A
f−→ C

g←− B is defined as a subset of the cartesian
product:

A ×C B = {(a, b) ∈ A × B | f (a) = g(b)}.

For example, consider a category C with

Ar(C)
dom−→ Ob(C)

cod←− Ar(C) .

Then the pullback of dom along cod is the set of composable morphisms,
i.e. pairs of morphisms (f, g) in C such that f ◦ g is well-defined.

• In Set again, subsets (i.e. inclusion maps) pull back to subsets:

f −1(U) U

X
f

Y

1 Introduction to Categories and Categorical Logic 21

Exercise 37 Let C be a category with a terminal object 1. Show that, for any A, B ∈
Ob(C), the pullback of A

τA−→ 1
τB←− B is the product of A and B, if it exists.

Just as for products, pullbacks can equivalently be described as terminal objects in

suitable categories. Given a pair of morphisms A
f−→ C

g←− B, we define an
(f, g)–cone to be a triple (D, p, q) such that the following diagram commutes.

D
q

p

B

g

A
f

C

A morphism of (f, g)–cones h : (D1, p1, q1) → (D2, p2, q2) is a morphism h :
D1 → D2 such that the following diagram commutes.

D1

p1
h

q1

A D2p2 q2
B

We can thus form a category Cone(f, g). A pull-back of f along g, if it exists, is
exactly a terminal object of Cone(f, g). Once again, this shows the uniqueness of
pullbacks up to unique isomorphism.

1.2.3.2 Equalisers

Definition 38 Consider a pair of parallel arrows A
g

f
B . An equaliser of (f, g)

is an arrow e : E → A such that f ◦ e = g ◦ e and, for any arrow h : D → A such
that f ◦h = g ◦h, there is a unique ĥ : D → E so that h = e◦ ĥ. Diagrammatically,

E
e

A
g

f
B

D

h
ĥ

�
As for products, uniqueness of the arrow from D to E can be expressed equationally:

∀k : D → E . ê ◦ k = k .

Exercise 39 Why is ê ◦ k well-defined for any k : D → E? Prove that the above
equation is equivalent to the uniqueness requirement.

22 S. Abramsky and N. Tzevelekos

Example 40 In Set, the equaliser of f, g is given by the inclusion

{x ∈ A | f (x) = g(x)} ↪→ A .

This allows equationally defined subsets to be defined as equalisers. For example,

consider the pair of maps R
2

g

f
R , where

f : (x, y) �→ x2 + y2, g : (x, y) �→ 1 .

Then, the equaliser is the unit circle as a subset of R
2.

1.2.4 Limits and Colimits

The notions we have introduced so far are all special cases of a general notion of
limits in categories, and the dual notion of colimits (Table 1.1).

Table 1.1 Examples of limits and colimits

Limits Colimits

Terminal objects Initial objects
Products Coproducts
Pullbacks Pushouts
Equalisers Coequalisers

An important aspect of studying any kind of mathematical structure is to see what
limits and colimits the category of such structures has. We shall return to these ideas
shortly.

1.2.5 Exercises

1. Give an example of a category where some pair of objects lacks a product or
coproduct.

2. (Pullback lemma) Consider the following commutative diagram.

A
f

u

B
g

v

C

w

D
h

E
i

F

Given that the right hand square BC E F and the outer square AC DF are pull-
backs, prove that the left hand square AB DE is a pullback.

1 Introduction to Categories and Categorical Logic 23

3. Consider A
f−→ C

g←− B with pullback A
p←− D

q−→ B. For each A
p′←−

D′ q ′−→ B ′ with f ◦ p′ = g ◦ q ′, let φ(p′, q ′) : D′ → D be the arrow dictated
by the pullback condition. Express uniqueness of φ(p′, q ′) equationally.

1.3 Functors

Part of the “categorical philosophy” is:

Don’t just look at the objects; take the morphisms into account too.

We can also apply this to categories!

1.3.1 Basics

A “morphism of categories” is a functor.

Definition 41 A functor F : C → D is given by:

• An object-map, assigning an object F A of D to every object A of C.
• An arrow-map, assigning an arrow F f : F A → F B of D to every arrow f :

A → B of C, in such a way that composition and identities are preserved:

F(g ◦ f) = Fg ◦ F f , F idA = idF A.

�

Note that we use the same symbol to denote the object- and arrow-maps; in practice,
this never causes confusion. Since functors preserve domains and codomains of
arrows, for each pair of objects A, B of C, there is a well-defined map

FA,B : C(A, B) → D(F A, F B) .

The conditions expressing preservation of composition and identities are called
functoriality.

Example 42 Let (P,≤), (Q,≤) be preorders (seen as categories). A functor F :
(P,≤) −→ (Q,≤) is specified by an object-map, say F : P → Q, and an appro-
priate arrow-map. The arrow-map corresponds to the condition

∀p1, p2 ∈ P. p1 ≤ p2 �⇒ F(p1) ≤ F(p2) ,

i.e. to monotonicity of F . Moreover, the functoriality conditions are trivial since in
the codomain (Q,≤) all hom-sets are singletons.
Hence, a functor between preorders is just a monotone map.

24 S. Abramsky and N. Tzevelekos

Example 43 Let (M, ·, 1), (N , ·, 1) be monoids. A functor F : (M, ·, 1) −→
(N , ·, 1) is specified by a trivial object map (monoids are categories with a single
object) and an arrow-map, say F : M → N . The functoriality conditions corre-
spond to

∀m1, m2 ∈ M. F(m1 · m2) = F(m1) · F(m2) , F(1) = 1 ,

i.e. to F being a monoid homomorphism.
Hence, a functor between monoids is just a monoid homomorphism.

Other examples are the following.

• Inclusion of a sub-category, C ↪→ D, is a functor (by taking the identity map for
object- and arrow-map).

• The covariant powerset functor P : Set → Set:

X �→ P(X) , (f : X → Y) �→ P(f) := S �→ { f (x) | x ∈ S}.

• U : Mon → Set is the “forgetful” or “underlying” functor which sends a monoid
to its set of elements, “forgetting” the algebraic structure, and sends a homomor-
phism to the corresponding function between sets. There are similar forgetful
functors for other categories of structured sets. Why are these trivial-looking
functors useful?—We shall see!

• Group theory examples. The assignment of the commutator sub-group of a group
extends to a functor from Group to Group; and the assignment of the quotient
by this normal subgroup extends to a functor from Group to AbGroup. The
assignment of the centraliser of a group does not!

• More sophisticated examples: e.g. homology. The basic idea of algebraic topol-
ogy is that there are functorial assignments of algebraic objects (e.g. groups) to
topological spaces, and variants of this idea ((co)homology theories) are perva-
sive throughout modern pure mathematics.

Functors “of several variables”

We can generalise the notion of a functor to a mapping from several domain cate-
gories to a codomain category. For this we need the following definition.

Definition 44 For categories C,D define the product category C×D as follows. An
object in C×D is a pair of objects from C and D, and an arrow in C×D is a pair of
arrows from C and D. Identities and arrow composition are defined componentwise:

id(A,B) := (idA, idB) , (f, g) ◦ (f ′, g′) := (f ◦ f ′, g ◦ g′) .

�

A functor “of two variables”, with domains C and D, to E is simply a functor:

F : C ×D −→ E .

1 Introduction to Categories and Categorical Logic 25

For example, there are evident projection functors

C ←− C ×D −→ D .

1.3.2 Further Examples

1.3.2.1 Set-Valued Functors

Many important constructions arise as functors F : C → Set. For example:

• If G is a group, a functor F : G → Set is an action of G on a set.
• If P is a poset representing time, a functor F : P → Set is a notion of set varying

through time. This is related to Kripke semantics, and to forcing arguments in set
theory.

• Recall that 2⇒ is the category • • . Then, functors F : 2⇒ → Set
correspond to directed graphs understood as in Definition 4, i.e. as structures
(V, E, s, t), where V is a set of vertices, E is a set of edges, and s, t : E → V
specify the source and target vertices for each edge.

Let us examine the first example in more detail. For a group (G, ·, 1), a functor
F : G → Set is specified by a set X (to which the unique object of G is mapped),
and by an arrow-map sending each element m of G to an endofunction on X , say
m • __ : X → X . Then, functoriality amounts to the conditions

∀m1, m2 ∈ G. F(m1 · m2) = F(m1) ◦ F(m2) , F(1) = idX ,

that is, for all m1, m2 ∈ G and all x ∈ X ,

(m1 · m2) • x = m1 • m2 • x , 1 • x = x .

We therefore see that F defines an action of G on X .

Exercise 45 Verify that functors F : 2⇒ → Set correspond to directed graphs.

Example: Lists

Data-type constructors are functors. As a basic example, we consider lists. There is
a functor

List : Set −→ Set

which takes a set X to the set of all finite lists (sequences) of elements of X . List
is functorial: its action on morphisms (i.e. functions, i.e. (functional) programs) is
given by maplist:

f : X −→ Y

List(f) : List(X) −→ List(Y)

26 S. Abramsky and N. Tzevelekos

List(f)[x1, . . . , xn] := [f (x1), . . . , f (xn)]

We can upgrade List to a functor MList : Set → Mon by mapping each set X to the
monoid (List(X), ∗, ε) and f : X → Y to List(f), as above. The monoid operation
∗ : List(X) × List(X) → List(X) is list concatenation, and ε is the empty list. We
call MList(X) the free monoid over X . This terminology will be justified in Chap.
5.

1.3.2.2 Products as Functors

If a category C has binary products, then there is automatically a functor

__× __ : C × C −→ C

which takes each pair (A, B) to the product A × B, and each (f, g) to

f × g := 〈 f ◦ π1, g ◦ π2〉 .

Functoriality is shown as follows, using Proposition 28 and uniqueness of pairings
in its equational form.

(f × g) ◦ (f ′ × g′) = (f × g) ◦ 〈 f ′ ◦ π1, g′ ◦ π2〉 = 〈 f ◦ f ′ ◦ π1, g ◦ g′ ◦ π2〉
= (f ◦ f ′)× (g ◦ g′) ,

idA × idB = 〈 idA ◦ π1, idB ◦ π2〉 = 〈π1 ◦ idA×B, π2 ◦ idA×B〉 = idA×B .

1.3.2.3 The Category of Categories

There is a category Cat whose objects are categories, and whose arrows are functors.
Identities in Cat are given by identity functors:

IdC : C −→ C := A �→ A, f �→ f.

Composition of functors is defined in the evident fashion. Note that if F : C → D
and G : D→ E then, for f : A → B in C,

G ◦ F(f) := G(F(f)) : G(F(A)) −→ G(F(B))

so the types work out. A category of categories sounds (and is) circular, but in prac-
tice is harmless: one usually makes some size restriction on the categories, and then
Cat will be too “big” to be an object of itself. See Appendix A.

Note that product categories are products in Cat! For any pair of categories C,D,
set

C π1←− C ×D π2−→ D

1 Introduction to Categories and Categorical Logic 27

where C×D the product category (defined previously) and π i ’s the obvious projec-

tion functors. For any pair of functors C F←− E G−→ D, set

〈F, G〉 : E −→ C ×D := A �→ (F A, G A), f �→ (F f, G f) .

It is easy to see that 〈F, G〉 is indeed a functor. Moreover, satisfaction of the product
diagram and uniqueness are shown exactly as in Set.

1.3.3 Contravariance

By definition, the arrow-map of a functor F is covariant: it preserves the direction
of arrows, so if f : A → B then F f : F A → F B. A contravariant functor
G does exactly the opposite: it reverses arrow-direction, so if f : A → B then
G f : G B → G A. A concise way to express contravariance is as follows.

Definition 46 Let C,D be categories. A contravariant functor G from C to D is a
functor G : Cop → D. (Equivalently, a functor G : C → Dop.) �
Explicitly, a contravariant functor G is given by an assignment of:

• an object G A in D to every object A in C,
• an arrow G f : G B → G A in D to every arrow f : A → B in C, such that

(notice the change of order in composition):

G(g ◦ f) = G f ◦ Gg , G idA = idG A.

Note that functors of several variables can be covariant in some variables and con-
travariant in others, e.g.

F : Cop ×D −→ E .

Examples of Contravariant Functors

• The contravariant powerset functor, Pop : Setop → Set , is given by:

Pop(X) := P(X) .

Pop(f : X → Y) : P(Y) −→ P(X) := T �→ {x ∈ X | f (x) ∈ T } .

• The dual space functor on vector spaces:

(__)∗ : Vectop
k −→ Vectk := V �→ V ∗.

Note that these are both examples of the following idea: send an object A into func-
tions from A into some fixed object. For example, the powerset can be written as
P(X) = 2X , where we think of a subset in terms of its characteristic function.

28 S. Abramsky and N. Tzevelekos

Hom-functors

We now consider some fundamental examples of Set-valued functors. Given a cat-
egory C and an object A of C, two functors to Set can be defined:

• The covariant Hom-functor at A,

C(A, __) : C −→ Set ,

which is given by (recall that each C(A, B) is a set):

C(A, __)(B) := C(A, B) , C(A, __)(f : B → C) := g �→ f ◦ g .

We usually write C(A, __)(f) as C(A, f). Functoriality reduces directly to the
basic category axioms: associativity of composition and the unit laws for the
identity.

• There is also a contravariant Hom-functor,

C(__ , A) : Cop −→ Set ,

given by:

C(__ , A)(B) := C(B, A) , C(__ , A)(h : C → B) := g �→ g ◦ h .

Generalising both of the above, we obtain a bivariant Hom-functor,

C(__ , __) : Cop × C −→ Set .

Exercise 47 Spell out the definition of C(__ , __) : Cop× C −→ Set. Verify carefully
that it is a functor.

1.3.4 Properties of Functors

Definition 48 A functor F : C → D is said to be:

• faithful if each map FA,B : C(A, B) → D(F A, F B) is injective;
• full if each map FA,B : C(A, B) → D(F A, F B) is surjective;
• an embedding if F is full, faithful, and injective on objects;
• an equivalence if F is full, faithful, and essentially surjective: i.e. for every object

B of D there is an object A of C such that F(A) ∼= B;
• an isomorphism if there is a functor G : D→ C such that

G ◦ F = IdC , F ◦ G = IdD .

�

1 Introduction to Categories and Categorical Logic 29

We say that categories C and D are isomorphic, C ∼= D, if there is an isomorphism
between them. Note that this is just the usual notion of isomorphism applied to Cat.
Examples:

• The forgetful functor U : Mon → Set is faithful, but not full. For the latter, note
that not all functions f : M → N yield an arrow f : (M, ·, 1) → (N , ·, 1).
Similar properties hold for other forgetful functors.

• The free monoid functor MList : Set → Mon is faithful, but not full.
• The product functor __ × __ : C × C −→ C is generally neither faithful nor full.

For the latter, e.g. in Set, the function f : N
2 → N

2 := (m, n) �→ (n, n) cannot
be expressed in the form f1 × f2. Faithfulness of the functor is examined in
Exercise 1.3.5(2).

• There is an equivalence between FDVectk the category of finite dimensional
vector spaces over the field k, and Matk , the category of matrices with entries
in k. Note that these categories are very far from isomorphic! This example is
elaborated in Exercise 1.3.5(1).

Preservation and Reflection

Let P be a property of arrows. We say that a functor F : C → D preserves P if
whenever f satisfies P , so does F(f). We say that F reflects P if whenever F(f)

satisfies P , so does f . For example:

a. All functors preserve isomorphisms, split monics and split epics.
b. Faithful functors reflect monics and epics.
c. Full and faithful functors reflect isomorphisms.
d. Equivalences preserve monics and epics.
• The forgetful functor U : Mon → Set preserves products.

Let us show c; the rest are given as exercises below. So let f : A → B in C be such
that F f is an iso, that is, it has an inverse g′ : F B → F A. Then, by fullness, there
exists some g : B → A so that g′ = Fg. Thus,

F(g ◦ f) = Fg ◦ F f = g′ ◦ F f = idF A = F(idA) .

By faithfulness we obtain g ◦ f = idA . Similarly, f ◦ g = idB and therefore f is
an isomorphism.

Exercise 49 Show items a, b and d above.

Exercise 50 Show the following.

• Functors do not in general reflect monics or epics.
• Faithful functors do not in general reflect isomorphisms.
• Full and faithful functors do not in general preserve monics or epics.

30 S. Abramsky and N. Tzevelekos

1.3.5 Exercises

1. Consider the category FDVectR of finite dimensional vector spaces over R, and
MatR of matrices over R. Concretely, MatR is defined as follows:

Ob(MatR) := N ,

MatR(n, m) := {M | M is an n × m matrix with entries in R} .

Thus, objects are natural numbers, and arrows n → m are n × m real matrices.
Composition is matrix multiplication, and the identity on n is the n × n identity
matrix.
Now let F : MatR → FDVectR be the functor taking each n to the vector space
R

n and each M : n → m to the linear function

F M : Rn −→ R
m := (x1, . . . , xn) �→ [x1, . . . , xn]M

with the 1×m matrix [x1, . . . , xn]M considered as a vector in R
m . Show that F

is full, faithful and essentially surjective, and hence that FDVectR and MatR are
equivalent categories. Are they isomorphic?

2. Let C be a category with binary products such that, for each pair of objects A, B,

C(A, B) �= ∅. (∗)

Show that the product functor F : C × C → C is faithful.
Would F still be faithful in the absence of condition (∗)?

1.4 Natural Transformations

“Categories were only introduced to allow functors to be defined; functors were only intro-
duced to allow natural transformations to be defined.”

Just as categories have morphisms between them, namely functors, so functors have
morphisms between them too—natural transformations.

1.4.1 Basics

Definition 51 Let F, G : C → D be functors. A natural transformation

t : F −→ G

is a family of morphisms in D indexed by objects A of C,

{ tA : F A −→ G A }A∈Ob(C)

1 Introduction to Categories and Categorical Logic 31

such that, for all f : A → B, the following diagram commutes.

F A
F f

tA

F B

tB

G A
G f

G B

This condition is known as naturality.
If each tA is an isomorphism, we say that t is a natural isomorphism:

t : F
∼=−→ G .

�

Examples:

• Let Id be the identity functor on Set, and×◦〈Id, Id〉 be the functor taking each set
X to X× X and each function f to f × f . Then, there is a natural transformation
Δ : Id −→ × ◦ 〈Id, Id〉 given by:

ΔX : X −→ X × X := x �→ (x, x) .

Naturality amounts to asserting that, for any function f : X → Y , the following
diagram commutes.

X
f

ΔX

Y

ΔY

X × X
f× f

Y × Y

We call Δ the diagonal transformation on Set. In fact, it is the only natural trans-
formation between these functors.

• The diagonal transformation can be defined for any category C with binary prod-
ucts by setting, for each object A in C,

ΔA : A −→ A × A := 〈 idA, idA〉 .

Projections also yield natural transformations. For example the arrows

π1(A,B) : A × B −→ A

32 S. Abramsky and N. Tzevelekos

specify a natural transformation π1 : × → π1 . Note that ×,π1 : C× C → C are
the functors for product and first projection respectively.

• Let C be a category with terminal object T , and let KT : C → C be the functor
mapping all objects to T and all arrows to idT . Then, the canonical arrows

τA : A −→ T

specify a natural transformation τ : Id → KT (where Id the identity functor
on C).

• Recall the functor List : Set → Set which takes a set X to the set of finite
lists with elements in X . We can define (amongst others) the following natural
transformations,

reverse : List −→ List , unit : Id −→ List , flatten : List ◦ List −→ List ,

by setting, for each set X ,

reverseX : List(X) −→ List(X) := [x1, . . . , xn] �→ [xn, . . . , x1] ,
unitX : X −→ List(X) := x �→ [x] ,

flattenX : List(List(X)) −→ List(X)

:= [[x1
1 , . . . , x1

n1
], . . . , [xk

1 , . . . , xk
nk
]] �→ [x1

1 , , xk
nk
] .

• Consider the functor P := × ◦ 〈U, U 〉 with U : Mon → Set, i.e.

P : Mon −→ Set := (M, ·, 1) �→ M × M, f �→ f × f .

Then, the monoid operation yields a natural transformation t : P → U defined
by:

t(M,·,1) : M × M −→ M := (m, m ′) �→ m · m ′ .

Naturality corresponds to asserting that, for any f : (M, ·, 1) → (N , ·, 1), the
following diagram commutes,

M × M
f× f

tM

N × N

tN

M
f

N

that is, for any m1, m2 ∈ M , f (m1) · f (m2) = f (m1 · m2).

1 Introduction to Categories and Categorical Logic 33

• If V is a finite dimensional vector space, then V is isomorphic to both its first
dual V ∗ and to its second dual V ∗∗.
However, while it is naturally isomorphic to its second dual, there is no natural
isomorphism to the first dual. This was actually the original example which moti-
vated Eilenberg and Mac Lane to define the concept of natural transformation;
here naturality captures basis independence.

Exercise 52 Verify naturality of diagonal transformations, projections and terminals
for a category C with finite products.

Exercise 53 Prove that the diagonal is the only natural transformation Id −→
× ◦ 〈Id, Id〉 on Set. Similarly, prove that the first projection is the only natural
transformation ×→ π1 on Set.

1.4.2 Further Examples

1.4.2.1 Natural Isomorphisms for Products

Let C be a category with finite products, i.e. binary products and a terminal object
1. Then, we have the following canonical natural isomorphisms.

aA,B,C : A × (B × C)
∼=−→ (A × B)× C ,

sA,B : A × B
∼=−→ B × A ,

lA : 1× A
∼=−→ A ,

rA : A × 1
∼=−→ A .

The first two isomorphisms are meant to assert that the product is associative and
symmetric, and the last two that 1 is its unit. In later sections we will see that these
conditions form part of the definition of symmetric monoidal categories.

These natural isomorphisms are defined explicitly by:

aA,B,C := 〈〈π1, π1 ◦ π2〉, π2 ◦ π2〉 ,
sA,B := 〈π2, π1〉 ,

lA := π2 ,

rA := π1 .

Since natural isomorphisms are a self-dual notion, similar natural isomorphisms can
be defined if C has binary coproducts and an initial object.

Exercise 54 Verify that these families of arrows are natural isomorphisms.

34 S. Abramsky and N. Tzevelekos

1.4.2.2 Natural Transformations Between Hom-Functors

Let f : A → B in a category C. Then, this induces a natural transformation

C(f, __) : C(B, __) −→ C(A, __) ,

C(f, __)C : C(B, C) −→ C(A, C) := (g : B → C) �→ (g ◦ f : A → C) .

Note that C(f, __)C is the same as C(f, C), the result of applying the contravariant
functor C(__ , C) to f . Hence, naturality amounts to asserting that, for each h :
C → D, the following diagram commutes.

C(B, C)

C(f,C)

C(B,h) C(B, D)

C(f,D)

C(A, C)
C(A,h)

C(A, D)

Starting from a g : B → C , we compute:

C(A, h)(C(f, C)(g)) = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f, D)(C(B, h)(g)) .

The natural transformation C(__ , f) : C(__ , A) → C(__ , B) is defined similarly.

Exercise 55 Define the natural transformation C(__ , f) and verify its naturality.

There is a remarkable result, the Yoneda Lemma, which says that every natural
transformation between Hom-functors comes from a (unique) arrow in C in the
fashion described above.

Lemma 1 Let A, B be objects in a category C. For each natural transformation
t : C(A, __) → C(B, __), there is a unique arrow f : B → A such that

t = C(f, __) .

Proof Take any such A, B and t and let

f : B −→ A := tA(idA) .

We want to show that t = C(f, __). For any object C and any arrow g : A → C ,
naturality of t means that the following commutes.

1 Introduction to Categories and Categorical Logic 35

C(A, A)
C(A,g)

tA

C(A, C)

tC

C(B, A) C(B,g)
C(B, C)

Starting from idA we have that:

tC (C(A, g)(idA)) = C(B, g)(tA(idA)) , i.e. tC (g) = g ◦ f .

Hence, noting that C(f, C)(g) = g ◦ f , we obtain t = C(f, __).
For uniqueness we have that, for any f, f ′ : B → A, if C(f, __) = C(f ′, __) then

f = idA ◦ f = C(f, A)(idA) = C(f ′, A)(idA) = idA ◦ f ′ = f ′.
�

Exercise 56 Prove a similar result for contravariant hom-functors.

Alternative definition of equivalence

Another way of defining equivalence of categories is as follows.

Definition 57 We say that categories C and D are equivalent, C � D, if there are
functors F : C → D, G : D→ C and natural isomorphisms

G ◦ F ∼= IdC , F ◦ G ∼= IdD .

�

1.4.3 Functor Categories

Suppose we have functors F, G, H : C → D and natural transformations

t : F −→ G , u : G −→ H .

Then, we can compose these natural transformations, yielding u ◦ t : F → H :

(u ◦ t)A := F A
tA−→ G A

u A−→ H A.

Composition is associative, and has as identity the natural transformation

IF : F −→ F := { (IF)A := idA : F A −→ F A }A .

These observations lead us to the following.

36 S. Abramsky and N. Tzevelekos

Definition 58 For categories C,D define the functor category Func(C,D) by
taking:

• Objects: functors F : C → D.
• Arrows: natural transformations t : F → G.

Composition and identities are given as above. �

Remark 59 We see that in the category Cat of categories and functors, each hom-set
Cat(C,D) itself has the structure of a category. In fact, Cat is the basic example of
a “2-category”, i.e. of a category where hom-sets are themselves categories.

Note that a natural isomorphism is precisely an isomorphism in the functor category.
Let us proceed to some examples of functor categories.

• Recall that, for any group G, functors from G to Set are G-actions on sets. Then,
Func(G, Set) is the category of G-actions on sets and equivariant functions:
f : X → Y such that f (m • x) = m • f (x).

• Func(2⇒, Set): Graphs and graph homomorphisms.
• If F, G : P → Q are monotone maps between posets, then t : F → G means

that

∀x ∈ P. Fx ≤ Gx .

Note that in this case naturality is trivial (hom-sets are singletons in Q).

Exercise 60 Verify the above descriptions of Func(G, Set) and Func(2⇒ , Set).

Remark 61 The composition of natural transformations defined above is called ver-
tical composition. The reason for this terminology is depicted below.

C

F

H

G D C

F

H

D
t

u

u ◦ t

As expected, there is also a horizontal composition, which is given as follows.

C

F

G

D

F ′

G′

E C

F ′◦ F

G ′◦G

Et t ′ t ′• t

1 Introduction to Categories and Categorical Logic 37

1.4.4 Exercises

1. By identifying the relevant functors, express pairing 〈__, __〉 as a natural transfor-
mation. What does naturality correspond to explicitly?

2. Show that the two definitions of equivalence of categories, namely

(a) C and D are equivalent if there is an equivalence F : C → D (definition 48),
(b) C and D are equivalent if there are F : C → D, G : D → C, and isomor-

phisms F ◦ G ∼= IdD , G ◦ F ∼= IdC (Definition 57), are: equivalent! Note
that this will need the Axiom of Choice.

3. Define a relation on objects in a category C by: A ∼= B iff A and B are
isomorphic.

(a) Show that this relation is an equivalence relation.
Define a skeleton of C to be the (full) subcategory obtained by choosing one
object from each equivalence class of∼= (note that this involves choices, and
is not uniquely defined).

(b) Show that C is equivalent to any skeleton.
(c) Show that any two skeletons of C are isomorphic.
(d) Give an example of a category whose objects form a proper class, but whose

skeleton is finite.

4. Given a category C, we can define a functor

y : C −→ Func(Cop, Set) := A �→ C(__ , A), f �→ C(__ , f) .

Prove carefully that this is indeed a functor. Use exercise 56 to conclude that
y is full and faithful. Prove that it is also injective on objects, and hence an
embedding. It is known as the Yoneda embedding.

5. Define the horizontal composition u • t of natural transformations explicitly.
Prove that it is associative.

1.5 Universality and Adjoints

There is a fundamental triad of categorical notions:

Functoriality, Naturality, Universality.

We have studied the first two notions explicitly. We have also seen many examples of
universal definitions, notably the various notions of limits and colimits considered
in Sect. 1.2. It is now time to consider universality in general; the proper formulation
of this fundamental and pervasive notion is one of the major achievements of basic
category theory.

Universality arises when we are interested in finding canonical solutions to prob-
lems of construction: that is, we are interested not just in the existence of a solution

38 S. Abramsky and N. Tzevelekos

but in its canonicity. This canonicity should guarantee uniqueness, in the sense we
have become familiar with: a canonical solution should be unique up to (unique)
isomorphism.

The notion of canonicity has a simple interpretation in the case of posets, as an
extremal solution: one that is the least or the greatest among all solutions. Such
an extremal solution is obviously unique. For example, consider the problem of
finding a lower bound of a pair of elements A, B in a poset P: a greatest lower
bound of A and B is an extremal solution to this problem. As we have seen, this is
the specialisation to posets of the problem of constructing a product:

� A product of A, B in a poset is an element C such that C ≤ A and C ≤ B, (C
is a lower bound);

� and for any other solution C ′, i.e. C ′ such that C ′ ≤ A and C ′ ≤ B, we have
C ′ ≤ C . (C is a greatest lower bound.)

Because the ideas of universality and adjunctions have an appealingly simple form
in posets, which is, moreover, useful in its own right, we will develop the ideas in
that special case first, as a prelude to the general discussion for categories.

1.5.1 Adjunctions for Posets

Suppose g : Q → P is a monotone map between posets. Given x ∈ P , a g-approxi-
mation of x (from above) is an element y ∈ Q such that x ≤ g(y).
A best g-approximation of x is an element y ∈ Q such that

x ≤ g(y) ∧ ∀z ∈ Q. (x ≤ g(z) �⇒ y ≤ z) .

If a best g-approximation exists then it is clearly unique.

1.5.1.1 Discussion

It is worth clarifying the notion of best g-approximation. If y is a best g-approxi-
mation to x , then in particular, by monotonicity of g, g(y) is the least element of
the set of all g(z) where z ∈ Q and x ≤ g(z). However, the property of being a best
approximation is much stronger than the mere existence of a least element of this
set. We are asking for y itself to be the least, in Q, among all elements z such that
x ≤ g(z). Thus, even if g is surjective, so that for every x there is a y ∈ Q such that
g(y) = x , there need not exist a best g-approximation to x . This is exactly the issue
of having a canonical choice of solution.

Exercise 62 Give an example of a surjective monotone map g : Q → P and an
element x ∈ P such that there is no best g-approximation to x in Q.

If such a best g-approximation f (x) exists for all x ∈ P then we have a function
f : P → Q such that, for all x ∈ P , z ∈ Q:

x ≤ g(z) ⇐⇒ f (x) ≤ z . (1.1)

1 Introduction to Categories and Categorical Logic 39

We say that f is the left adjoint of g, and g is the right adjoint of f . It is immediate
from the definitions that the left adjoint of g, if it exists, is uniquely determined
by g.

Proposition 63 If such a function f exists, then it is monotone. Moreover,

idP ≤ g ◦ f , f ◦ g ≤ idQ , f ◦ g ◦ f = f , g ◦ f ◦ g = g .

Proof If we take z = f (x) in Eq. (1.1), then since f (x) ≤ f (x), x ≤ g ◦ f (x).
Similarly, taking x = g(z) we obtain f ◦ g(z) ≤ z. Now, the ordering on functions
h, k : P −→ Q is the pointwise order:

h ≤ k ⇐⇒ ∀x ∈ P. h(x) ≤ k(x).

This gives the first two equations.
Now, if x ≤P x ′ then x ≤ x ′ ≤ g ◦ f (x ′), so f (x ′) is a g-approximation of x ,

and hence f (x) ≤ f (x ′). Thus, f is monotone.
Finally, using the fact that composition is monotone with respect to the pointwise

order on functions, and the first two equations:

g = idP ◦ g ≤ g ◦ f ◦ g ≤ g ◦ idQ = g,

and hence g = g ◦ f ◦ g. The other equation is proved similarly. �

Examples:

• Consider the inclusion map

i : Z ↪→ R .

This has both a left adjoint f L and a right adjoint f R , where f L , f R : R → Z.
For all z ∈ Z, r ∈ R:

z ≤ f R(r) ⇐⇒ i(z) ≤ r , f L(r) ≤ z ⇐⇒ r ≤ i(z) .

We see from these defining properties that the right adjoint maps a real r to the
greatest integer below it (the extremal solution to finding an integer below a given
real). This is the standard floor function.

Similarly, the left adjoint maps a real to the least integer above it yielding the
ceiling function. Thus:

f R(r) = �r� , f L(r) = �r� .

• Consider a relation R ⊆ X × Y . R induces a function:

fR : P(X) −→ P(Y) := S �→ {y ∈ Y | ∃x ∈ S. x Ry} .

40 S. Abramsky and N. Tzevelekos

This has a right adjoint [R] : P(Y) −→ P(X):

S ⊆ [R]T ⇐⇒ fR(S) ⊆ T .

The definition of [R] which satisfies this condition is:

[R]T := {x ∈ X | ∀y ∈ Y. x Ry ⇒ y ∈ T } .

If we consider a set of worlds W with an accessibility relation R ⊆ W × W
as in Kripke semantics for modal logic, we see that [R] gives the usual Kripke
semantics for the modal operator �, seen as a propositional operator mapping the
set of worlds satisfied by a formula φ to the set of worlds satisfied by �φ.

On the other hand, if we think of the relation R as the denotation of a (possibly
non-deterministic) program, and T as a predicate on states, then [R]T is exactly
the weakest precondition wp(R, T). In Dynamic Logic, the two settings are com-
bined, and we can write expressions such as [R]T directly, where T will be (the
denotation of) some formula, and R the relation corresponding to a program.

• Consider a function f : X → Y . This induces a function:

f −1 : P(Y) −→ P(X) := T �→ {x ∈ X | f (x) ∈ T } .

This function f −1 has both a left adjoint ∃(f) : P(X) −→ P(Y), and a right
adjoint ∀(f) : P(X) −→ P(Y). For all S ⊆ X , T ⊆ Y :

∃(f)(S) ⊆ T ⇐⇒ S ⊆ f −1(T) , f −1(T) ⊆ S ⇐⇒ T ⊆ ∀(f)(S) .

How can we define ∀(f) and ∃(f) explicitly so as to fulfil these defining condi-
tions? – As follows:

∃(f)(S) := {y ∈ Y | ∃x ∈ X. f (x) = y ∧ x ∈ S} ,
∀(f)(S) := {y ∈ Y | ∀x ∈ X. f (x) = y ⇒ x ∈ S} .

If R ⊆ X × Y , which we write in logical notation as R(x, y), and we take the
projection function π1 : X × Y −→ X , then:

∀(π1)(R) ≡ ∀y. R(x, y) , ∃(π1)(R) ≡ ∃y. R(x, y) .

This extends to an algebraic form of the usual Tarski model-theoretic semantics
for first-order logic, in which:

Quantifiers are Adjoints

1 Introduction to Categories and Categorical Logic 41

1.5.1.2 Couniversality

We can dualise the discussion, so that starting with a monotone map f : P → Q
and y ∈ Q, we can ask for the best P-approximation to y from below: x ∈ P such
that f (x) ≤ y, and for all z ∈ P:

f (z) ≤ y ⇐⇒ z ≤ x .

If such a best approximation g(y) exists for all y ∈ Q, we obtain a monotone map
g : Q → P such that g is right adjoint to f . From the symmetry of the definition, it
is clear that:

f is the left adjoint of g ⇐⇒ g is the right adjoint of f

and each determines the other uniquely.

1.5.2 Universal Arrows and Adjoints

Our discussion of best approximations for posets is lifted to general categories as
follows.

Definition 64 Let G : D→ C be a functor, and C an object of C. A universal arrow
from C to G is a pair (D, η) where D is an object of D and

η : C −→ G(D) ,

such that, for any object D′ of D and morphism f : C → G(D′), there exists a
unique morphism f̂ : D → D′ in D such that f = G(f̂) ◦ η .
Diagrammatically:

C
η

f

G(D)

G(f̂)

D

f̂

G(D′) D′ �

As in previous cases, uniqueness can be given a purely equational specification:

∀h : D −→ D′. Ĝ(h) ◦ η = h . (1.2)

Exercise 65 Show that if (D, η) and (D′, η′) are universal arrows from C to G then
there is a unique isomorphism D ∼= D′.

42 S. Abramsky and N. Tzevelekos

Exercise 66 Check that the equational specification of uniqueness (1.2) is valid.

Examples:

• Take U : Mon → Set. Given a set X , the universal arrow is

ηX : X −→ U (MList(X)) := x �→ [x] .

Indeed, for any monoid (M, ·, 1) and any function f : X → M , set

f̂ : MList(X) −→ (M, ·, 1) := [x1, . . . , xn] �→ f (x1) · · · · · f (xn) .

It is easy to see that f̂ is a monoid homomorphism, and that U (f̂) ◦ ηX = f .
Moreover, for uniqueness we have that, for any h : MList(X) → (M, ·, 1),

̂U (h) ◦ ηX = ̂x �→ h([x]) = [x1, . . . , xn] �→ h([x1]) · · · · · h([xn])
= [x1, . . . , xn] �→ h([x1] ∗ · · · ∗ [xn])
= [x1, . . . , xn] �→ h([x1, . . . , xn]) = h .

• Let K : C → 1 be the unique functor to the one-object/one-arrow category. A
universal arrow from the object of 1 to K corresponds to an initial object in C.
Indeed, such a universal arrow is given by an object I of C (and a trivial arrow in
1), such that for any A in C (and relevant arrow in 1) there exists a unique arrow
from I to A (such that a trivial condition holds).

• Consider the functor 〈IdC, IdC〉 : C → C × C, taking each object A to (A, A)

and each arrow f to (f, f). A universal arrow from an object (A, B) of C × C to
〈IdC, IdC〉 corresponds to a coproduct of A and B.

Exercise 67 Verify the description of coproducts as universal arrows.

As in the case of posets, a related notion to universal arrows is that of adjunction.

Definition 68 Let C,D be categories. An adjunction from C to D is a triple
(F, G, θ), where F and G are functors

C
F

D
G

and θ is a family of bijections

θA,B : C(A, G(B))
∼=−→ D(F(A), B) ,

for each A ∈ Ob(C) and B ∈ Ob(D), natural in A and B.
We say that F is left adjoint to G, and G is right adjoint to F . �
Note that θ should be understood as the “witnessed” form—i.e. arrows instead of
mere relations—of the defining condition for adjunctions in the case of posets:

1 Introduction to Categories and Categorical Logic 43

x ≤ g(y) ⇐⇒ f (x) ≤ y.

This is often displayed as a two-way ‘inference rule’:

A −→ G B

F A −→ B

Naturality of θ is expressed as follows: for any f : A → G(B) and any g : A′ → A,
h : B → B′,

θA′,B(f ◦ g) = θA,B(f) ◦ F(g) ,

θA,B ′(G(h) ◦ f) = h ◦ θA,B(f) .

Note that f, g are in C, and h is in D. In one line:

θA′,B′(G(h) ◦ f ◦ g) = h ◦ θA,B(f) ◦ F(g) .

Diagrammatically:

C(A, G B′)

θA,B′

C(A, G B)
C(A,Gh) C(g,G B)

θA,B

C(A′, G B)

θA′,B

D(F A, B ′) D(F A, B)
D(F A,h) D(Fg,B)

D(F A′, B)

C(A, G B)

θA,B

C(g,Gh)
C(A′, G B ′)

θA′,B′

D(F A, B)
D(Fg,h)

D(F A′, B′)

Thus, θ is in fact a natural isomorphism

θ : C(__ , G(__))
∼=−→ D(F(__), __) ,

where C(__ , G(__)) : Cop ×D → Set is the result of composing the bivariant hom-
functor C(__ , __) with IdCop × G, and D(F(__), __) is similar.

In the next propositions we show that universal arrows and adjunctions are equiv-
alent notions.

Proposition 69 (Universals define adjunctions) Let G : D→ C. If for every object
C of C there exists a universal arrow ηC : C → G(F(C)), then:

1. F uniquely extends to a functor F : C → D such that η : IdC → G ◦ F is a
natural transformation.

2. F is uniquely determined by G (up to unique natural isomorphism), and vice
versa.

3. For each pair of objects C of C and D of D, there is a natural bijection:

θC,D : C(C, G(D)) ∼= D(F(C), D) .

44 S. Abramsky and N. Tzevelekos

Proof For 1, we extend F to a functor as follows. Given f : C → C ′ in C, we
consider the composition

ηC ′ ◦ f : C −→ G FC ′.

By the universal property of ηC , there exists a unique arrow F f : FC → FC ′ such
that the following diagram commutes.

C
ηC

f

G FC

G F f

C ′ ηC ′ G FC ′

Note that the above is the naturality diagram for η on C , hence the arrow-map thus
defined for F is the unique candidate that makes η a natural transformation.
It remains to verify the functoriality of F . To show that F preserves composition,
consider g : C ′ → C ′′. We have the following commutative diagram,

C
f

ηC

C ′
g

ηC ′

C ′′

ηC ′′

G FC
G F f

G FC ′
G Fg

G FC ′′

from which it follows that

G(Fg ◦ F f) ◦ ηC = G Fg ◦ G F f ◦ ηC = ηC ′′ ◦ g ◦ f ,

∴ F(g ◦ f) = ̂ηC ′′ ◦ g ◦ f = ̂G(Fg ◦ F f) ◦ ηC = Fg ◦ F f ,

where the last equality above holds because of (1.2). The verification that F pre-

serves identities is similar.
For 2, we have that each FC is determined uniquely up to unique isomorphism,

by the universal property, and once the object part of F is fixed, the arrow part is
uniquely determined.

For 3, we need to define a natural isomorphism θC,D : C(C, G(D)) ∼=
D(F(C), D). Given f : C → G D, θC,D(f) is defined to be the unique arrow
FC → D such that the following commutes, as dictated by universality.

1 Introduction to Categories and Categorical Logic 45

C
ηC

f

G FC

G(θC,D(f))

G D

Suppose that θC,D(f) = θC,D(g). Then

f = G(θC,D(f)) ◦ ηC = G(θC,D(g)) ◦ ηC = g .

Thus θC,D is injective. Moreover, given h : FC → D, by the equational formulation
of uniqueness (1.2) we have:

h = θC,D(Gh ◦ ηC) .

Thus θC,D is surjective. We are left to show naturality, i.e. that the following diagram
commutes, for all h : C ′ → C and g : D → D′.

C(C, G D)

θC,D

C(h,Gg)
C(C ′, G D′)

θC ′,D′

D(FC, D)
D(Fh,g)

D(FC ′, D′)

We chase around the diagram, starting from f : C → G D.

D(Fh, g) ◦ θC,D(f) = g ◦ θC,D(f) ◦ Fh

θC ′,D′ ◦ C(h, Gg)(f) = θC ′,D′(Gg ◦ f ◦ h)

Now:

g ◦ θC,D(f) ◦ Fh = θC ′,D′(G(g ◦ θC,D(f) ◦ Fh) ◦ ηC ′) by (1.2)

= θC ′,D′(Gg ◦ G(θC,D(f)) ◦ G Fh ◦ ηC ′) functoriality of G

= θC ′,D′(Gg ◦ G(θC,D(f)) ◦ ηC ◦ h) naturality of η

= θC ′,D′(Gg ◦ f ◦ h) by (1.2).
�

Proposition 70 (Adjunctions define universals) Let G : D → C be a functor,
D ∈ Ob(D) and C ∈ Ob(C). If, for any D′ ∈ Ob(D), there is a bijection

φD′ : C(C, G(D′)) ∼= D(D, D′)

natural in D′ then there is a universal arrow η : C → G(D).

46 S. Abramsky and N. Tzevelekos

Proof Take η : C → G(D) := φ−1
D (idD) and, for any g : C → G(D′), take

ĝ : D → D′ := φD′(g).
We have that

G(ĝ) ◦ η = G(ĝ) ◦ φ−1
D (idD)

nat= φ−1
D′ (ĝ) = g .

Moreover, for any h : D → D′,

φD′(Gh ◦ η) = φD′(Gh ◦ φ−1
D (idD))

nat= φD′(φ
−1
D′ (h)) = h ,

where equalities labelled with “nat” hold because of naturality of φ. �

Corollary 71 Let (F, G, θ) be an adjunction with F : C → D. Then, for each
C ∈ Ob(C) there is a universal arrow η : C → G(F(C)). �

Equivalence of Universals and Adjoints

Thus we see that the following two situations are equivalent, in the sense that each
determines the other uniquely.

• We are given a functor G : D→ C, and for each object C of C a universal arrow
from C to G.

• We are given functors F : C → D and G : D→ C, and a natural bijection

θC,D : C(C, G(D)) ∼= D(F(C), D) .

Couniversal Arrows

Let F : C → D be a functor, and D an object of D. A couniversal arrow from F to
D is an object C of C and a morphism

ε : F(C) −→ D

such that, for every object C ′ of C and morphism g : F(C ′) → D, there exists a
unique morphism ḡ : C ′ → C in C such that g = ε ◦ F(ḡ).
Diagrammatically:

C F(C)
ε

D

C ′

ḡ

F(C ′)

F(ḡ)
g

By exactly similar (but dual) reasoning to the previous propositions, an adjunction
implies the existence of couniversal arrows, and the existence of the latter implies
the existence of the adjunction. Hence,

1 Introduction to Categories and Categorical Logic 47

Universality ≡ Adjunctions ≡ Couniversality .

Some examples of couniversal arrows:

• A terminal object in a category C is a couniversal arrow from the unique functor
K : C → 1 to the unique object in 1.

• Let A, B be objects of C. A product of A and B is a couniversal arrow from
〈IdC, IdC〉 : C → C × C to (A, B).

1.5.3 Limits and Colimits

In the previous paragraph we described products A× B as couniversal arrows from
the diagonal functor Δ : C → C× C to (A, B). Δ is the functor assigning (A, A) to
each object A, and (f, f) to each arrow f . Noting that C × C = C2, where C2 is a
functor category, this suggests an important generalisation.

Definition 72 Let C be a category and I be another category, thought of as an “index
category”. A diagram of shape I in C is just a functor F : I → C. Consider the
functor category CI with objects the functors from I to C, and natural transforma-
tions as morphisms. There is a diagonal functor

Δ : C −→ CI ,

taking each object C of C to the constant functor KC : I → C, which maps every
object of I to C . A limit for the diagram F is a couniversal arrow from Δ to F . �

This concept of limit subsumes products (including infinite products), pullbacks,
inverse limits, etc.

For example, take I := 2⇒ (we have seen this before: 2⇒ = • •).
A functor F from I to C corresponds to a diagram:

A

f

g
B

A couniversal arrow from Δ to F corresponds to the following situation,

E
e

A

f

g
B

C

ĥ
h

i.e. to an equaliser!
By dualising limits we obtain colimits. Some important examples are coproducts,

coequalisers, pushouts and ω-colimits.

48 S. Abramsky and N. Tzevelekos

Exercise 73 Verify that pullbacks are limits by taking:

I := • −→ • ←− •

Limits as Terminal Objects

Consider Δ : C → CI and F : I → C. A cone to F is an object C of C and family
of arrows γ ,

{ γI : C −→ F I }I∈Ob(I) ,

such that, for any f : I → J , the following triangle commutes.

F I
F f

F J

C

γI γJ

Thus a cone is exactly a natural transformation γ : ΔC → F . A morphism of cones
(‘mediating morphism’) (C, γ) −→ (D, δ) is an arrow g : C → D such that each
of the following triangles commutes.

F I

C

γI

g D

δI

We obtain a category Cone(F) whose objects are cones to F and whose arrows are
mediating morphisms. Then, a limit of F is a terminal object in Cone(F).

1.5.4 Exponentials

In Set, given sets A, B, we can form the set of functions B A := Set(A, B), which
is again a set, i.e. an object of Set. This closure of Set under forming “function
spaces” is one of its most important properties.

How can we axiomatise this situation? Once again, rather than asking what the
elements of a function space are, we ask instead what we can do with them opera-
tionally. The answer is simple: apply functions to their arguments. That is, there is
a map

evA,B : B A × A −→ B such that evA,B(f, a) = f (a) .

1 Introduction to Categories and Categorical Logic 49

We can think of the function as a “black box”: we can feed it inputs and observe the
outputs.

Evaluation has the following couniversal property. For any g : C× A → B, there
is a unique map Λ(g) : C → B A such that the following diagram commutes.

B A × A
evA,B

B

C × A

Λ(g)× idA g

In Set, this is defined by:

Λ(g)(c) : A −→ B := a �→ g(c, a) .

This process of transforming a function of two arguments into a function-valued
function of one argument is known as currying, after H. B. Curry. It is an algebraic
form of λ-abstraction.

We are now led to the general definition of exponentials. Note that, for each
object A of a category C with products, we can define a functor

__× A : C −→ C .

Definition 74 Let C be a category with binary products. We say that C has expo-
nentials if for all objects A and B of C there is a couniversal arrow from __ × A to
B, i.e. an object B A of C and a morphism

evA,B : B A × A −→ B

with the couniversal property: for every g : C×A → B, there is a unique morphism
Λ(g) : C → B A such that the following diagram commutes.

B A × A
evA,B

B

C × A

Λ(g)× idA g

�
As before, the couniversal property can be given in purely equational terms, as fol-
lows. For every h : C → B A,

Λ(evA,B ◦ h × idA) = h .

Equivalently, C has exponentials if, for every object A, the functor __× A has a right
adjoint, that is, there exists a functor __A : C → C and a bijection

50 S. Abramsky and N. Tzevelekos

ΛB,C : C(C × A, B)
∼=−→ C(C, B A)

natural in B, C . In that case, evA,B := Λ−1(idB A).

Exercise 75 Derive __A and Λ−1 of the above description from ev and Λ of defini-
tion 74.

Exercise 76 Show that C has exponentials iff, for every A, B, C ∈ Ob(C), there is
an object B A and a bijection

θC : C(C × A, B)
∼=−→ C(C, B A)

natural in C .

Notation 77 The notation B A for exponential objects is standard in the category
theory literature. For our purposes, however, it will be more convenient to write
A ⇒ B.

Exponentials bring us to another fundamental notion, this time for understanding
functional types, models of λ-calculus, and the structure of proofs.

Definition 78 A category with a terminal object, products and exponentials is called
a Cartesian Closed Category (CCC). �
For example, Set is a CCC. Another class of examples are Boolean algebras, seen
as categories:

• Products are given by conjunctions A ∧ B. We define exponentials as implica-
tions:

A ⇒ B := ¬A ∨ B .

• Evaluation is just Modus Ponens,

(A ⇒ B) ∧ A ≤ B

while couniversality is the Deduction Theorem,

C ∧ A ≤ B ⇐⇒ C ≤ A ⇒ B .

1.5.5 Exercises

1. Suppose that U : C → D has a left adjoint F1, and V : D→ E has a left adjoint
F2. Show that V ◦U : C → E has a left adjoint.

2. A sup-lattice is a poset P in which every subset S ⊆ P has a supremum (least
upper bound)

∨
S. Let P , Q be sup-lattices, and f : P → Q be a monotone

map.

1 Introduction to Categories and Categorical Logic 51

(a) Show that if f has a right adjoint then f preserves least upper bounds:

f (
∨

S) =
∨
{ f (x) | x ∈ S} .

(b) Show that if f preserves least upper bounds then it has a right adjoint g,
given by:

g(y) =
∨
{x ∈ P | f (x) ≤ y} .

(c) Dualise to get a necessary and sufficient condition for the existence of left
adjoints.

3. Let F : C → D, G : D → C be functors such that F is left adjoint to G, with

natural bijection θC,D : C(C, G D)
∼=−→ D(FC, D). Show that there is a natural

transformation ε : F ◦ G → IdD , the counit of the adjunction.
Describe this counit explicitly in the case where the right adjoint is the forgetful
functor U : Mon → Set.

4. Let F : C → D and G : D → C be functors, and assume F is left adjoint to G
with natural bijection θ .

(a) Show that F preserves epimorphisms.
(b) Show that F is faithful if and only if, for every object A of C, ηA : A →

G F(A) is monic.
(c) Show that if, for each object A of C, there is a morphism sA : G F(A) → A

such that ηA ◦ sA = idG F(A) then F is full.

1.6 The Curry–Howard Correspondence

We shall now study a beautiful three-way connection between logic, computation
and categories:

Table 1.2 The Curry–Howard correspondence

Logic Computation

Categories

This connection has been known since the 1970s, and is widely used in Com-
puter Science—it is also beginning to be used in Quantum Informatics! It is the
upper link (Logic–Computation) that is usually attributed to Haskell B. Curry and
William A. Howard, although the idea is related to the operational interpreta-
tion of intuitionistic logic given in various formulations by Brouwer, Heyting and
Kolmogorov. The link to Categories is mainly due to the pioneering work of Joachim
Lambek (Table 1.2).

52 S. Abramsky and N. Tzevelekos

1.6.1 Logic

Suppose we ask ourselves the question: What is Logic about? There are two main
kinds of answer: one focuses on Truth, and the other on Proof. We focus on the
latter, that is, on:

What follows from what

Traditional introductions to logic focus on Hilbert-style proof systems, that is, on
generating the set of theorems of a system from a set of axioms by applying rules of
inference (e.g. Modus Ponens).

A key step in logic took place in the 1930s with the advent of Gentzen-style
systems. Instead of focusing on theorems, we look more generally and symmetri-
cally at What follows from what: in these systems the primary focus is on proofs
from assumptions. We will examine two such kinds of systems: Natural Deduction
systems and Gentzen sequent calculi.

Definition 79 Consider the fragment of propositional logic with logical connec-
tives ∧ and ⊃. The assertion that a formula A can be proved from assumptions
A1, . . . , An is expressed by a sequent:

A1, . . . , An # A

We use Γ , Δ to range over finite sets of formulas, and write Γ, A for Γ ∪{A}. Proofs
are built using the proof rules of Table 1.3; the resulting proof system is called the
Natural Deduction system for ∧,⊃. �
For example, we have the following proof of ⊃-transitivity.

A ⊃ B, B ⊃ C, A # B ⊃ C
Id

A ⊃ B, B ⊃ C, A # A ⊃ B
Id

A ⊃ B, B ⊃ C, A # A
Id

A ⊃ B, B ⊃ C, A # B
⊃E

A ⊃ B, B ⊃ C, A # C
⊃E

A ⊃ B, B ⊃ C # A ⊃ C
⊃ I

An important feature of Natural Deduction is the systematic pattern it exhibits in the
structure of the inference rules. For each connective � there are introduction rules,

Table 1.3 Natural deduction system for ∧,⊃
Identity Conjunction Implication

Γ, A # A
Id

Γ # A Γ # B
Γ # A ∧ B

∧ intro
Γ, A # B

Γ # A ⊃ B
⊃ intro

Γ # A ∧ B
Γ # A

∧ elim1
Γ # A ⊃ B Γ # A

Γ # B
⊃ elim

Γ # A ∧ B
Γ # B

∧ elim2

1 Introduction to Categories and Categorical Logic 53

which show how formulas A�B can be derived, and elimination rules, which show
how such formulas can be used to derive other formulas.

Admissibility

We say that a proof rule

Γ1 # A1 · · · Γn # An

Δ # B

is admissible in Natural Deduction if, whenever there are proofs of Γi # Ai then
there is also a proof of Δ # B. For example, the following Cut rule is admissible.

Γ # A A,Δ # B
Γ,Δ # B

Cut

Exercise 80 Show that the following rules are admissible in Natural Deduction.

1. The Weakening rule:

Γ # B
Γ, A # B

2. The Cut rule.

Our focus will be on Structural Proof Theory, that is studying the “space of formal
proofs” as a mathematical structure in its own right, rather than focussing only on

Provability←→ Truth

(i.e. the usual notions of “soundness and completeness”). One motivation for this
approach comes from trying to understand and use the computational content of
proofs, epitomised in the “Curry-Howard correspondence”.

1.6.2 Computation

Our starting point in computation is the pure calculus of functions called the λ-
calculus.

Definition 81 Assume a countably infinite set of variables, ranged over by x, y, z
and variants. λ-calculus terms, ranged over by t, u, v etc, are constructed from the
following inductive definition.

• Every variable x is a term.
• If t and u are terms, then t u is a term (application).
• If x is a variable and t is a term, then λx . t is a term (λ-abstraction). �

54 S. Abramsky and N. Tzevelekos

The above definition can be given in the following compact form, which will be
followed in similar definitions in the sequel.

VA $ x, y, z, . . .

TE $ t, u, v ::= x | t u | λx . t

The computational content of the calculus is exhibited in the following examples.
Note that the first example is not part of our formal syntax: it presupposes some
encoding of numerals and successors (Table 1.4).

Table 1.4 Examples of λ-terms

λx . x + 1 successor function
λx . x identity function
λ f. λx . f x application
λ f. λx . f (f x) double application
λ f. λg. λx . g(f (x)) composition and application

What we also note above is the use of parentheses in order to disambiguate the
structure of terms (i.e. the precedence of term constructors). To avoid notational
clutter we also use the following conventions.

• Applications associate to the left. For example, f x y stands for (f x) y .
• The scope of an abstractions goes as far to the right as possible. For example,

λ f.(λx . f (xx)) λx . f (xx) stands for λ f.((λx .(f (xx)))(λx .(f (xx)))) .

The free variables of a term are those that are not bound by any λ; they can be seen
as the assumptions of the term.

Definition 82 The set of free variables of a term t , fv(t), is given by:

fv(x) := {x} ,
fv(t u) := fv(t) ∪ fv(u) ,

fv(λx .t) := fv(t) \ {x} .
�

The notation λx .t is meant to serve the purpose of expressing formally

the function that returns t on input x.

Thus, λ is a binder, that is, it binds the variable x in the “function” λx .t , in the same
way that e.g.

∫
binds x in

∫
f (x) dx . This means that there should be no difference

between λx .t and λx ′.t ′, where t ′ is obtained from t by swapping x with some fresh
variable x ′ (i.e. with some x ′ not appearing free in t). For example, the terms

λx .x and λx ′.x ′

1 Introduction to Categories and Categorical Logic 55

should be “equal”, as they both stand for the identity function. We formalise this by
stipulating that

Terms are identified up to α-equivalence

where we say that two terms are α-equivalent iff they differ solely in the choice of
variables appearing in binding positions. This is formally defined in two steps, as
follows.

Definition 83 We define variable-swapping on terms recursively as follows.

(y x) • z :=

⎧
⎪⎨

⎪⎩

y if z = x

x if z = y

z otherwise

(y x) • t u := ((y x) • t)((y x) • u)

(y x) • λz.t := λ((y x) • z).((y x) • t)

Then, α-equivalence, =α , is the relation on terms defined inductively by:4

• x =α x ,
• t u =α t ′ u′ if t =α t ′ and u =α u′,
• λx .t =α λx ′.t ′ if, for all y not appearing in t t ′, (y x) • t =α (y x ′) • t ′ . �
Equating terms modulo α-equivalence means that we work with TE/=α instead of
TE. Henceforth, we will refer to elements of TE/=α as terms, and to elements of
TE as raw terms. Note that α-equivalence is meaningful only on raw terms.

Exercise 84 Prove the following α-equivalences.

λx .x =α λy.y , λx .λy. xy =α λy.λx . yx , x(λx .x) =α x(λy.y) .

Exercise 85 Show that, for all raw terms t, t ′ and variables x, x ′, if t =α t ′ then
fv(t) = fv(t ′) and (x x ′) • t =α (x x ′) • t ′.

Moreover, show that, for any x, x ′ �∈ fv(t), t =α (x x ′) • t . Hence infer that, for
any x ′ �∈ fv(t), λx . t =α λx ′. (x x ′) • t .

From the above exercise we obtain that fv and variable-swapping extend to terms
(i.e. to TE/=α) in a straightforward manner. Moreover, we have that, for any term t
and any x ′ /∈ fv(t),

λx . t = λx ′. (x x ′) • t .

Since λ-abstractions stand for functions, an application of a λ-abstraction on another
term should result to a substitution of the latter inside the body of the abstraction.

4 The last clause can be replaced by any of the following:

• . . . if, for some y not appearing in t t ′, (y x) • t =α (y x ′) • t ′ .
• . . . if, for all y not appearing free in t t ′, (y x) • t =α (y x ′) • t ′ .
• . . . if, for some y not appearing free in t t ′, (y x) • t =α (y x ′) • t ′ .

56 S. Abramsky and N. Tzevelekos

Definition 86 Define the substitution of a term t for a variable x inside a term induc-
tively by:

y[t/x] :=
{

t if y = x

y if y �= x

(uv)[t/x] := (u[t/x])(v[t/x])
(λz.u)[t/x] := λz. (u[t/x]) (∗)

where (∗) indicates the condition that z �∈ fv(x t). �
Note that, due to identification of α-equivalent (raw) terms, it is always possible

to rename bound variables so that condition (∗) be satisfied: for example,

(λz.zx)[z/x] = (λy.yx)[z/x] = λy.yz

Exercise 87 Show that, for all λ-terms u, t, t ′ and variables x, x ′ such that x ′ /∈
fv(u) \ {x},

u[t/x][t ′/x ′] = u[(t[t ′/x ′])/x] .

We proceed to the definition of β-reduction and β-conversion. These are relations
defined on pairs of terms and express the computational content of the calculus.

Definition 88 We take β-reduction, −→β , to be the relation defined by:

(λx .t) u −→β t[u/x] .

This extends to arbitrary terms as follows. If t −→β t ′ then:

t u −→β t ′u , u t −→β u t ′, λx .t −→β λx .t ′.

We take β-conversion, =β , to be the symmetric reflexive transitive closure of
β-reduction, that is, the equivalence relation induced by:

(λx .t) u =β t[u/x] .
�

With β-reduction we obtain a notion of “computational dynamics”. For example:

(λ f. f (f y))(λx . x + 1) −→β (λx . x + 1)((λx . x + 1) y)

−→β ((λx . x + 1) y)+ 1 −→β (y + 1)+ 1

(λ f. f (f y))(λx . x + 1) −→β (λx . x + 1)((λx . x + 1) y)

−→β (λx . x + 1)(y + 1) −→β (y + 1)+ 1

1 Introduction to Categories and Categorical Logic 57

Note that in the sequel we will usually write β-reduction simply by “−→”.

1.6.3 Simply-Typed λ-Calculus

The “pure” λ-calculus we have discussed so far is very unconstrained. For example,
it allows self-application, i.e. terms like xx are perfectly legal. On the one hand, this
means that the calculus very expressive: for example, we can encode recursion by
setting

Y := λ f.(λx . f (xx)) λx . f (xx) .

We have:

Yt −→ (λx . t (xx)) λx . t (xx) −→ t ((λx . t (xx)) λx . t (xx)) ←− t (Yt)

However, self-application leads also to divergences. The most characteristic exam-
ple is the following. Setting Ω := (λx .xx) λx .xx , we have:

Ω −→ Ω −→ Ω −→ · · ·

Historically, Curry extracted Y from an analysis of Russell’s Paradox, so it should
come as no surprise that it too leads to divergences: setting t ′ to be λx . t (xx),

Yt −→ t ′t ′ −→ t (t ′t ′) −→ t (t (t ′t ′)) −→ · · ·

The solution is to introduce types. The original idea, due to Church following Rus-
sell, was that:

Types are there to stop you doing bad things

However, it has turned out that types constitute one of the most fruitful positive ideas
in Computer Science, and provide one of the key disciplines of programming.

Definition 89 Let us assume a set of base types, ranged over by b. The simply-typed
λ-calculus is defined as follows.

Type TY $ T, U ::= b | T → U | T ×U

Term TE $ t, u ::= x | t u | λx . t | 〈t, u〉 | π1u | π2u

Typing context Γ ::= ∅ | x : T, Γ (x does not appear in Γ)

A typing judgement is a triple of the form

Γ # t : T ,

58 S. Abramsky and N. Tzevelekos

Table 1.5 Simply-typed λ-calculus for ×,→
Variable Product Function

Γ, x : T # x : T
Γ # t : T Γ # u : U

Γ # 〈t, u〉 : T ×U
Γ, x : U # t : T

Γ # λx . t : U → T

Γ # v : T ×U
Γ # π1v : T

Γ # t : U → T Γ # u : U
Γ # t u : T

Γ # v : T ×U
Γ # π2v : U

which is to be understood as the assertion that term t has the type T under the
assumptions that x1 has type T1, . . . , xk has type Tk , if Γ = x1 : T1, . . . , xk : Tk .
A typed term is a term t accompanied with a type T and a context Γ , such that the
judgement Γ # t : T is derivable by use of the typing rules of Table 1.5. �
Note that contexts are sets, and so x : T, Γ stands for {x : T } ∪ Γ with x not
appearing in Γ . As before, terms are identified up to α-equivalence.

From the definition of types we see that the simply-typed λ-calculus is a calculus
of functions and products. For example:

b → b → b first-order function type

(b → b) → b second-order function type

Exercise 90 Can you type the following terms?

λx . xx , λ f. (λx . f (xx))(λx . f (xx)) .

Exercise 91 (Weakening & Cut) Show that Weakening and Cut are admissible in
the typing system of the simply-typed λ-calculus:

Γ # t : T
Γ, x : U # t : T

Weak
Γ # t : T Γ, x : T # u : U

Γ # u[t/x] : U
Cut

We proceed to the rules for reduction and conversion. These are given as in the
untyped case, with the addition of η-rules, which are essentially extensionality prin-
ciples.

Definition 92 We define β-reduction, −→β , by the following rules, and let
β-conversion, =β , be its symmetric reflexive transitive closure.

(λx . t)u −→β t[u/x]
π1〈t, u〉 −→β t
π2〈t, u〉 −→β u

Moreover, η-conversion, =η, is the symmetric reflexive transitive relation obtained
by the following rules,

1 Introduction to Categories and Categorical Logic 59

t =η λx . t x x �∈ fv(t), at function types
v =η 〈π1v, π2v〉 at product types

and λ-conversion, =λ, is the transitive closure of =β ∪ =η . �

Implicit in the above definition is the fact that η-rules relate typed terms. For
example, t =η λx . t x has as side condition that t be of function type, i.e. that t be a
typed term Γ # t : T → U . Now, following our intuitive interpretation of arrows
as functions, we can read this η-rule as:

t is the function returning t (x) to every input x

Note that the above statement is in fact the couniversal property of currying in Set;
we will see more on this in the next sections!

Exercise 93 (Subject Reduction) Show that, for any typed term Γ # t : T , if
t −→β t ′ then Γ # t ′ : T is derivable.

Strong Normalisation

Term reduction results in a normal form: an explicit but much longer expression in
which no more reductions are applicable. Formally, a λ-term is called a redex if
it is in one of forms of the left-hand-side of the β-reduction rules, and therefore
β-reduction can be applied to it. A term is in normal form if it contains no redexes.
In the light of the correspondence presented in the next paragraph, a term in normal
form corresponds to a proof in which all lemmas have been eliminated.

Fact 94 (SN) For every term t, there is no infinite sequence of β-reductions:

t −→ t0 −→ t1 −→ t2 −→ · · ·

The above result states that every reduction sequence leads eventually to a term
in normal form. Note, though, that reduction to normal form has enormous (non-
elementary) complexity.

The Correspondence Between Logic and Computation

Comparing the following two systems,

Natural Deduction System for ∧,⊃ vs Simply-Typed λ-calculus for ×,→

we notice that if we equate

∧ ≡ ×
⊃ ≡ →

60 S. Abramsky and N. Tzevelekos

then they are the same! This is the Logic–Computation part of the Curry-Howard
correspondence (sometimes: “Curry-Howard isomorphism”). It works on three lev-
els (Table 1.6):

Table 1.6 Correspondence between logic and computation

Natural deduction system Simply-typed λ-calculus

Formulas Types
Proofs Terms
Proof transformations Term reductions

The view of proofs as containing computational content can also be detected in
the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic:

• A proof of an implication A ⊃ B is a procedure which transforms any proof of
A into a proof of B.

• A proof of A ∧ B is a pair consisting of a proof of A and a proof of B.

These readings motivate identifying A ∧ B with A × B, and A ⊃ B with A → B.
Moreover, these ideas have strong connections to computing. The λ-calculus is a
“pure” version of functional programming languages such as Haskell and SML. So
we get a reading of:

Proofs as Programs

1.6.4 Categories

We now have our link between Logic and Computation. We now proceed to com-
plete the triangle of the Curry-Howard correspondence by showing the connection
to Categories.

We establish the link from Logic (and Computation) to Categories. Let C be a
cartesian closed category. We shall interpret formulas (or types) as objects of C. A
morphism f : A → B will then correspond to a proof of B from assumption A,
i.e. a proof of A # B (a typed term x : A # t : B). Note that the bare structure of a
category only supports proofs from a single assumption. Since C has finite products,
a proof of

A1, . . . , Ak # A

will correspond to a morphism

f : A1 × · · · × Ak −→ A .

The correspondence is depicted in the Table 1.7.
Moreover, the rules for β- and η-conversion are all then derivable from the

equations of cartesian closed categories. So cartesian closed categories are models
of ∧,⊃-logic at the level of proofs and proof-transformations, and of simply typed

1 Introduction to Categories and Categorical Logic 61

Table 1.7 Correspondence between logic and categories

Axiom Γ, A # A
Id

π2 : Γ × A −→ A

Conjunction
Γ # A Γ # B

Γ # A ∧ B ∧ I
f : Γ −→ A g : Γ −→ B

〈 f, g〉 : Γ −→ A × B

Γ # A ∧ B
Γ # A

∧E1
f : Γ −→ A × B

π1 ◦ f : Γ −→ A

Γ # A ∧ B
Γ # B

∧E2
f : Γ −→ A × B

π2 ◦ f : Γ −→ B

Implication
Γ, A # B

Γ # A ⊃ B
⊃ I

f : Γ × A −→ B

Λ(f) : Γ −→ (A ⇒ B)

Γ # A ⊃ B Γ # A
Γ # B

⊃E
f : Γ −→ (A ⇒ B) g : Γ → A

evA,B ◦ 〈 f, g〉 : Γ −→ B

λ-calculus at the level of terms and term-conversions. The connection to computa-
tion is examined in more detail below.

Remark 95 In our translation of Logic sequents there is an implicit ordering of
assumptions: a set of assumptions is mapped to an assumption product,

{A1, . . . , An} �−→ A1 × · · · × An .

In practice, since for any permutation A′1, . . . , A′n of A1, . . . , An we have

A1 × · · · × An ∼= A′1 × · · · × A′n ,

such an ordering is harmless.

1.6.5 Categorical Semantics of Simply-Typed λ-Calculus

We translate the simply-typed λ-calculus into a cartesian closed category C, so that
to each typed term x1 : T1, . . . , xk : Tk # t : T corresponds an arrow

�t� : �T1�× · · · × �Tk� −→ �T � .

The translation if given by the function �__ � defined below (“semantic brackets”).

Definition 96 (Semantic translation) Let C be a CCC and suppose we are given
an assignment of an object b̃ to each base type b. Then, the translation is defined
recursively on types by:

�b� := b̃ , �T ×U� := �T �× �U� , �T → U� := �T �⇒ �U� ,

62 S. Abramsky and N. Tzevelekos

and on typed terms by:

�Γ, x : T # x : T � := π2 : �Γ �× �T � −→ �T �

�Γ # t : T ×U� = f : �Γ � −→ �T �× �U�

�Γ # π1t : T � := �Γ �
f−→ �T �× �U�

π1−→ �T �

�Γ # t : T � = f : �Γ � −→ �T � �Γ # u : U� = g : �Γ � −→ �U�

�Γ # 〈t, u〉 : T ×U� := �Γ �
〈 f,g〉−→ �T �× �U�

�Γ, x : T # t : U� = f : �Γ �× �T � −→ �U�

�Γ # λx . t : T → U� := Λ(f) : �Γ � −→ (�T �⇒ �U�)

�Γ # t : T → U� = f �Γ # u : T � = g

�Γ # t u : U� := �Γ �
〈 f,g〉−→ (�T �⇒ �U�)× �T �

ev−→ �U� �

Our aim now is to verify that λ-conversion (induced by β- and η-rules) is preserved
by the translation, i.e. that, for any t, u,

t =λ u �⇒ �t� = �u� .

This would mean that our categorical semantics is sound.
Let us recall some structures from CCC’s. Given f1 : D1 → E1, f2 : D2 → E2,

we defined

f1 × f2 = 〈 f1 ◦ π1, f2 ◦ π2〉 : D1 × D2 −→ E1 × E2 ,

and we showed that (f1× f2)◦〈h1, h2〉 = 〈 f1◦h1, f2◦h2〉 . Moreover, exponentials
are given by the following natural bijection.

f : D × E −→ F

�(f) : D −→ (E ⇒ F)

Equivalently, recall the basic equation:

ev ◦ (�(f)× idE) = f ,

where �(f) is the unique arrow D → (E ⇒ F) satisfying this equation, with
uniqueness being specified by:

∀h : D −→ (E ⇒ F).�(ev ◦ (h × idE)) = h .

Naturality of Λ is then proven as follows.

1 Introduction to Categories and Categorical Logic 63

Proposition 97 For any f : A × B → C and g : A′ → A ,

�(f) ◦ g = �(f ◦ (g × idB)) .

Proof

�(f) ◦ g = �(ev ◦ ((�(f) ◦ g)× idB))

= �(ev ◦ (�(f)× idB) ◦ (g × idB))) = �(f ◦ (g × idB)) .
�

Substitution Lemma

We consider a simultaneous substitution for all the free variables in a term.

Definition 98 Let Γ = x1 : T1, . . . , xk : Tk . Given typed terms

Γ # t : T and Γ # ti : Ti , 1 ≤ i ≤ k ,

we define t[t/x] ≡ t[t1/x1, . . . , tk/xk] recursively by:

xi [t/x] := ti
(πi t)[t/x] := πi (t[t/x])
〈t, u〉[t/x] := 〈t[t/x], u[t/x]〉
(t u)[t/x] := (t[t/x])(u[t/x])

(λx . t)[t/x] := λx . t[t, x/x, x] . �

Note that, in contrast to ordinary substitution, simultaneous substitution can be
defined directly on raw terms, that is, prior to equating them modulo α-equivalence.
Moreover, we can show that:

t[t1/x1, . . . , tk/xk] = t[t1/x1] · · · [tk/xk] .

We can now show the following Substitution Lemma.

Proposition 99 For t, t1, . . . , tk as in the previous definition,

�t[t1/x1, . . . , tk/xk]� = �t� ◦ 〈�t1�, . . . , �tk�〉 .

Proof By induction on the structure of t .
(1) If t = xi :

�xi [t/x]� = �ti � = πi ◦ 〈�t1�, . . . , �tk�〉 = �xi � ◦ 〈�t1�, . . . , �tk�〉 .

64 S. Abramsky and N. Tzevelekos

(2) If t = uv then, abbreviating 〈�t1�, . . . , �tk�〉 to 〈�t�〉 we have:

�uv[t/x]� = �(u[t/x])(v[t/x])� Defn of substitution
= ev ◦ 〈�u[t/x]�, �v[t/x]�〉 Defn of semantic function
= ev ◦ 〈�u� ◦ 〈�t�〉, �v� ◦ 〈�t�〉〉 Induction hyp.
= ev ◦ 〈�u�, �v�〉 ◦ 〈�t�〉 Property of products
= �uv� ◦ 〈�t�〉 Defn of semantic function

(3) If t = λx . u:

�λx .u[t/x]� = �λx .(u[t, x/x, x])� Defn. of substitution
= �(�u[t, x/x, x]�) Defn. of semantic function
= �(�u� ◦ (〈�t�〉 × id)) Induction hyp.
= �(�u�) ◦ 〈�t�〉 Prop. 97
= �λx .u� ◦ 〈�t�〉 Defn. of semantic function

(4,5) The cases of projections and pairs are left as exercise. �

Exercise 100 Complete the proof of the above proposition.

Validating the Conversion Rules

We can now show that the conversion rules of the λ-calculus are preserved by
the translation, and hence the interpretation is sound. Observe the correspondence
between η-rules and uniqueness (couniversality) principles.

• For β-conversion:
[
(λx . t)u = t[u/x] , π1〈t, u〉 = t , π2〈t, u〉 = u

]

�(λx . t)u� = ev ◦ 〈�(�t�), �u�〉 Defn. of semantics

= ev ◦ (�(�t�)× id) ◦ 〈 id�Γ �, �u�〉 Property of ×
= �t� ◦ 〈 id�Γ �, �u�〉 Defn. of Λ

= �t[x, u/x, x]� Substitution lemma.

�π1〈t, u〉� = π1 ◦ �〈t, u〉� = π1 ◦ 〈�t�, �u�〉 = �t� .

• For η-conversion:
[
t = λx . t x , 〈π1t, π2t〉 = t

]

�λx . t x� = �(ev ◦ (�t�× id)) = �t� Uniqueness equation (⇒)

�〈π1t, π2t〉� = 〈π1 ◦ �t�, π2 ◦ �t�〉 = �t� Uniqueness equation (×)

1 Introduction to Categories and Categorical Logic 65

1.6.6 Completeness?

It is the case that, in a general CCC C, there may be equalities which are not reflected
by the semantic translation, i.e.

�t� = �u� yet t �=λ u .

In the rest of this section, we show how to construct a CCC Cλ in which equalities
between arrows correspond precisely to λ-conversions between terms. We call Cλ a
term model, due to its dependence on the syntax.

Definition 101 We define a family of relations on variable-term pairs by setting
(x, t) ∼T,U (y, u) if x : T # t : U and y : T # u : U are derivable and

t =λ u[x/y] .

These are equivalence relations, so we set:

[(x, t)]T,U := { (y, u) | (x, t) ∼T,U (y, u) }.

Similarly, (� , t) ∼ � ,U (� , u) if # t : U and # u : U are derivable and t =λ u.
Moreover,

[(� , t)] � ,U := { (� , u) | (� , t) ∼ � ,U (� , u) } .
�

We denote [(x, t)]T,U simply by [x, t] , and [(� , t)] � ,U simply by [� , t] (these are
not to be confused with copairings!). We proceed with Cλ.

Definition 102 The category Cλ is defined as follows. We take as set of objects the
set of λ-types augmented with a terminal object 1:

Ob(Cλ) := {1} ∪ { T̃ | T a λ-type }
The homsets of Cλ contain equivalence relations on typed terms (definition 101), or
terminal arrows τ :

Cλ(T̃ , Ũ) := { [x, t] | x : T # t : U is derivable }
Cλ(1, Ũ) := { [� , t] | # t : U is derivable }
Cλ(A, 1) := { τA }

The identities are:

idT̃ := [x, x] , id1 := τ1 ,

66 S. Abramsky and N. Tzevelekos

and arrow composition is defined by:

[x, t] ◦ [y, u] := [y, t[u/x]]
[x, t] ◦ [� , u] := [� , t[u/x]]
[� , t] ◦ τA :=

{[y, t] if A = Ũ
[� , t] if A = 1

τB ◦ h := τA (h ∈ Cλ(A, B))

�
Note that, for each variable x ′, any arrow [x, t] : T̃ → Ũ can be written in the form
[x ′, t ′], since t = (t[x ′/x])[x/x ′] and therefore [x, t] = [x ′, t[x ′/x]].
Proposition 103 Cλ is a category.

Proof It is not difficult to see that id’s are identities. For associativity, we show the
most interesting case (and leave the rest as an exercise):

[x, t] ◦ ([y, u] ◦ [z, v]) = [x, t] ◦ [z, u[v/y]] = [z, t[(u[v/y])/x]] ,
([x, t] ◦ [y, u]) ◦ [z, v] = [y, t[u/x]] ◦ [z, v] = [z, t[u/x][v/y]] .

By Exercise 87, the above are equal. �

Proposition 104 Cλ has finite products.

Proof Clearly, 1 is terminal with canonical arrows τA : A → 1. For (binary) prod-

ucts, 1× A = A × 1 = A. Otherwise, define T̃
π1←− T̃ × Ũ

π2−→ Ũ by:

T̃ × Ũ := T̃ ×U

πi := [x, πi x] i = 1, 2 .

Given T̃
[x,t]←− Ṽ

[x,u]−→ Ũ , take 〈[x, t], [x, u]〉 : Ṽ → T̃ × Ũ := [x, 〈t, u〉] . Then:

π1 ◦ 〈[x, t], [x, u]〉 = [y, π1 y] ◦ [x, 〈t, u〉] Definitions

= [x, π1〈t, u〉] Defn of composition

= [x, t] β-conversion

Uniqueness left as exercise. The case of T̃
[� ,t]←− 1

[� ,u]−→ Ũ is similar. �

Proposition 105 Cλ has exponentials.

Proof We have that 1 ⇒ A = A and A ⇒ 1 = 1, with obvious evaluation arrows.
Otherwise,

Ũ ⇒ T̃ := Ũ → T

evŨ ,T̃ : (Ũ ⇒ T̃)× Ũ −→ T̃ := [x, (π1x)(π2x)]

1 Introduction to Categories and Categorical Logic 67

Given [x, t] : Ṽ × Ũ → T̃ , take Λ([x, t]) := [x1, λx2.t[〈x1, x2〉/x]] .
Then,

ev ◦Λ([x, t])× id = ev ◦ 〈Λ([x, t]) ◦ π1, id ◦ π2〉
= ev ◦ 〈[x1, λx2.t[〈x1, x2〉/x]] ◦ [y, π1 y], [y, π2 y]〉
= ev ◦ 〈[y, λx2.t[〈π1 y, x2〉/x]], [y, π2 y]〉
= [z, (π1z)(π2z)] ◦ [y, 〈λx2.t[〈π1 y, x2〉/x], π2 y〉]

u
= [y, (π1u)(π2u)] β= [y, (λx2.t[〈π1 y, x2〉/x])(π2 y)]
β= [y, t[〈π1 y, π2 y〉/x]] η= [y, t[y/x]] = [x, t] .

Uniqueness left as exercise. The case of [x, t] : 1× Ũ → T̃ is similar. �

Exercise 106 Complete the proof of the previous propositions.

Hence, Cλ is a CCC and a sound model of the simply-typed λ-calculus. Moreover,
applying our translation from the λ-calculus to a CCC (Definition 96) we can show
that we have

�Γ # t : T � = [x, t[πi x/xi]i=1..n]

where Γ = {x1 : T1, . . . , xn : Tn}, x /∈ Γ and x :∏n
i=1 Ti . Then,

t =λ u ⇐⇒ �Γ # t : T � = �Γ # u : T � .

This means that our term model is complete.

1.6.7 Exercises

1. Give Natural Deduction proofs of the following sequents.

• # (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))

• # (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)

• # (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧ B)))

• # (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

In each case, give the corresponding λ-term and the corresponding arrow in a
CCC C.

2. For each of the following λ-terms, find a type for it. Try to find the “most general”
type, built from “type variables” α, β etc. For example, the most general type for
the identity λx . x is α → α. In each case, give the derivation of the type for this
term (where you may assume that types can be built up from type variables as
well as base types).

• λ f. λx . f x
• λx . λy. λz. x(yz)

68 S. Abramsky and N. Tzevelekos

• λx . λy. λz. xzy
• λx . λy. xyy
• λx . λy. x
• λx . λy. λz. xz(yz)

Reflect a little on the methods you used to do this exercise. Could they be made
algorithmic?

1.7 Linearity

In the system of Natural Deduction, implicit in our treatment of assumptions in
sequents

A1, . . . , An # A

is that we can use them as many times as we want (including not at all). In this
section we will explore the field that is opened once we apply restrictions to this
approach, and thus render our treatment of assumptions more linear (or resource
sensitive).

1.7.1 Gentzen Sequent Calculus

In order to make the manipulation of assumptions more visible, we now represent
the assumptions as a list (possibly with repetitions) rather than a set, and use explicit
structural rules to control copying, deletion and interchange of assumptions.

Definition 107 The structural rules for Logic are given in the Table 1.8. �

Table 1.8 Structural rules for logic

A # A
Id

Γ, A, B,Δ # C
Γ, B, A,Δ # C

Exch

Γ, A, A # B
Γ, A # B Contr

Γ # B
Γ, A # B

Weak

If we think of using proof rules backwards to reduce the task of proving a given
sequent to various sub-tasks, then we see that the Contraction rule lets us duplicate
premises, and the Weakening rule lets us discard them, while the Exchange rule
merely lets us re-order them. The Identity axiom as given here is equivalent to the
one with auxiliary premises given previously in the presence of Weakening.

The structural rules have clear categorical meanings in a category C with prod-
ucts. Recalling the diagonal transformation ΔA := 〈 idA, idA〉 and the symmetry
transformation sA,B := 〈π2, π1〉, the meanings are as follows.

1 Introduction to Categories and Categorical Logic 69

Γ, A, B,Δ # C
Γ, B, A,Δ # C

Exch
f : Γ × A × B ×Δ −→ C

f ◦ (idΓ × sA,B × idΔ) : Γ × B × A ×Δ −→ C

Γ, A, A # B
Γ, A # B

Contr
f : Γ × A × A −→ B

f ◦ (idΓ ×ΔA) : Γ × A −→ B

Γ # B
Γ, A # B

Weak
f : Γ −→ B

f ◦ π1 : Γ × A −→ B

In order to analyse Natural Deduction, Gentzen introduced sequent calculi based
on Left and Right rules, instead of Introduction and Elimination rules. These kind
of systems are more adequate for our discussion on linearity.

Definition 108 We define the Gentzen sequent calculus for ∧,⊃ as the proof sys-
tem obtained by the structural rules (Definition 107) and the rules in Table 1.9 for
connectives. �
For example, the proof of ⊃-transitivity is now given as follows.

A # A
Id

B # B
Id

A, A ⊃ B # B
⊃L

A ⊃ B, A # B
Exch

C # C
Id

A ⊃ B, A, B ⊃ C # C
⊃ L

A ⊃ B, B ⊃ C, A # C
Exch

A ⊃ B, B ⊃ C # A ⊃ C
⊃R

Exercise 109 Show that the Gentzen-rules are admissible in Natural Deduction.
Moreover, show that the Natural Deduction rules are admissible in the Gentzen
sequent calculus.

The Cut rule allows the use of lemmas in proofs. It also yields a dynamics of
proofs via Cut Elimination, that is, a dynamics of proof transformations towards the
goal of eliminating the uses of the Cut rule in a proof, i.e. removing all lemmas and
making the proof completely “explicit”, meaning Cut-free. Such transformations are
always possible, as is shown in the following seminal result of Gentzen (Hauptsatz).

Fact 110 (Cut Elimination) The Cut rule is admissible in the Gentzen sequent cal-
culus without Cut.

Table 1.9 Gentzen sequent calculus for ∧,⊃
Conjunction Implication Cut

Γ # A Δ # B
Γ,Δ # A ∧ B ∧R

Γ, A # B
Γ # A ⊃ B

⊃R
Γ # A A,Δ # B

Γ,Δ # B Cut

Γ, A, B # C
Γ, A ∧ B # C ∧ L

Γ # A B,Δ # C
Γ, A ⊃ B,Δ # C

⊃ L

70 S. Abramsky and N. Tzevelekos

1.7.2 Linear Logic

In the presence of the structural rules, the Gentzen sequent calculus is entirely equiv-
alent to the Natural Deduction system we studied earlier. Nevertheless:

What happens if we drop the Contraction and Weakening rules (but keep the Exchange
rule)?

It turns out we can still make good sense of the resulting proofs, terms and cate-
gories, but now in the setting of a different, ‘resource-sensitive’ logic.

Definition 111 Multiplicative Linear logic is a variant of standard logic with linear
logical connectives. The multiplicative connectives for conjunction and implication
are ⊗ and �. Proof sequents are of the form Γ # A, where Γ is now a multiset.
The proof rules for ⊗,�-Linear Logic, given in Table 1.10, are the multiplicative
versions of the Gentzen rules. �

Multiplicativity here means the use of disjoint (i.e. non-overlapping) contexts. The
use of multisets allows us to omit explicit use of the Exchange rule in our proof
system.

Note that the given system satisfies Cut-elimination, and this leans heavily on the
�L rule. We could have used instead the following rule,

Γ # A � B Δ # A
Γ,Δ # B

�E

which is more intuitive computationally, but then cut-elimination would fail. Note,
though, that:

�L , Cut , Id ≡ �E , Cut , Id .

This is shown as follows.

� # A A � B # A � B
Id

�, A � B # B
�E

B, Δ # C
�, A � B, Δ # C

Cut
� # A � B

Δ # A B # B
Id

A � B, Δ # B
�L

�,Δ # B
Cut

The resource-sensitive nature of Linear Logic is reflected in the following exercise.

Table 1.10 Rules for ⊗,�-linear logic

Conjunction Implication Cut

Γ # A Δ # B
Γ,Δ # A ⊗ B

⊗R
Γ, A # B

Γ # A � B
�R

Γ # A A,Δ # B
Γ,Δ # B Cut

Γ, A, B # C
Γ, A ⊗ B # C

⊗ L
Γ # A B,Δ # C
Γ, A � B,Δ # C �L

1 Introduction to Categories and Categorical Logic 71

Exercise 112 Can you construct proofs in Linear Logic of the following sequents?
(Hint: Use the Cut Elimination property.)

• A # A ⊗ A
• (A ⊗ A) � B # A � B
• # A � (B � A)

Related to linear logic is the linear λ-calculus, which is a linear version of the
simply-typed λ-calculus.

Definition 113 The linear λ-calculus is defined as follows.

Type TY $ T, U ::= b | T � U | T ⊗U

Term TE $ t, u ::= x | t u | λx . t | t ⊗ u | let z be x ⊗ y in t

Typing context Γ ::= ∅ | x : T, Γ

Terms are typed by use of the typing rules of Table 1.11. Finally, the rules for β-
reduction are:

(λx . t)u −→β t[u/x]
let t ⊗ u be x ⊗ y in v −→β v[t/x, u/y] . �

Note here that, again, x : T, Γ stands for {x : T } ∪ Γ with x not appearing in Γ .
Note also that Cut-free proofs always yield terms in normal form.
Term formation is now highly constrained by the form of the typing judgements. In
particular,

x1 : A1, . . . , xk : Ak # t : A

now implies that each xi occurs exactly once (free) in t .
Moreover, note that, for function application, instead of the rule on the LHS

below, we could have used the more intuitive rule on the RHS.

Γ # t : T x : U,Δ # u : V
Γ, f : T � U,Δ # u[f t/x] : V

Γ # t : A � B Δ # u : A
Γ,Δ # t u : B

Table 1.11 Linear λ-calculus for ⊗, �

Variable cut x : T # x : T
Γ # t : T x : T,Δ # u : U

Γ,Δ # u[t/x] : U

Linear tensor
Γ # t : T Δ # u : U
Γ,Δ # t ⊗ u : T ⊗U

Γ, x : T, y : U # v : V

Γ, z : T ⊗U # let z be x ⊗ y in v : V

Linear function
Γ, x : U # t : T

Γ # λx . t : U � T
Γ # t : T x : U,Δ # u : V
Γ, f : T � U,Δ # u[f t/x] : V

72 S. Abramsky and N. Tzevelekos

As we did in the logic, we can show that the typing systems with one or the other
rule are equivalent.

1.7.3 Linear Logic in Monoidal Categories

We proceed to give a categorical counterpart to linearity by providing a categorical
interpretation of linear logic. Note that CCC’s are no longer adequate for this task
as they contain arrows

ΔA : A −→ A × A , π1 : A × B −→ A

which violate linearity. It turns out that the right setting is that of symmetric
monoidal closed categories.

Definition 114 A monoidal category is a structure (C,⊗, I, a, l, r) where:

• C is a category,
• ⊗ : C × C → C is a functor (tensor),
• I is a distinguished object of C (unit),
• a, l, r are natural isomorphisms (structural isos) with components:

aA,B,C : A ⊗ (B ⊗ C)
∼=−→ (A ⊗ B)⊗ C

lA : I ⊗ A
∼=−→ A rA : A ⊗ I

∼=−→ A

such that lI = rI : I ⊗ I → I and the following diagrams commute.

A ⊗ (I ⊗ B)
a

id⊗l

(A ⊗ I)⊗ B

r⊗ id

A ⊗ B

(A ⊗ B)⊗ (C ⊗ D)

a

A ⊗ (B ⊗ (C ⊗ D))

a

id⊗a

((A ⊗ B)⊗ C)⊗ D

A ⊗ ((B ⊗ C)⊗ D)
a

(A ⊗ (B ⊗ C))⊗ D

a⊗ id

�

The monoidal diagrams ensure coherence, described by the slogan:

“. . . ‘all’ diagrams involving a, l and r must commute.”

Examples:

• Both products and coproducts give rise to monoidal structures—which are the
common denominator between them. (But in addition, products have diagonals
and projections, and coproducts have codiagonals and injections.)

1 Introduction to Categories and Categorical Logic 73

• (N,≤,+, 0) is a monoidal category.
• Rel, the category of sets and relations, with cartesian product (which is not the

categorical product).
• Vectk with the tensor product.

Let us examine the example of Rel in some detail. We take ⊗ to be the cartesian
product, which is defined on relations R : X → X ′ and S : Y → Y ′ as follows.

∀(x, y) ∈ X × Y, (x ′, y′) ∈ X ′ × Y ′. (x, y)R ⊗ S(x ′, y′) ⇐⇒ x Rx ′ ∧ ySy′ .

It is not difficult to show that this is indeed a functor. Note that, in the case that
R, S are functions, R ⊗ S is the same as R × S in Set. Moreover, we take each
aA,B,C to be the associativity function for products (in Set), which is an iso in Set
and hence also in Rel. Finally, we take I to be the one-element set, and lA, rA to
be the projection functions: their relational converses are their inverses in Rel. The
monoidal diagrams commute simply because they commute in Set.

Exercise 115 Verify that (N,≤,+, 0) and Vectk are monoidal categories.

Tensors and Products

As we mentioned earlier, products are tensors with extra structure: natural diago-
nals and projections. This fact, which reflects no-cloning and no-deleting of Linear
Logic, is shown as follows.

Proposition 116 Let C be a monoidal category (C,⊗, I, a, l, r). ⊗ induces a prod-
uct structure iff there exist natural diagonals and projections, i.e. natural transfor-
mations given by arrows

dA : A −→ A ⊗ A , pA,B : A × B −→ A , qA,B : A × B −→ B ,

such that the following diagrams commute.

A

dA
idA idA

A A ⊗ ApA,A qA,A
A

A ⊗ B
dA,B

idA⊗B

(A ⊗ B)⊗ (A ⊗ B)

pA,B⊗qA,B

A ⊗ B

Proof The “only if” direction is straightforward. For the converse, let C be monoidal
with natural projections and diagonals. Then, we take product pairs to be pairs of
the form

A
pA,B←− A ⊗ B

qA,B−→ B .

74 S. Abramsky and N. Tzevelekos

Moreover, for any pair of arrows B
f←− A

g−→ C , define

〈 f, g〉 := A
dA−→ A ⊗ A

f⊗g−→ B ⊗ C .

Then the product diagram commutes. For example:

A

(1)

dA

f

A ⊗ A
f⊗g

f⊗ idA

f⊗ f

B ⊗ C

pB,CB ⊗ A

idB⊗g

pB,A

(∗)idA⊗ f

(∗)

B

idB

(2)

dB
B ⊗ B

pB,B
B

(∗) naturality of p
(1) naturality of d
(2) hypothesis

For uniqueness, if h : A → B ⊗ C then the following diagram commutes,

A
h

dA (1)

B ⊗ C

dB⊗C
idB⊗C

(2)

A ⊗ A
h⊗h

(B ⊗ C)⊗ (B ⊗ C)
pB,C⊗qB,C

B ⊗ C

(1) naturality of d
(2) hypothesis

so h = 〈π1 ◦ h, π2 ◦ h〉. �

SMCC’s

Linear Logic is interpreted in monoidal categories with two more pieces of struc-
ture: monoidal symmetry and closure. The former allows the Exchange rule to be
interpreted, while the latter realises linear implication.

Definition 117 A symmetric monoidal category is a monoidal category (C,⊗, I,
a, l, r) with an additional natural isomorphism (symmetry),

sA,B : A ⊗ B
∼=−→ B ⊗ A

1 Introduction to Categories and Categorical Logic 75

such that sB,A = s−1
A,B and the following diagrams commute.

A ⊗ I
s

r

I ⊗ A

l

A

A ⊗ (B ⊗ C)

a

id⊗s
A ⊗ (C ⊗ B)

a
(A ⊗ C)⊗ B

s⊗ id

(A ⊗ B)⊗ C s C ⊗ (A ⊗ B) a (C ⊗ A)⊗ B

�

Definition 118 A symmetric monoidal closed category (SMCC) is a symmetric
monoidal category (C,⊗, I, a, l, r, s) such that, for each object A, there is a couni-
versal arrow to the functor

__⊗ A : C −→ C .

That is, for all pairs A, B, there is an object A � B and a morphism

evA,B : (A � B)⊗ A −→ B

such that, for every morphism f : C ⊗ A → B, there is a unique morphism Λ(f) :
C → (A � B) such that

evA,B ◦ (Λ(f)⊗ idA) = f .

�

Note that, although we use notation borrowed from CCC’s (ev,Λ), these are differ-
ent structures! Examples of symmetric monoidal closed categories are Rel, Vectk ,
and (a fortiori) cartesian closed categories.

Exercise 119 Show that Rel is a symmetric monoidal closed category.

Linear Logic in SMCC’s

Just as cartesian closed categories correspond to ∧,⊃-logic (and simply-typed
λ-calculus), so do symmetric monoidal closed categories correspond to ⊗,�-logic
(and linear λ-calculus).

So let C be a symmetric monoidal closed category. The interpretation of a linear
sequent

A1, . . . , Ak # A

will be a morphism

f : A1 ⊗ · · · ⊗ Ak −→ A .

76 S. Abramsky and N. Tzevelekos

Table 1.12 Categorical translation of ⊗,�-linear logic

A # A idA : A −→ A

Γ # A A,Δ # B
Γ,Δ # B

f : Γ −→ A g : A ⊗Δ −→ B

g ◦ (f ⊗ idΔ) : Γ ⊗Δ −→ B

Γ # A Δ # B
Γ,Δ # A ⊗ B

f : Γ −→ A g : Δ −→ B

f ⊗ g : Γ ⊗Δ −→ A ⊗ B

Γ, A, B # C
Γ, A ⊗ B # C

f : (Γ ⊗ A)⊗ B −→ C

f ◦ aΓ,A,B : Γ ⊗ (A ⊗ B) −→ C

Γ, A # B
Γ # A � B

f : Γ ⊗ A −→ B

Λ(f) : Γ −→ (A � B)

Γ # A � B Δ # A
Γ,Δ # B

f : Γ −→ (A � B) g : Δ −→ A

evA,B ◦ (f ⊗ g) : Γ ⊗Δ −→ B

To be precise in our interpretation, we will again treat contexts as lists of formulas,
and explicitly interpret the Exchange rule by:

Γ, A, B,Δ # C
Γ, B, A,Δ # C

f : Γ ⊗ A ⊗ B ⊗Δ −→ C
f ◦ (idΓ ⊗ sB,A ⊗ idΔ) : Γ ⊗ B ⊗ A ⊗Δ −→ C

The rest of the rules are translated as follows (Table 1.12).
Note that, because of coherence in monoidal categories, we will not be scholastic
with associativity arrows a in our translations and will usually omit them. For the
same reason, consecutive applications of tensor will be written without specifying
associativity, e.g. A1 ⊗ · · · ⊗ An .

Exercise 120 Let C be a symmetric monoidal closed category. Give the interpreta-
tion of the �-left rule in C:

Γ # A B,Δ # C
Γ, A � B,Δ # C

�L

Exercise 121 Is it possible to translate ⊗,�-logic into a CCC C? Is this in accor-
dance with linearity of ⊗,�-logic?

1.7.4 Beyond the Multiplicatives

Linear Logic has three “levels” of connectives, each describing a different aspect of
standard logic:

• The multiplicatives: e.g. ⊗, �,
• The additives: additive conjunction & and disjunction ⊕,
• The exponentials, allowing controlled access to copying and discarding.

1 Introduction to Categories and Categorical Logic 77

We focus on additive conjunction and the exponential “ ! ”, which will allow us to
recover the ‘expressive power’ of standard ∧,⊃-logic.

Definition 122 The logical connective for additive disjunction is &, and the related
proof rules are the following.

Γ # A Γ # B
Γ # A & B

& R
Γ, A # C

Γ, A & B # C
& L

Γ, B # C
Γ, A & B # C

& L

�

So additive conjunction has proof rules that are identical to those of standard con-
junction (∧). Note though that, since by linearity an argument of type A & B can
only be used once, each use of a left rule for & makes a once-and-for-all choice
of a projection. On the other hand, A ⊗ B represents a conjunction where both
projections must be available.

Additive conjunction can be interpreted in any symmetric monoidal category
with products, i.e. a category C with structure (⊗,×) where ⊗ is a symmetric
monoidal tensor and × is a product.

f : Γ −→ A g : Γ −→ B
〈 f, g〉 : Γ −→ A × B

f : Γ ⊗ A −→ C
f ◦ (id ⊗ π1) : Γ ⊗ (A × B) −→ C

Moreover, we can extend the linear λ-calculus with term constructors for additive
conjunction as follows.

Γ # t : A Γ # u : B
Γ # 〈t, u〉 : A & B

Γ, x : A # t : C
Γ, z : A & B # let z = 〈x,−〉 in t : C

Γ, B # C
Γ, z : A & B # let z = 〈−, y〉 in t : C

The β-reduction rules related to these constructs are:

let 〈t, u〉 = 〈x,−〉 in v −→β v[t/x]
let 〈t, u〉 = 〈−, y〉 in v −→β v[u/y] .

Finally, we can gain back the lost structural rules, in disciplined versions, by intro-
ducing an exponential bang operator !which is a kind of modality enabling formulas
to participate in structural rules.

Definition 123 The logical connective for bang is !, and the related proof rules are
the following.

Γ, A # B
Γ, ! A # B

!L !Γ # A
!Γ # ! A

!R Γ # B
Γ, ! A # B

Weak
Γ, ! A, ! A # B

Γ, ! A # B
Contr

Note that !{A1, . . . , An} := ! A1, . . . , ! An . �

78 S. Abramsky and N. Tzevelekos

We can now see the discipline imposed on structural rules: in order for the rules
to be applied, the participating formulas need to be tagged with a bang.

Interpreting Standard Logic

We are now in position to recover the standard logical connectives ∧, ⊃ within
Linear Logic. If we interpret

A ⊃ B := ! A � B
A ∧ B := A & B

and each ∧,⊃-sequent Γ # A as !Γ # A , then each proof rule of the Gentzen
system for ∧,⊃ is admissible in the proof system of Linear Logic for ⊗,�,&,! .

Note in particular that the interpretation

A ⊃ B := !A � B

decomposes the fundamental notion of implication into finer notions—like “splitting
the atom of logic”!

1.7.5 Exercises

1. Give proofs of the following sequents in Linear Logic.

a) # A � A
b) A � B, B � C # A � C
c) # (A � B � C) � (B � A � C)

d) A ⊗ (B ⊗ C) # (A ⊗ B)⊗ C
e) A ⊗ B # B ⊗ A

For each of the proofs constructed give:

• the corresponding linear λ-term,
• its interpretation in Rel.

2. Consider a symmetric monoidal closed category C.

(a) Suppose the sequents Γ1 # A, Γ2 # B and A, B,Δ # C are provable
and let their interpretations (i.e. the interpretations of their proofs) in C be
f1 : Γ1 → A, f2 : Γ2 → B and g : A⊗ B⊗Δ→ C respectively. Find then
the interpretations h1, h2 of the following proofs.

.

.

.

Γ1 # A

.

.

.

Γ2 # B
Γ1, Γ2 # A ⊗ B

⊗R

.

.

.

A, B,Δ # C
A ⊗ B,Δ # C

⊗ L

Γ1, Γ2,Δ # C Cut

.

.

.

Γ2 # B

.

.

.

Γ1 # A

.

.

.

A, B,Δ # C
Γ1, B,Δ # C Cut

Γ1, Γ2,Δ # C Cut

and show that h1 = h2.

1 Introduction to Categories and Categorical Logic 79

(b) Suppose now C has also binary products, given by×. Given that the sequents
Γ # A, Γ # B and A,Δ # C are provable, and that their interpretations in
C are f1 : Γ → A, f2 : Γ → B and g : A ⊗Δ → C respectively, find the
interpretations h1, h2 of the following proofs.

...

Γ # A

...

Γ # B
Γ # A & B

& R

...

A,Δ # C
A & B,Δ # C

& L

Γ,Δ # C
Cut

...

Γ # A

...

A,Δ # C
Γ,Δ # C

Cut

and show that h1 = h2.
3. Show that the condition lI = rI in the definition of monoidal categories is

redundant.
Moreover, show that the condition idA ⊗ lB = aA,I,B ◦ rA ⊗ idB in the
definition of symmetric monoidal categories is redundant.

1.8 Monads and Comonads

Recall that an adjunction is given by a triple 〈F, G, θ〉, with F : C → D and G :
D → C being functors, and θ a natural bijection between homsets. By composing
the two functors we obtain endofunctors

G ◦ F : C −→ C , F ◦ G : D −→ D .

These can be seen as encapsulating the effect of the adjunction inside their domain
category. For example, if we consider the functors

MList : Set −→ Mon , U : Mon −→ Set ,

then U ◦MList encodes the free monoid construction inside Set.
The study of such endofunctors on their own right gave rise to the notions of

monad and comonad, which we examine in this section.

1.8.1 Basics

Definition 124 A monad over a category C is a triple (T, η, μ) where T is an end-
ofunctor on C and η : IdC → T , μ : T 2→ T are natural transformations such that
the following diagrams commute. (Note that T 2 := T ◦ T , etc.).

80 S. Abramsky and N. Tzevelekos

T 3A
μT A

T μA

T 2A

μA

T 2A μA
T A

T A
ηT A

idT A
T ηA

T 2A

μA

T 2A μA
T A

�

We call η the unit of the monad, and μ its multiplication; the whole terminology
comes from monoids. Let us now proceed to some examples.

• Let C be a category with coproducts and let E be an object in C. We can define
a monad (T, η, μ) of E-coproducts (computationally, E-exceptions) by taking
T : C → C to be the functor __+ E , and η,μ as follows.

T := A �→ A + E , f �→ f + idE

ηA := A
in1−→ A + E

μA := (A + E)+ E
[idA+E , in2]−−−−−−−→ A + E

As an injection, η is a natural transformation. For μ, we can use the properties of
the coproduct. For f : A → B,

T f ◦ μA = T f ◦ [idA+E , in2] = [T f ◦ idA+E , T f ◦ in2] = [T f, T f ◦ in2]
= [T f, (f + idE) ◦ in2] = [T f, in2]
= [idB+E ◦ T f, in2 ◦ idE] = [idB+E , in2] ◦ (T f + idE)

= μB ◦ T 2 f .

The monadic diagrams follow in a similar manner. For example,

μA ◦ μT A = μA ◦ [idT A+E , in2] = [μA ◦ idT A+E , μA ◦ in2] = [μA, μA ◦ in2]
= [μA, [idA+E , in2] ◦ in2] = [μA, in2]
= [idA+E ◦ μA, in2 ◦ idE] = [idA+E , in2] ◦ (μA + idE)

= μA ◦ T μA .

• Now let C be a cartesian closed category and let ξ be some object in C. We can
define a monad of ξ -side-effects by taking T to be the functor ξ ⇒ (__× ξ), and
η,μ as follows.

T := A �→ ξ ⇒ (A × ξ) , f �→ ξ ⇒ (f × idξ)

ηA := Λ(A × ξ
idA×ξ−−−→ A × ξ)

μA := Λ(T (T A)× ξ
evξ,T A×ξ−−−−−→ T A × ξ

evξ,A×ξ−−−−→ A × ξ)

1 Introduction to Categories and Categorical Logic 81

Naturality of η,μ follows from naturality of Λ: for any f : A → A′,

T f ◦ ηA = (ξ ⇒ f × idξ) ◦Λ(idA×ξ) = Λ(f × idξ ◦ idA×ξ)

= Λ(idA′×ξ ◦ f × idξ) = Λ(idA′×ξ) ◦ f = ηA′ ◦ f ,

μA′ ◦ T 2 f = Λ(evξ,A′×ξ ◦ evξ,T A′×ξ) ◦ T 2 f = Λ(evξ,A′×ξ ◦ evξ,T A′×ξ ◦ T 2 f × idξ)

= Λ(evξ,A′×ξ ◦ T f × idξ ◦ evξ,T A×ξ) = Λ(f × idξ ◦ evξ,A×ξ ◦ evξ,T A×ξ)

= (ξ ⇒ f × idξ) ◦Λ(evξ,A×ξ ◦ evξ,T A×ξ) = T f ◦ μA .

The monadic diagrams are shown in a similar manner.
• Our third example employs the functor U : Mon → Set. In particular, we take

T := U ◦MList and η,μ as follows.

T := X �→
⋃

n∈ω
{[x1, . . . , xn] | x1, . . . , xn ∈ X} ,

f �→ ([x1, . . . , xn] �→ [f (x1), . . . , f (xn)]) .

ηX := x �→ [x]
μX := [[x11, . . . , x1n1], . . . , [xk1, . . . , xknk]] �→ [x11, . . . , x1n1 , . . . , xk1, . . . , xknk]

Naturality of η,μ is obvious—besides, η is the unit of the corresponding adjunc-
tion. The monadic diagrams are also straightforward: they correspond to the fol-
lowing equalities of mappings (we use x for x1, . . . , xn).

[[[x11], . . . , [x1n1]], . . . , [[xk1], . . . , [xknk]]]
μ

T μ

[[x11], . . . , [x1n1], . . . , [xk1], . . . , [xknk]]
μ

[[x11, . . . , x1n1], . . . , [xk1, . . . , xknk]] μ
[x11, . . . , x1n1 , . . . , xk1, . . . , xknk]

[x1, . . . , xn] η

id
T η

[[x1, . . . , xn]]
μ

[[x1], . . . , [xn]] μ
[x1, . . . , xn]

Exercise 125 Show that the E-coproduct monad and the ξ -side-effect monads are
indeed monads.

Our discussion on monads can be dualised, leading us to comonads.

Definition 126 A comonad over a category C is a triple (Q, ε, δ) where Q is an
endofunctor on C and ε : Q → IdC , δ : Q → Q2 are natural transformations such
that the following diagrams commute.

82 S. Abramsky and N. Tzevelekos

Q A
δA

δA

Q2A

δQ A

Q2A
QδA

Q3A

Q A
δA

idQ A
δA

Q2A

εQ A

Q2A
QεA

Q A
�

ε is the counit of the comonad, and δ its comultiplication. Two of our examples from
monads dualise to comonads.

• If C has finite products then, for any object S, we can define the S-product
comonad with functor Q := S × __ .

• We can form a comonad on Mon with functor Q := MList ◦ U (and counit that
of the corresponding adjunction).

Exercise 127 Give an explicit description of the comonad on Mon with functor
Q := MList ◦U described above. Verify it is a comonad.

1.8.2 (Co)Monads of an Adjunction

In the previous section, we saw that an adjunction between Mon and Set yielded a
monad on Set (and a comonad on Mon), with its unit being the unit of the adjunc-
tion. We now show that this observation generalises to any adjunction. Recall that
an adjunction is specified by:

• a pair of functors C
F

D
G

,

• for each A ∈ Ob(C), B ∈ Ob(D), a bijection θA,B : C(A, G B) ∼= D(F A, B)

natural in A, B.

For such an adjunction we build a monad on C: the functor of the monad is simply
T := G ◦ F , and unit and multiplication are defined by setting

ηA : A −→ G F A := θ−1
A,F A(idF A) ,

μA : G FG F A −→ G F A := G(θG F A,F A(idG F A)) .

Observe that η is the unit of the adjunction.

Proposition 128 Let (F, G, η) be an adjunction. Then the triple (T, η, μ) defined
above is a monad on C.

Proof Recall that naturality of θ means concretely that, for any f : A → G B,
g : A′ → A and h : B → B′,

θA′,B ′(Gh ◦ f ◦ g) = h ◦ θA,B(f) ◦ Fg .

1 Introduction to Categories and Categorical Logic 83

η is the unit of the adjunction and hence natural. We show naturality of μ:

GFGFf ◦ μB = GθG F B,F B(idGFB) ◦ GFGFf = G(θGFB,FB(idGFB) ◦ FGFf)

nat.θ= GθGFA,FB(idGFB ◦ GFf) = GθGFA,FB(G F f ◦ idGFA)

nat.θ= G(F f ◦ θGFA,FA(idGFA)) = GFf ◦ μA .

The monoidal condition for μ also follows from naturality of θ :

μA ◦ μGFA = G(θ(idGFA) ◦ θ(idGFGFA))
nat= Gθ(Gθ(idG F A) ◦ idG FG F A)

= Gθ(idGFA ◦ Gθ(idGFA))
nat= G(θ(idGFA) ◦ FGθ(idGFA))

= μA ◦ G FμA .

Finally, for the η-μ conditions we also use the universality diagram for η and the
uniqueness property (in equational form).

μA ◦ ηGFA = GθGFA,FA(idGFA) ◦ ηGFA = idGFA ,

μA ◦ G FηGFA = GθGFA,FA(idGFA) ◦ G FηGFA = G(θGFA,FA(idGFA) ◦ FηGFA)

nat= Gθ(idGFA ◦ ηGFA) = Gθ(G idF A ◦ ηGFA) = G idF A = GFA .

�

Hence, every adjunction gives rise to a monad. It turns out that the converse is also
true: every monad is described by means of an adjunction in this way. In particular,
there are two canonical constructions of adjunctions from a given monad: the Kleisli
construction, and the Eilenberg-Moore construction. These are in a sense minimal
and maximal solutions to describing a monad via an adjunction. We describe the
former one in the next section.

Finally, note that—because of the symmetric definition of adjunctions—the
whole discussion can be dualised to comonads. That is, every adjunction gives rise
to a comonad with counit that of the adjunction, and also every comonad can be
derived from an adjunction in this manner.

1.8.3 The Kleisli Construction

The Kleisli construction starts from a monad (T, η, μ) on a category C and builds a
category CT of T -computations, as follows.

Definition 129 Let (T, η, μ) be a monad on a category C. Construct the Kleisli cat-
egory CT by taking the same objects as C, and by including an arrow f.T : A → B
in CT for each f : A → T B in C. That is,

Ob(CT) := Ob(C) ,

CT (A, B) := { f.T | f ∈ C(A, T B)} .

84 S. Abramsky and N. Tzevelekos

The identity arrow for A in CT is ηA.T , while the composite of f.T : A → B and
g.T : B → C is h.T , where:

h := A
f−→ T B

T g−→ T 2C
μC−→ T C .

�
The conditions for CT being a category follow from the monadic conditions. For
composition with identity, for any f : A → T B,

f.T ◦ ηA.T = (μB ◦ T f ◦ ηA).T = (μB ◦ ηB ◦ f).T = f.T ,

ηB.T ◦ f.T = (μB ◦ T ηB ◦ f).T = f.T .

For associativity of composition, for any f : A → T B, g : B → T C and
h : C → T D,

(h.T ◦ g.T) ◦ f.T = (μD ◦ T h ◦ g).T ◦ f.T = (μD ◦ T (μD ◦ T h ◦ g) ◦ f).T

= (μD ◦ T μD ◦ T 2h ◦ T g ◦ f).T = (μD ◦ μT D ◦ T 2h ◦ T g ◦ f).T

= (μD ◦ T h ◦ μC ◦ T g ◦ f).T = h.T ◦ (g.T ◦ f.T) .

Let us now proceed to build the adjunction between C and CT that will eventually
give us back the monad T . Construct the functors F : C → CT and G : CT → C as
follows.

F := A �→ A , (f : A → B) �→ ((ηB ◦ f).T : A → B) ,

G := A �→ T A , (f.T : A → B) �→ (μB ◦ T f : T A → T B) .

Functoriality of F, G follows from the monad laws and the definition of CT . More-
over, for each A, B ∈ Ob(C), construct the following bijection of arrows.

θA,B : C(A, T B)
∼=−→ CT (A, B) := f �→ f.T

To establish that (F, G, θ) is an adjunction we need only show that θ is natural in
A, B. So take f : A → T B, g : A′ → A and h.T : B → B ′. We then have:

θA′,B′(G(h.T) ◦ f ◦ g) = θA′,B ′(μB′ ◦ T h ◦ f ◦ g) = (μB′ ◦ T h ◦ f ◦ g).T

= h.T ◦ (f ◦ g).T = h.T ◦ (μB ◦ T f ◦ ηA ◦ g).T

= h.T ◦ f.T ◦ (ηA ◦ g).T = h.T ◦ θA,B(f) ◦ Fg .

The final step in this section is to verify that the monad (T ′, η′, μ′) arising from
this adjunction is the one we started from. The construction of T ′ follows the recipe
given in the previous section, that is:

• T ′ : C → C := G ◦ F . Thus, T ′ maps each object A to T A, and each arrow
f : A → B to μB ◦ T ηA ◦ T f = T f .

1 Introduction to Categories and Categorical Logic 85

• η′A : A → T A := θ−1
A,F A(id(CT)

F A) = θ−1(ηA.T) = ηA .

• μ′A : T 2A → T A := GθG F A,F A(id(C)
G F A) = Gθ(idT A) = μA ◦ T idT A = μA .

Thus, we have indeed obtained the initial (T, η, μ).

The Kleisli Construction on a Comonad

Dually to the Kleisli category of a monad we can construct the Kleisli category of a
comonad5—and reobtain the comonad through an adjunction between the Kleisli
category and the original one. Specifically, given a category C and a comonad
(Q, ε, δ) on C, we define the category CQ as follows.

Ob(CQ) := Ob(C)

CQ(A, B) := { f.Q | f ∈ C(Q A, B)}
id

(CQ)

A := εA.Q

g.Q ◦ f.Q := (g ◦ Q f ◦ δA).Q

The Kleisli category of a comonad will be of use in the next sections, where comon-
ads will be considered for modelling bang of Linear Logic. We end this section by
showing a result that will be of use then.

Proposition 130 Let C be a category and (Q, ε, δ) be a comonad on C. If C has
binary products then so does CQ.

Proof Let A, B be objects in C, CQ . We claim that their product in CQ is given by
(A × B, p1, p2), where

p1 :=
(
Q(A × B)

ε−→ A × B
π1−→ A

)
.Q

and similarly for p2. Now, for each f.Q : C → A and g.Q : C → B, setting
〈 f.Q, g.Q〉 := 〈 f, g〉.Q we have:

p1 ◦ 〈 f.Q, g.Q〉 = (π1 ◦ ε ◦ Q〈 f, g〉 ◦ δ).Q = (π1 ◦ 〈 f, g〉 ◦ ε ◦ δ).Q = f.Q ,

and similarly p2 ◦ 〈 f.Q, g.Q〉 = g.Q . Finally, for any h.Q : C → A × B,

〈p1 ◦ h.Q, p2 ◦ h.Q〉 = 〈π1 ◦ ε ◦ Qh ◦ δ, π2 ◦ ε ◦ Qh ◦ δ〉.Q = 〈π1 ◦ h, π2 ◦ h〉.Q
= h.Q .

�

Exercise 131 Show that the Kleisli category CQ of a comonad (Q, ε, δ) has a ter-
minal object when C does.

5 In some texts, this is called a coKleisli category.

86 S. Abramsky and N. Tzevelekos

1.8.4 Modelling of Linear Exponentials

In this section we employ comonads in order to model the exponential bang oper-
ator, ! , of Linear Logic. Let us start by modelling a weak bang operator, !̂ , which
involves solely the following proof rules.

Γ, A # B

Γ, !̂ A # B
!̂L !̂B # A

!̂B # !̂ A
!̂R

Observe that, compared to ! , !̂ is weak in its Right rule, and it also misses Contrac-
tion and Weakening.

Let us now assume as given a symmetric monoidal closed category C along with
a comonad (Q, ε, δ) on C. As seen previously, C is a model of (⊗�)-Linear Logic.
Moreover, (C, Q) yields a model of (⊗�!̂)-Linear Logic by modelling each for-
mula !̂ A by Q A (i.e. Q applied to the translation of A). The rules for weak bang are
then interpreted as follows.

f : Γ ⊗ A −→ B
f ◦ idΓ ⊗ εA : Γ ⊗ Q A −→ B

f : Q B −→ A
Q f ◦ δB : Q B −→ Q A

We know that arrow-equalities in C correspond to proof-transformations in the proof
system. Thus, the comonadic law εQ A ◦ δA = idQ A = QεA ◦ δA corresponds to
the following transformations.

!̂ A # !̂ A
Id

!̂ A # !̂ !̂ A
!̂R !̂ A # !̂ A

Id

!̂ !̂ A # !̂ A
!̂L

!̂ A # !̂ A
Cut !̂ A # !̂ A

Id

A # A
Id

!̂ A # A
!̂L

!̂ A # !̂ A
!̂R

Exercise 132 Find a proof-transformation corresponding to the comonadic law
δQ A ◦ δA = QδA ◦ δA .

In order to extend our translation to the general !R rule, we need arrows in C of
the form

Q2A1 ⊗ · · · ⊗ Q2An −→ Q(Q A1 ⊗ · · · ⊗ Q An) .

Hence, we need to impose (a coherent) distributivity of the tensor—either binary
(⊗) or nullary (I)—over the comonad Q. This can be formalised by stipulating that
Q be a symmetric monoidal endofunctor.

Definition 133 Let (C,⊗, I, a, l, r, s) and (C ′,⊗′, I ′, a′, l ′, r ′, s′) be symmetric
monoidal categories. A functor F : C → C ′ is called symmetric monoidal if there
exist:

• a morphism m0 : I ′ → F(I) ,

1 Introduction to Categories and Categorical Logic 87

• a natural transformation m2 : F(__)⊗′ F(__) → F(__⊗ __) ,

such that the following diagrams commute.

F A ⊗′ (F B ⊗′ FC)

a′

id⊗′m2
F A ⊗′ F(B ⊗ C)

m2
F(A ⊗ (B ⊗ C))

Fa

(F A ⊗′ F B)⊗′ FC
m2⊗′ id

F(A ⊗ B)⊗′ FC m2
F((A ⊗ B)⊗ C)

F A ⊗′ I ′
id⊗′m0

r ′

F A ⊗′ F I

m2

F A F(A ⊗ I)
Fr

F A ⊗′ F B

s′

m2
F(A ⊗ B)

Fs

F B ⊗′ F A m2
F(B ⊗ A)

We may write such an F as (F, m). Moreover, if (F, m), (G, n) : C → C′ are
(symmetric) monoidal functors then a natural transformation φ : F → G is called
monoidal whenever the following diagrams commute.

I ′
m0

n0

F I

φ

G I

F A ⊗′ F B
m2

φ⊗′φ
F(A ⊗ B)

φ

G A ⊗′ G B n2
G(A ⊗ B)

�
For example, the identity functor is symmetric monoidal. Moreover, if F and G are
symmetric monoidal functors then so is G ◦ F . Other examples are the following.

• The constant endofunctor K I , which maps each object to I and each arrow to
idI , is symmetric monoidal with structure maps:

m0 : I −→ I := idI , m2 : I ⊗ I −→ I := rI .

• The endofunctor ⊗ ◦ 〈IdC, IdC〉, which maps each object A to A ⊗ A and each
arrow f to f ⊗ f , is symmetric monoidal with:

m0 : I −→ I⊗ I := r−1
I , m2 := (A⊗ A)⊗(B⊗B) −→ (A⊗B)⊗(A⊗B) ,

the latter given by use of structural transformations.

Exercise 134 Verify that if F : C → D, G : D → E are symmetric monoidal
functors then so is G ◦ F .

Definition 135 A comonad (Q, ε, δ) on a SMCC C is called a monoidal comonad
if Q is a symmetric monoidal functor, say (Q, m), and ε, δ are monoidal natural
transformations. We write Q as (Q, ε, δ, m). �

88 S. Abramsky and N. Tzevelekos

Now let us assume C is a SMCC and (Q, ε, δ, m) is a monoidal comonad on C.
The coherence of m2 with a, expressed by the first diagram of symmetric monoidal
functors, allows us to generalise m0 and m2 to arbitrary arities and assume arrows:

mn : Q A1 ⊗ · · · ⊗ Q An −→ Q(A1 ⊗ · · · ⊗ An) .

We can give the interpretation of the Right rule for bang as follows.

f : Q B1 ⊗ · · · ⊗ Q Bn −→ A
Q f ◦ mn ◦ (δB1 ⊗ · · · ⊗ δBn) : Q B1 ⊗ · · · ⊗ Q Bn −→ Q A

Contraction and Weakening

Our discussion on the categorical modelling of linear exponentials has only touched
the issues of Right and Left rules. However, we also need adequate structure for
translating Contraction and Weakening.

Γ, ! A, ! A # B
Γ, ! A # B

Contr
Γ # B

Γ, ! A # B
Weak

For these rules we can use appropriate (monoidal) natural transformations. For Con-
traction, we stipulate a transformation with components dA : Q A → Q A⊗Q A , i.e.

d : Q −→ ⊗ ◦ 〈Q, Q〉 .

For Weakening, a transformation with components eA : Q A → I , i.e.

e : Q −→ K I .

Although the above allow the categorical interpretation of the proof-rules, they do
not necessarily preserve the intended proof-transformations. For that, we need to
impose some further coherence conditions, which are epitomised in the following
notion.

Definition 136 Let C be a SMCC. A monoidal comonad (Q, ε, δ, m) on C is called
a linear exponential comonad if there exist monoidal natural transformations

d : Q −→ ⊗ ◦ 〈Q, Q〉 , e : Q −→ K I ,

such that:

(a) for each object A, the triple (Q A, dA, eA) is a commutative comonoid in C,
i.e. the following diagrams commute,

1 Introduction to Categories and Categorical Logic 89

Q A
dA

dA

Q A ⊗ Q A

sQ A,Q A

I ⊗ Q A

lQ A

Q A ⊗ Q A
eA⊗ idQ A

Q A
dA

dA

Q A ⊗ Q A

dA⊗ idQ A

Q A ⊗ Q A
a◦(idQ A⊗dA)

(Q A ⊗ Q A)⊗ Q A

(b) for each object A, the following diagrams commute.

Q A
δA

eA

Q2A

QeA

I m0
Q I

Q A
δA

dA

Q2A
QdA

Q A ⊗ Q A
δA⊗δA

Q2A ⊗ Q2A m2
Q(Q A ⊗ Q A)

Q A
δA

eA

Q2A

eQ A

I

Q A
δA

dA

Q2A

dQ A

Q A ⊗ Q A
δA⊗δA

Q2A ⊗ Q2A

We write Q as (Q, ε, δ, m, d, e). �

Exercise 137 Express what it means concretely for d, e to be monoidal natural
transformations.

Exercise 138 Give the categorical interpretation of Contraction and Weakening in a
SMCC C with a linear exponential comonad.

Including Products

We now consider the fragment of Linear Logic which includes all four linear con-
nectives we have seen thus far, i.e. ⊗ � !&, and their respective proof rules
(see definitions 122, 123). The categorical modelling of (⊗ � !&)-Linear Logic
requires:

• a symmetric monoidal closed category C,
• a linear exponential comonad (Q, ε, δ, m, d, e) on C,
• finite products in C.

The above structure is adequate for modelling the proof rules as we have seen pre-
viously. Moreover, it provides rich structure for the Kleisli category CQ . The next
result and its proof demonstrate categorically the ‘interpretation’ of ordinary logic
within Linear Logic given by:

A ⇒ B ≡ ! A � B .

90 S. Abramsky and N. Tzevelekos

Proposition 139 Let C be a SMCC with finite products and let (Q, ε, δ, m, d, e) be
a linear exponential comonad on C. Then:

(a) The Kleisli category CQ has finite products.
(b) There exists an isomorphism i : Q1 → I and a natural isomorphism j : Q(__×

__) → Q(__)⊗ Q(__).
(c) CQ is cartesian closed, with the exponential of objects B, C being Q B � C .

Proof Part (a) has been shown previously (Proposition 130, Exercise 131), and part
(b) is left as exercise. For (c), we have the following isomorphisms:

CQ(A × B, C) = C(Q(A × B), C) definition of CQ

∼= C(Q A ⊗ Q B, C) part (b)
∼= C(Q A, Q B � C) monoidal closure of C
= CQ(A, Q B � C) defn of CQ .

Concretely, we obtain θA : CQ(A × B, C)
∼=−→ CQ(A, Q B � C) by:

θA := (f.Q : A × B → C) �−→ (Λ(f ◦ j−1
A,B)).Q

θ−1
A := (g.Q : A → Q B � C) �−→ (Λ−1(g) ◦ jA,B).Q .

Clearly, θA is a bijection. In order to establish couniversality of the exponential, we
need also show naturality in A (see Exercise 76). So take f.Q : A × B → C and
h.Q : A′ → A. Note first that the following commutes.

Q(A × B)
δ

j

Q2(A × B)
Q〈Qπ1,Qπ2〉

Q(Q A × Q B)

j

Q A ⊗ Q B
δ⊗δ

Q2A ⊗ Q2B

(∗)

Note also that, for any hi .Q : A′i → Ai in CQ , i = 1, 2, we have:

h1.Q × h2.Q :=
(
Q(A′1 × A′2)

〈Qπ1,Qπ2〉−−−−−−→ Q A′1 × Q A′2
h1×h2−−−→ A1 × A2

)
.Q

Thus, noting that id
(CQ)

B = εB.Q ,

θA′(f.Q ◦ h.Q × id
(CQ)

B) = (
Λ(f ◦ Q(h × ε ◦ 〈Qπ1, Qπ2〉) ◦ δ ◦ j−1)

)
.Q

= (
Λ(f ◦ Q(h × ε) ◦ Q〈Qπ1, Qπ2〉 ◦ δ ◦ j−1)

)
.Q

(∗)= (
Λ(f ◦ Q(h × ε) ◦ j−1 ◦ δ ⊗ δ)

)
.Q

1 Introduction to Categories and Categorical Logic 91

= (
Λ(f ◦ j−1 ◦ Qh ⊗ Qε ◦ δ ⊗ δ)

)
.Q

= (
Λ(f ◦ j−1 ◦ (Qh ◦ δ)⊗ id)

)
.Q

= (
Λ(f ◦ j−1) ◦ Qh ◦ δ

)
.Q = θA(f.Q) ◦ h.Q

as required. �

Exercise 140 Show part (b) of Proposition 139. For the defined j , show commuta-
tivity of (∗).

1.8.5 Exercises

1. We say that a category C is well-pointed if it contains a terminal object 1 and, for
any pair of arrows f, g : A → B,

f �= g �⇒ ∃h : 1 → A. f ◦ h �= g ◦ h .

Let now C be a well-pointed category with a terminal object 1 and binary coprod-
ucts, and consider the functor G : C → C given by:

G := A �→ A + 1 , f �→ f + id1 .

If C(1, 1+ 1) = { in1, in2} with in1 �= in2, show that if (G, η, μ) is a monad on
C then, for each object A:

ηA = A
in1−→ A + 1 , μA = (A + 1)+ 1

[idA+1, in2]−−−−−−→ A + 1 .

2. Let C be a SMCC and let (Q, ε, δ) be a comonad on C.

(a) Suppose that the sequents !̂ A # B and !̂B # C are provable and let
f : Q A → B and g : Q B → C be their interpretations (i.e. the interpreta-
tions of their proofs) in C. Find the interpretations of the sequent !̂ A # !̂C
which correspond to each of the following proofs and show that the two
interpretations are equal.

...

!̂ A # B

!̂ A # !̂B
!̂R

...

!̂B # C

!̂B # !̂C !̂R

!̂ A # !̂C Cut

...

!̂ A # B

!̂ A # !̂B
!̂R

...

!̂B # C

!̂ A # C
Cut

!̂ A # !̂C !̂R

(b) Find the interpretations in C of the following proofs; are the interpretations
equal?

92 S. Abramsky and N. Tzevelekos

!̂ A # !̂ A
Id

!̂ !̂ A # !̂ A
!̂L

!̂ !̂ A # !̂ !̂ A
!̂R

!̂ A # !̂ A
Id

!̂ A # !̂ !̂ A
!̂R

!̂ !̂ A # !̂ !̂ A
!̂L

3. Show that a symmetric monoidal category C has finite products (given by ⊗, I ,
etc.) iff there are monoidal natural transformations

d : IdC −→ ⊗ ◦ 〈IdC, IdC〉 , e : IdC −→ K I ,

such that the following diagram commutes, for any A ∈ Ob(C).

A
dA

A ⊗ I
rA

I ⊗ A

lA

A ⊗ A
idA⊗eA

eA⊗ idA

A Review of Sets, Functions and Relations

Our aim in this Appendix is to provide a brief review of notions we will assume in
the notes. If the first paragraph is not familiar to you, you will need to acquire more
background before being ready to read the notes.

Cartesian Products, Relations and Functions

Given sets X and Y , their cartesian product is

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y } .
A relation R from X to Y , written R : X → Y , is a subset R ⊆ X × Y . Given such
a relation, we write (x, y) ∈ R, or equivalently R(x, y). We compose relations as
follows: if R : X → Y and S : Y → Z , then for all x ∈ X and z ∈ Z :

R; S(x, z) ≡ ∃y ∈ Y. R(x, y) ∧ S(y, z) .

A relation f : X → Y is a function if it satisfies the following two properties:

• (single-valuedness): if (x, y) ∈ f and (x, y′) ∈ f , then y = y′.
• (totality): for all x ∈ X , for some y ∈ Y , (x, y) ∈ f .

If f is a function, we write f (x) = y or f : x �→ y for (x, y) ∈ f . Function
composition is written as follows: if f : X → Y and g : Y → Z ,

g ◦ f (x) = g(f (x)) .

It is easily checked that g ◦ f = f ; g, viewing functions as relations.

1 Introduction to Categories and Categorical Logic 93

Equality of Functions

Two functions f, g : X → Y are equal if they are equal as relations, i.e. as sets of
ordered pairs. Equivalently, but more conveniently, we can write:

f = g ⇐⇒ ∀x ∈ X. f (x) = g(x) .

The right-to-left implication is the standard tool for proving equality of functions
on sets. As we shall see, when we enter the world of category theory, which takes a
more general view of “arrows” f : X → Y , for most purposes we have to leave this
familiar tool behind!

Making the Arrow Notation for Functions and Relations Unambiguous

Our definitions of functions and relations, as they stand, have an unfortunate ambi-
guity. Given a relation R : X → Y , we cannot uniquely recover its “domain” X
and “codomain” Y . In the case of a function, we can recover the domain, because of
totality, but not the codomain.

Example Consider the set of ordered pairs {(n, n) | n ∈ N}, where N is the set
of natural numbers. Is this the identity function idN : N −→ N, or the inclusion
function inc : N ↪→ Z, where Z is the set of integers?

We wish to have unambiguous notions of domain and codomain for functions,
and more generally relations. Thus we modify our official definition of a relation
from X to Y to be an ordered triple (X, R, Y), where R ⊆ X × Y . We then define
composition of (X, R, Y) and (Y, S, Z) in the obvious fashion, as (X, R; S, Z).
We treat functions similarly. We shall not belabour this point in the notes, but it
is implicit when we set up perhaps the most fundamental example of a category,
namely the category of sets.

Size

We shall avoid explicit discussion of set-theoretical foundations in the text, but we
include a few remarks for the interested reader. Occasionally, distinctions of set-
theoretic size do matter in category theory. One example which does arise in the
notes is when we consider Cat, the category of “all” categories. Does this category
belong to (is it an object of) itself, at the risk of a Russell-type paradox? The way
we avoid this is to impose some set-theoretic limitation of size on the categories
gathered into Cat. Cat will then be too big to fit into itself. For example, we can
limit Cat to those categories whose collections of objects and arrows form sets in
the sense of some standard set theory such as ZFC. Cat will then be a proper class,
and will not be an object of itself. One assumption we do make throughout the
notes is that the categories we deal with are “locally small”, i.e. that all hom-sets
are indeed sets. Another place where some technical caveat would be in order is
when we form functor categories. In practice, these issues never (well, hardly ever)
cause problems, because of the strongly-typed nature of category theory. We leave
the interested reader to delve further into these issues by consulting some of the
standard texts.

94 S. Abramsky and N. Tzevelekos

B Guide to Further Reading

Of the many texts on category theory, we shall only mention a few, which may be
particularly useful to someone who has read these notes and wishes to learn more.

The short text [10] is very nicely written and gently paced; it is probably a little
easier going than these notes. A text which is written with a clarity and at a level
which makes it ideal as a next step after these notes is [5]. A text particularly useful
for its large number of exercises with solutions is [1].

Another very nicely written text, focussing on the connections between cate-
gories and logic, and especially topos theory, is [4], recently reissued by Dover
Books. A classic text on categorical logic is [6]. A more advanced text on topos
theory is [9].

The text [8] is a classic by one of the founders of category theory. It assumes
considerable background knowledge of mathematics to fully appreciate its wide-
ranging examples, but it provides invaluable coverage of the key topics.

A stimulating text on the correspondence between computation and logic is [3];
it is out of print, but available online. A more recent text on this topic is [11].

The 3-volume handbook [2] provides coverage of a broad range of topics in cat-
egory theory. The book [7] is somewhat idiosyncratic in style, but offers insights by
one of the key contributors to category theory.

References

1. Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Publications CRM,
Montreal (1999) 94

2. Borceux, F.: Handbook of Categorical Algebra Volumes 1–3. Cambridge University Press,
Cambridge (1994) 94

3. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge
(1989) 94

4. Goldblatt, R.: Topoi, the Categorial Analysis of Logic. North-Holland, Amsterdam (1984).
Reprinted by Dover Books, 2006. 94

5. Herrlich, H., Strecker, G.: Category Theory, 3rd edn. Heldermann, Berline (2007) 94
6. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cambridge Univer-

sity Press, Cambridge (1986) 94
7. Lawvere, F., Schanuel, S.: Conceptual Mathematics: A First Introduction to Categories. Cam-

bridge University Press, Cambridge (1997) 94
8. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York

(1998) 94
9. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos

Theory. Springer, New York (1994) 94
10. Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge (1991) 94
11. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier,

New York (2006) 94

Chapter 2
Physics, Topology, Logic and Computation:
A Rosetta Stone

J. Baez and M. Stay

Abstract In physics, Feynman diagrams are used to reason about quantum pro-
cesses. In the 1980s, it became clear that underlying these diagrams is a powerful
analogy between quantum physics and topology. Namely, a linear operator behaves
very much like a “cobordism”: a manifold representing spacetime, going between
two manifolds representing space. This led to a burst of work on topological quan-
tum field theory and “quantum topology”. But this was just the beginning: similar
diagrams can be used to reason about logic, where they represent proofs, and com-
putation, where they represent programs. With the rise of interest in quantum cryp-
tography and quantum computation, it became clear that there is extensive network
of analogies between physics, topology, logic and computation. In this expository
paper, we make some of these analogies precise using the concept of “closed sym-
metric monoidal category”. We assume no prior knowledge of category theory, proof
theory or computer science.

2.1 Introduction

Category theory is a very general formalism, but there is a certain special way that
physicists use categories which turns out to have close analogues in topology, logic
and computation. A category has objects and morphisms, which represent things
and ways to go between things. In physics, the objects are often physical systems,
and the morphisms are processes turning a state of one physical system into a state
of another system—perhaps the same one. In quantum physics we often formalize
this by taking Hilbert spaces as objects, and linear operators as morphisms.

J. Baez (B)
Department of Mathematics, University of California, Riverside, CA, USA
e-mail: baez@math.ucr.edu

M. Stay (B)
Computer Science Department, University of Auckland and Google, Auckland, Newzealand
e-mail: stay@google.com

Baez, J., Stay, M.: Physics, Topology, Logic and Computation: A Rosetta Stone. Lect. Notes
Phys. 813, 95–172 (2011)
DOI 10.1007/978-3-642-12821-9_2 c© Springer-Verlag Berlin Heidelberg 2011

96 J. Baez and M. Stay

Sometime around 1949, Feynman [63] realized that in quantum field theory it is
useful to draw linear operators as diagrams:

This lets us reason with them pictorially. We can warp a picture without changing
the operator it stands for: all that matters is the topology, not the geometry. In the
1970s, Penrose realized that generalizations of Feynman diagrams arise throughout
quantum theory, and might even lead to revisions in our understanding of spacetime
[84–87]. In the 1980s, it became clear that underlying these diagrams is a powerful
analogy between quantum physics and topology! Namely, a linear operator behaves
very much like a “cobordism”—that is, an n-dimensional manifold going between
manifolds of one dimension less:

String theory exploits this analogy by replacing the Feynman diagrams of ordinary
quantum field theory with 2-dimensional cobordisms, which represent the world-
sheets traced out by strings with the passage of time. The analogy between operators
and cobordisms is also important in loop quantum gravity and—most of all—the
more purely mathematical discipline of “topological quantum field theory”.

Meanwhile, quite separately, logicians had begun using categories where the
objects represent propositions and the morphisms represent proofs. The idea is that
a proof is a process going from one proposition (the hypothesis) to another (the
conclusion). Later, computer scientists started using categories where the objects
represent data types and the morphisms represent programs. They also started using
“flow charts” to describe programs. Abstractly, these are very much like Feynman
diagrams!

The logicians and computer scientists were never very far from each other.
Indeed, the “Curry–Howard correspondence” relating proofs to programs has been
well-known at least since the early 1970s, with roots stretching back earlier

2 Physics, Topology, Logic and Computation 97

[36, 37, 56]. But, it is only in the 1990s that the logicians and computer scientists
bumped into the physicists and topologists. One reason is the rise of interest in
quantum cryptography and quantum computation [29]. With this, people began to
think of quantum processes as forms of information processing, and apply ideas
from computer science. It was then realized that the loose analogy between flow
charts and Feynman diagrams could be made more precise and powerful with the
aid of category theory [3].

By now there is an extensive network of interlocking analogies between physics,
topology, logic and computer science. They suggest that research in the area of com-
mon overlap is actually trying to build a new science: a general science of systems
and processes. Building this science will be very difficult. There are good reasons
for this, but also bad ones. One bad reason is that different fields use different ter-
minology and notation.

The original Rosetta Stone, created in 196 BC, contains versions of the same text
in three languages: demotic Egyptian, hieroglyphic script and classical Greek. Its
rediscovery by Napoleon’s soldiers let modern Egyptologists decipher the hiero-
glyphs. Eventually this led to a vast increase in our understanding of Egyptian
culture.

At present, the deductive systems in mathematical logic look like hieroglyphs
to most physicists. Similarly, quantum field theory is Greek to most computer sci-
entists, and so on. So, there is a need for a new Rosetta Stone to aid researchers
attempting to translate between fields. Table 2.1 shows our guess as to what this
Rosetta Stone might look like.

Table 2.1 The Rosetta Stone (pocket version)

Category theory Physics Topology Logic Computation

Object System Manifold Proposition Data type
Morphism Process Cobordism Proof Program

The rest of this paper expands on this table by comparing how categories are used
in physics, topology, logic, and computation. Unfortunately, these different fields
focus on slightly different kinds of categories. Though most physicists don’t know it,
quantum physics has long made use of “compact symmetric monoidal categories”.
Knot theory uses “compact braided monoidal categories”, which are slightly more
general. However, it became clear in the 1990s that these more general gadgets are
useful in physics too. Logic and computer science used to focus on “cartesian closed
categories”—where “cartesian” can be seen, roughly, as an antonym of “quantum”.
However, thanks to work on linear logic and quantum computation, some logicians
and computer scientists have dropped their insistence on cartesianness: now they
study more general sorts of “closed symmetric monoidal categories”.

In Sect. 2.2 we explain these concepts, how they illuminate the analogy between
physics and topology, and how to work with them using string diagrams. We assume
no prior knowledge of category theory, only a willingness to learn some. In Sect. 2.3
we explain how closed symmetric monoidal categories correspond to a small frag-
ment of ordinary propositional logic, which also happens to be a fragment of
Girard’s “linear logic” [47]. In Sect. 2.4 we explain how closed symmetric monoidal

98 J. Baez and M. Stay

categories correspond to a simple model of computation. Each of these sections
starts with some background material. In Sect. 2.5, we conclude by presenting a
larger version of the Rosetta Stone.

Our treatment of all four subjects—physics, topology, logic and computation—is
bound to seem sketchy, narrowly focused and idiosyncratic to practitioners of these
subjects. Our excuse is that we wish to emphasize certain analogies while saying no
more than absolutely necessary. To make up for this, we include many references
for those who wish to dig deeper.

2.2 The Analogy Between Physics and Topology

2.2.1 Background

Currently our best theories of physics are general relativity and the Standard Model
of particle physics. The first describes gravity without taking quantum theory into
account; the second describes all the other forces taking quantum theory into
account, but ignores gravity. So, our world-view is deeply schizophrenic. The field
where physicists struggle to solve this problem is called quantum gravity, since it
is widely believed that the solution requires treating gravity in a way that takes
quantum theory into account.

Table 2.2 Analogy between physics and topology

Physics Topology

Hilbert space (n − 1)-Dimensional
(system) manifold (space)

Operator between Cobordism between
Hilbert spaces (n − 1)-dimensional
(process) manifolds (spacetime)

Composition of Composition of
operators cobordisms

Identity operator Identity cobordism

Nobody is sure how to do this, but there is a striking similarity between two of the
main approaches: string theory and loop quantum gravity. Both rely on the analogy
between physics and topology shown in Table 2.2. On the left we have a basic
ingredient of quantum theory: the category Hilb whose objects are Hilbert spaces,
used to describe physical systems, and whose morphisms are linear operators, used
to describe physical processes. On the right we have a basic structure in differential
topology: the category nCob. Here the objects are (n–1)-dimensional manifolds,
used to describe space, and whose morphisms are n-dimensional cobordisms, used
to describe spacetime.

As we shall see, Hilb and nCob share many structural features. Moreover, both
are very different from the more familiar category Set, whose objects are sets and
whose morphisms are functions. Elsewhere we have argued at great length that this

2 Physics, Topology, Logic and Computation 99

is important for better understanding quantum gravity [11] and even the foundations
of quantum theory [12]. The idea is that if Hilb is more like nCob than Set, maybe
we should stop thinking of a quantum process as a function from one set of states
to another. Instead, maybe we should think of it as resembling a “spacetime” going
between spaces of dimension one less.

This idea sounds strange, but the simplest example is something very practical,
used by physicists every day: a Feynman diagram. This is a 1-dimensional graph
going between 0-dimensional collections of points, with edges and vertices labelled
in certain ways. Feynman diagrams are topological entities, but they describe lin-
ear operators. String theory uses 2-dimensional cobordisms equipped with extra
structure—string worldsheets—to do a similar job. Loop quantum gravity uses 2d
generalizations of Feynman diagrams called “spin foams” [10]. Topological quan-
tum field theory uses higher-dimensional cobordisms [14]. In each case, processes
are described by morphisms in a special sort of category: a “compact symmetric
monoidal category”.

In what follows, we shall not dwell on puzzles from quantum theory or quantum
gravity. Instead we take a different tack, simply explaining some basic concepts
from category theory and showing how Set, Hilb, nCob and categories of tangles
give examples. A recurring theme, however, is that Set is very different from the
other examples.

To help the reader safely navigate the sea of jargon, here is a chart of the concepts
we shall explain in this section:

categories

monoidal categories

braided
monoidal categories

closed
monoidal categories

symmetric
monoidal categories

closed braided
monoidal categories

compact
monoidal categories

cartesian categories closed symmetric
monoidal categories

compact braided
monoidal categories

cartesian
closed categories

compact symmetric
monoidal categories

The category Set is cartesian closed, while Hilb and nCob are compact symmetric
monoidal.

100 J. Baez and M. Stay

2.2.2 Categories

Category theory was born around 1945, with Eilenberg and Mac Lane [40] defin-
ing “categories”, “functors” between categories, and “natural transformations”
between functors. By now there are many introductions to the subject [35, 78, 81],
including some available for free online [21, 50]. Nonetheless, we begin at the
beginning:

Definition 1 A category C consists of:

• a collection of objects, where if X is an object of C we write X ∈ C , and
• for every pair of objects (X, Y), a set hom(X, Y) of morphisms from X to Y . We

call this set hom(X, Y) a homset. If f ∈ hom(X, Y), then we write f : X → Y.

such that:

• for every object X there is an identity morphism 1X : X → X;
• morphisms are composable: given f : X → Y and g : Y → Z , there is a com-

posite morphism g f : X → Z; sometimes also written g ◦ f .
• an identity morphism is both a left and a right unit for composition: if f : X →

Y, then f 1X = f = 1Y f ; and
• composition is associative: (hg) f = h(g f) whenever either side is well-defined.

Definition 2 We say a morphism f :X →Y is an isomorphism if it has an inverse—
that is, there exists another morphism g : Y→X such that g f = 1X and f g = 1Y .

A category is the simplest framework where we can talk about systems (objects)
and processes (morphisms). To visualize these, we can use “Feynman diagrams”
of a very primitive sort. In applications to linear algebra, these diagrams are often
called “spin networks”, but category theorists call them “string diagrams”, and that
is the term we will use. The term “string” here has little to do with string theory:
instead, the idea is that objects of our category label “strings” or “wires”:

X

and morphisms f : X → Y label “black boxes” with an input wire of type X and an
output wire of type Y :

f

X

Y

2 Physics, Topology, Logic and Computation 101

We compose two morphisms by connecting the output of one black box to the input
of the next. So, the composite of f : X → Y and g : Y → Z looks like this:

f

g

X

Y

Z

Associativity of composition is then implicit:

f

g

h

X

Y

Z

W

is our notation for both h(g f) and (hg) f . Similarly, if we draw the identity mor-
phism 1X : X → X as a piece of wire of type X :

X

then the left and right unit laws are also implicit.
There are countless examples of categories, but we will focus on four:

• Set: the category where objects are sets.
• Hilb: the category where objects are finite-dimensional Hilbert spaces.
• nCob: the category where morphisms are n-dimensional cobordisms.
• Tangk : the category where morphisms are k-codimensional tangles.

102 J. Baez and M. Stay

As we shall see, all four are closed symmetric monoidal categories, at least when
k is big enough. However, the most familiar of the lot, namely Set, is the odd man
out: it is “cartesian”.

Traditionally, mathematics has been founded on the category Set, where the
objects are sets and the morphisms are functions. So, when we study systems
and processes in physics, it is tempting to specify a system by giving its set of
states, and a process by giving a function from states of one system to states of
another.

However, in quantum physics we do something subtly different: we use cate-
gories where objects are Hilbert spaces and morphisms are bounded linear oper-
ators. We specify a system by giving a Hilbert space, but this Hilbert space is not
really the set of states of the system: a state is actually a ray in Hilbert space. Simi-
larly, a bounded linear operator is not precisely a function from states of one system
to states of another.

In the day-to-day practice of quantum physics, what really matters is not sets
of states and functions between them, but Hilbert space and operators. One of the
virtues of category theory is that it frees us from the “Set-centric” view of traditional
mathematics and lets us view quantum physics on its own terms. As we shall see,
this sheds new light on the quandaries that have always plagued our understanding
of the quantum realm [12].

To avoid technical issues that would take us far afield, we will take Hilb to be
the category where objects are finite-dimensional Hilbert spaces and morphisms are
linear operators (automatically bounded in this case). Finite-dimensional Hilbert
spaces suffice for some purposes; infinite-dimensional ones are often important, but
treating them correctly would require some significant extensions of the ideas we
want to explain here.

In physics we also use categories where the objects represent choices of space,
and the morphisms represent choices of spacetime. The simplest is nCob, where the
objects are (n − 1)-dimensional manifolds, and the morphisms are n-dimensional
cobordisms. Glossing over some subtleties that a careful treatment would discuss
[90], a cobordism f : X → Y is an n-dimensional manifold whose boundary is the
disjoint union of the (n − 1)-dimensional manifolds X and Y . Here are a couple of
cobordisms in the case n = 2:

X

Y

f

Y

Z

g

We compose them by gluing the “output” of one to the “input” of the other. So, in
the above example g f : X → Z looks like this:

2 Physics, Topology, Logic and Computation 103

X

Z

gf

Another kind of category important in physics has objects representing collec-
tions of particles, and morphisms representing their worldlines and interactions.
Feynman diagrams are the classic example, but in these diagrams the “edges” are
not taken literally as particle trajectories. An example with closer ties to topology is
Tangk .

Very roughly speaking, an object in Tangk is a collection of points in a
k-dimensional cube, while a morphism is a “tangle”: a collection of arcs and circles
smoothly embedded in a (k + 1)-dimensional cube, such that the circles lie in the
interior of the cube, while the arcs touch the boundary of the cube only at its top
and bottom, and only at their endpoints. A bit more precisely, tangles are “isotopy
classes” of such embedded arcs and circles: this equivalence relation means that
only the topology of the tangle matters, not its geometry. We compose tangles by
attaching one cube to another top to bottom.

More precise definitions can be found in many sources, at least for k = 2, which
gives tangles in a 3-dimensional cube [46, 64, 90, 99, 107, 111]. But since a picture
is worth a thousand words, here is a picture of a morphism in Tang2:

X

Y

f

Note that we can think of a morphism in Tangk as a 1-dimensional cobordism
embedded in a k-dimensional cube. This is why Tangk and nCob behave similarly
in some respects.

Here are two composable morphisms in Tang1:

104 J. Baez and M. Stay

X Y

ZY

f g

and here is their composite:

X

Z

gf

Since only the tangle’s topology matters, we are free to squash this rectangle into a
square if we want, but we do not need to.

It is often useful to consider tangles that are decorated in various ways. For exam-
ple, in an “oriented” tangle, each arc and circle is equipped with an orientation. We
can indicate this by drawing a little arrow on each curve in the tangle. In applications
to physics, these curves represent worldlines of particles, and the arrows say whether
each particle is going forwards or backwards in time, following Feynman’s idea that
antiparticles are particles going backwards in time. We can also consider “framed”
tangles. Here each curve is replaced by a “ribbon”. In applications to physics, this
keeps track of how each particle twists. This is especially important for fermions,
where a 2π twist acts nontrivially. Mathematically, the best-behaved tangles are both
framed and oriented [14, 99], and these are what we should use to define Tangk . The
category nCob also has a framed oriented version. However, these details will barely
matter in what is to come.

It is difficult to do much with categories without discussing the maps between
them. A map between categories is called a ‘functor’:

Definition 3 A functor F : C → D from a category C to a category D is a map
sending:

• any object X ∈ C to an object F(X) ∈ D,
• any morphism f : X → Y in C to a morphism F(f) : F(X) → F(Y) in D,

in such a way that:

2 Physics, Topology, Logic and Computation 105

• F preserves identities: for any object X ∈ C , F(1X) = 1F(X);
• F preserves composition: for any pair of morphisms f : X → Y , g : Y → Z in

C , F(g f) = F(g)F(f).

In the sections to come, we will see that functors and natural transformations
are useful for putting extra structure on categories. Here is a rather different use
for functors: we can think of a functor F : C → D as giving a picture, or “repre-
sentation”, of C in D. The idea is that F can map objects and morphisms of some
‘abstract’ category C to objects and morphisms of a more “concrete” category D.

For example, consider an abstract group G. This is the same as a category with
one object and with all morphisms invertible. The object is uninteresting, so we
can just call it •, but the morphisms are the elements of G, and we compose them
by multiplying them. From this perspective, a representation of G on a finite-
dimensional Hilbert space is the same as a functor F : G → Hilb. Similarly, an
action of G on a set is the same as a functor F : G → Set. Both notions are ways
of making an abstract group more concrete.

Ever since Lawvere’s 1963 thesis on functorial semantics [75], the idea of func-
tors as representations has become pervasive. However, the terminology varies from
field to field. Following Lawvere, logicians often call the category C a “theory”, and
call the functor F : C → D a “model” of this theory. Other mathematicians might
call F an “algebra” of the theory. In this work, the default choice of D is usually the
category Set.

In physics, it is the functor F : C → D that is called the “theory”. Here the
default choice of D is either the category we are calling Hilb or a similar category
of infinite-dimensional Hilbert spaces. For example, both “conformal field theories”
[95] and topological quantum field theories [8, 9] can be seen as functors of this
sort.

If we think of functors as models, natural transformations are maps between
models:

Definition 4 Given two functors F, F ′ : C → D, a natural transformation
α : F ⇒ F ′ assigns to every object X in C a morphism αX : F(X) → F ′(X)

such that for any morphism f : X → Y in C, the equation αY F(f) = F ′(f) αX

holds in D. In other words, this square commutes:

F(X) F(Y)

F′(X) F′(Y)
F′(f)

F(f)

αX αY

(Going across and then down equals going down and then across.)

106 J. Baez and M. Stay

Definition 5 A natural isomorphism between functors F, F ′ : C → D is a natural
transformation α : F ⇒ F ′ such that αX is an isomorphism for every X ∈ C .

For example, suppose F, F ′ : G → Hilb are functors where G is a group, thought
of as a category with one object, say •. Then, as already mentioned, F and F ′ are
secretly just representations of G on the Hilbert spaces F(•) and F ′(•). A natural
transformation α : F ⇒ F ′ is then the same as an intertwining operator from one
representation to another: that is, a linear operator

A : F(•) → F ′(•)

satisfying

AF(g) = F ′(g)A

for all group elements g.

2.2.3 Monoidal Categories

In physics, it is often useful to think of two systems sitting side by side as forming a
single system. In topology, the disjoint union of two manifolds is again a manifold
in its own right. In logic, the conjunction of two statement is again a statement.
In programming we can combine two data types into a single “product type”. The
concept of “monoidal category” unifies all these examples in a single framework.

A monoidal category C has a functor ⊗: C × C → C that takes two objects X
and Y and puts them together to give a new object X ⊗ Y . To make this precise, we
need the cartesian product of categories:

Definition 6 The cartesian product C × C ′ of categories C and C ′ is the category
where:

• an object is a pair (X, X ′) consisting of an object X ∈ C and an object X ′ ∈ C ′;
• a morphism from (X, X ′) to (Y, Y ′) is a pair (f, f ′) consisting of a morphism

f : X → Y and a morphism f ′ : X ′ → Y ′;
• composition is done componentwise: (g, g′)(f, f ′) = (g f, g′ f ′);
• identity morphisms are defined componentwise: 1(X,X ′) = (1X , 1X ′).

Mac Lane [77] defined monoidal categories in 1963. The subtlety of the defi-
nition lies in the fact that (X ⊗ Y) ⊗ Z and X ⊗ (Y ⊗ Z) are not usually equal.
Instead, we should specify an isomorphism between them, called the “associator”.
Similarly, while a monoidal category has a “unit object” I , it is not usually true that
I ⊗ X and X ⊗ I equal X . Instead, we should specify isomorphisms I ⊗ X ∼= X
and X ⊗ I ∼= X . To be manageable, all these isomorphisms must then satisfy certain
equations:

Definition 7 A monoidal category consists of:

• a category C,

• a tensor product functor ⊗: C × C → C,

2 Physics, Topology, Logic and Computation 107

• a unit object I ∈ C ,
• a natural isomorphism called the associator, assigning to each triple of objects

X, Y, Z ∈ C an isomorphism

aX,Y,Z : (X ⊗ Y) ⊗ Z
∼−→ X ⊗ (Y ⊗ Z),

• natural isomorphisms called the left and right unitors, assigning to each object
X ∈ C isomorphisms

lX : I ⊗ X
∼−→ X

rX : X ⊗ I
∼−→ X,

such that:

• for all X, Y ∈ C the triangle equation holds:

(X ⊗ I) ⊗ Y

X ⊗ Y

X ⊗ (I ⊗ Y)
aX,I,Y

rX ⊗ 1Y 1X ⊗ 1Y

• for all W, X, Y, Z ∈ C , the pentagon equation holds:

((W ⊗ X) ⊗ Y) ⊗ Z

(W ⊗ X) ⊗ (Y ⊗ Z)

(W ⊗ (X ⊗ Y)) ⊗ Z

W ⊗ ((X ⊗ Y) ⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

aW⊗X,Y,Z

1W⊗aX,Y,Z

aW,X,Y⊗Z

aW,X⊗Y,Z

aW,X,Y ⊗ 1Z

When we have a tensor product of four objects, there are five ways to paren-
thesize it, and at first glance the associator lets us build two isomorphisms from
W ⊗ (X ⊗ (Y ⊗ Z)) to ((W ⊗ X) ⊗ Y) ⊗ Z . But, the pentagon equation says these

108 J. Baez and M. Stay

isomorphisms are equal. When we have tensor products of even more objects there
are even more ways to parenthesize them, and even more isomorphisms between
them built from the associator. However, Mac Lane showed that the pentagon iden-
tity implies these isomorphisms are all the same. Similarly, if we also assume the
triangle equation, all isomorphisms with the same source and target built from the
associator, left and right unit laws are equal.

In a monoidal category we can do processes in “parallel” as well as in “series”.
Doing processes in series is just composition of morphisms, which works in any
category. But in a monoidal category we can also tensor morphisms f : X → Y and
f ′ : X ′ → Y ′ and obtain a “parallel process” f ⊗ f ′ : X ⊗ X ′ → Y ⊗ Y ′. We can
draw this in various ways:

f

X

Y

f

X

Y

X

Y

X

Y

X X

Y Y

f f⊗

⊗

⊗

f f⊗

More generally, we can draw any morphism

f : X1 ⊗ · · · ⊗ Xn → Y1 ⊗ · · · ⊗ Ym

as a black box with n input wires and m output wires:

f

X1 X2 X3

Y1 Y2

We draw the unit object I as a blank space. So, for example, we draw a morphism
f : I → X as follows:

f

X

By composing and tensoring morphisms, we can build up elaborate pictures resem-
bling Feynman diagrams:

2 Physics, Topology, Logic and Computation 109

f

g

h

j

X1 X2 X3 X4

Y1 Y2 Y3
Y4

Z

The laws governing a monoidal category allow us to neglect associators and uni-
tors when drawing such pictures, without getting in trouble. The reason is that Mac
Lane’s Coherence Theorem says any monoidal category is “equivalent”, in a suitable
sense, to one where all associators and unitors are identity morphisms [77].

We can also deform the picture in a wide variety of ways without changing the
morphism it describes. For example, the above morphism equals this one:

X1 X2 X3 X4

Y1 Y2 Y3
Y4

f

g

h

j

Z

Everyone who uses string diagrams for calculations in monoidal categories starts
by worrying about the rules of the game: precisely how can we deform these pic-
tures without changing the morphisms they describe? Instead of stating the rules
precisely—which gets a bit technical—we urge you to explore for yourself what is
allowed and what is not. For example, show that we can slide black boxes up and
down like this:

X1 X2

Y1 Y2

X1 X2

Y1 Y2

X1 X2

Y1 Y2

f

g
= f g =

f

g

110 J. Baez and M. Stay

For a formal treatment of the rules governing string diagrams, try the original papers
by Joyal and Street [59, 60] and the book by Yetter [111].

Now let us turn to examples. Here it is crucial to realize that the same category
can often be equipped with different tensor products, resulting in different monoidal
categories:

• There is a way to make Set into a monoidal category where X ⊗Y is the cartesian
product X × Y and the unit object is any one-element set. Note that this tensor
product is not strictly associative, since (x, (y, z))
= ((x, y), z), but there’s a
natural isomorphism (X × Y) × Z ∼= X × (Y × Z), and this is our associator.
Similar considerations give the left and right unitors. In this monoidal category,
the tensor product of f : X → Y and f ′ : X ′ → Y ′ is the function

f × f ′ : X × X ′ → Y × Y ′
(x, x ′) �→ (f (x), f ′(x ′)).

There is also a way to make Set into a monoidal category where X ⊗ Y is the
disjoint union of X and Y , which we shall denote by X + Y . Here the unit object
is the empty set. Again, as indeed with all these examples, the associative law
and left/right unit laws hold only up to natural isomorphism. In this monoidal
category, the tensor product of f : X → Y and f ′ : X ′ → Y ′ is the function

f + f ′ : X + X ′ → Y + Y ′

x �→
{

f (x) if x ∈ X ,
f ′(x) if x ∈ X ′.

However, in what follows, when we speak of Set as a monoidal category, we
always use the cartesian product!

• There is a way to make Hilb into a monoidal category with the usual tensor
product of Hilbert spaces: C

n ⊗ C
m ∼= C

nm . In this case the unit object I can be
taken to be a 1-dimensional Hilbert space, for example C.
There is also a way to make Hilb into a monoidal category where the tensor
product is the direct sum: C

n ⊕ C
m ∼= C

n+m . In this case the unit object is the
zero-dimensional Hilbert space, {0}.
However, in what follows, when we speak of Hilb as a monoidal category, we
always use the usual tensor product!

• The tensor product of objects and morphisms in nCob is given by disjoint union.
For example, the tensor product of these two morphisms:

X

Y

f

X′

Y ′

f ′

2 Physics, Topology, Logic and Computation 111

is this:

X′

Y ′

X

Y

⊗

⊗

f ′f ⊗

• The category Tangk is monoidal when k ≥ 1, where the the tensor product is
given by disjoint union. For example, given these two tangles:

X

Y

f f

X′

Y ′

their tensor product looks like this:

X X′⊗

Y Y′⊗

f f ′⊗

The example of Set with its cartesian product is different from our other three
main examples, because the cartesian product of sets X × X ′ comes equipped with
functions called “projections” to the sets X and X ′:

X �p
X × X ′ p′

� X ′

Our other main examples lack this feature—though Hilb made into a monoidal cat-
egory using ⊕ has projections. Also, every set has a unique function to the one-
element set:

!X : X → I.

112 J. Baez and M. Stay

Again, our other main examples lack this feature, though Hilb made into a monoidal
category using ⊕ has it. A fascinating feature of quantum mechanics is that we make
Hilb into a monoidal category using ⊗ instead of ⊕, even though the latter approach
would lead to a category more like Set.

We can isolate the special features of the cartesian product of sets and its projec-
tions, obtaining a definition that applies to any category:

Definition 8 Given objects X and X ′ in some category, we say an object X × X ′
equipped with morphisms

X �p
X × X ′ p′

� X ′

is a cartesian product (or simply product) of X and X ′ if for any object Q and
morphisms

Q

X X′

f ′f

there exists a unique morphism g : Q → X × X ′ making the following diagram
commute:

X′
p′X′

f ′

Q

X X

f
g

p

(That is, f = pg and f ′ = p′g.) We say a category has binary products if every
pair of objects has a product.

The product may not exist, and it may not be unique, but when it exists it is unique up
to a canonical isomorphism. This justifies our speaking of “the” product of objects
X and Y when it exists, and denoting it as X × Y .

The definition of cartesian product, while absolutely fundamental, is a bit scary
at first sight. To illustrate its power, let us do something with it: combine two mor-
phisms f : X → Y and f ′ : X ′ → Y ′ into a single morphism

f × f ′ : X × X ′ → Y × Y ′.

The definition of cartesian product says how to build a morphism of this sort out of
a pair of morphisms: namely, morphisms from X × X ′ to Y and Y ′. If we take these
to be f p and f ′ p′, we obtain f × f ′:

2 Physics, Topology, Logic and Computation 113

X × X

Y Y × Y Y

f p f p

p

f × f

p

Next, let us isolate the special features of the one-element set:

Definition 9 An object 1 in a category C is terminal if for any object Q ∈ C there
exists a unique morphism from Q to 1, which we denote as !Q : Q → 1.

Again, a terminal object may not exist and may not be unique, but it is unique up
to a canonical isomorphism. This is why we can speak of ‘the’ terminal object of a
category, and denote it by a specific symbol, 1.

We have introduced the concept of binary products. One can also talk about n-
ary products for other values of n, but a category with binary products has n-ary
products for all n ≥ 1, since we can construct these as iterated binary products. The
case n = 1 is trivial, since the product of one object is just that object itself (up
to canonical isomorphism). The remaining case is n = 0. The zero-ary product of
objects, if it exists, is just the terminal object. So, we make the following definition:

Definition 10 A category has finite products if it has binary products and a terminal
object.

A category with finite products can always be made into a monoidal category by
choosing a specific product X × Y to be the tensor product X ⊗ Y , and choosing a
specific terminal object to be the unit object. It takes a bit of work to show this! A
monoidal category of this form is called cartesian.

In a cartesian category, we can “duplicate and delete information”. In general,
the definition of cartesian products gives a way to take two morphisms f1 : Q → X
and f2 : Q → Y and combine them into a single morphism from Q to X × Y . If we
take Q = X = Y and take f1 and f2 to be the identity, we obtain the diagonal or
duplication morphism:

ΔX : X → X × X.

In the category Set one can check that this maps any element x ∈ X to the pair
(x, x). In general, we can draw the diagonal as follows:

Δ

X

X X

114 J. Baez and M. Stay

Similarly, we call the unique map to the terminal object

!X : X → 1

the deletion morphism, and draw it as follows:

!

X

Note that we draw the unit object as an empty space.
A fundamental fact about cartesian categories is that duplicating something and

then deleting either copy is the same as doing nothing at all! In string diagrams, this
says:

!

Δ

X

X
X

=

X

=

!

Δ

X

X
X

We leave the proof as an exercise for the reader.
Many of the puzzling features of quantum theory come from the noncartesian-

ness of the usual tensor product in Hilb. For example, in a cartesian category, every
morphism

g

X X′

is actually of the form

X′

f

X

f

2 Physics, Topology, Logic and Computation 115

In the case of Set, this says that every point of the set X × X ′ comes from a point of
X and a point of X ′. In physics, this would say that every state g of the combined
system X ⊗ X ′ is built by combining states of the systems X and X ′. Bell’s theorem
[20] says that is not true in quantum theory. The reason is that quantum theory uses
the noncartesian monoidal category Hilb!

Also, in quantum theory we cannot freely duplicate or delete information. Woot-
ters and Zurek [110] proved a precise theorem to this effect, focused on duplication:
the “no-cloning theorem”. One can also prove a “no-deletion theorem”. Again, these
results rely on the noncartesian tensor product in Hilb.

2.2.4 Braided Monoidal Categories

In physics, there is often a process that lets us “switch” two systems by moving
them around each other. In topology, there is a tangle that describes the process of
switching two points:

In logic, we can switch the order of two statements in a conjunction: the statement
“X and Y ” is isomorphic to “Y and X”. In computation, there is a simple program
that switches the order of two pieces of data. A monoidal category in which we can
do this sort of thing is called “braided”:

Definition 11 A braided monoidal category consists of:

• a monoidal category C ,
• a natural isomorphism called the braiding that assigns to every pair of objects

X, Y ∈ C an isomorphism

bX,Y : X ⊗ Y → Y ⊗ X,

such that the hexagon equations hold:

116 J. Baez and M. Stay

X (Y Z) (X Y) Z (Y X) Z

(Y Z) X Y (Z X) Y (X Z)

(X Y) Z X (Y Z) X (Z Y)

Z (X Y) (Z X) Y (X Z) Y

aX,Y,Z

aX,Y,Z

bX,Y ⊗ 1Z

bX,Y⊗Z

bX⊗Y,Z

1Y ⊗ bX,Z

1X ⊗ bY,Z

bX,Z ⊗ 1Y

⊗

⊗⊗

⊗

⊗ ⊗ ⊗ ⊗⊗⊗

⊗ ⊗ ⊗⊗⊗

⊗ ⊗⊗⊗

⊗ ⊗ ⊗⊗⊗
−1

aX,Z,Y
−1

aY,Z,X

aY,X,Z

aZ,X,Y

−1

The first hexagon equation says that switching the object X past Y ⊗ Z all at once
is the same as switching it past Y and then past Z (with some associators thrown in
to move the parentheses). The second one is similar: it says switching X ⊗ Y past
Z all at once is the same as doing it in two steps.

In string diagrams, we draw the braiding bX,Y : X ⊗ Y → Y ⊗ X like this:

X Y

We draw its inverse b−1
X,Y like this:

YX

This is a nice notation, because it makes the equations saying that bX,Y and b−1
X,Y

are inverses “topologically true”:

X

X

Y

Y

= X Y =

Y

Y

X

X

2 Physics, Topology, Logic and Computation 117

Here are the hexagon equations as string diagrams:

X

X

Y Z

Y Z

=

X Y Z

Y XZ

Z

Z

=

Y ZX

YXZ

⊗

⊗

X Y⊗

X Y⊗

For practice, we urge you to prove the following equations:

f g

X Y

Y′ X′ Y′ X′

=

g f

X Y

ZX Y

XYZ

=

Y ZX

XYZ

118 J. Baez and M. Stay

If you get stuck, here are some hints. The first equation follows from the naturality
of the braiding. The second is called the Yang–Baxter equation and follows from
a combination of naturality and the hexagon equations [61, 62].

Next, here are some examples. There can be many different ways to give a
monoidal category a braiding, or none. However, most of our favorite examples
come with well-known “standard” braidings:

• Any cartesian category automatically becomes braided, and in Set with its carte-
sian product, this standard braiding is given by:

bX,Y : X × Y → Y × X
(x, y) �→ (y, x).

• In Hilb with its usual tensor product, the standard braiding is given by:

bX,Y : X ⊗ Y → Y ⊗ X
x ⊗ y �→ y ⊗ x .

• The monoidal category nCob has a standard braiding where bX,Y is diffeomor-
phic to the disjoint union of cylinders X × [0, 1] and Y × [0, 1]. For 2Cob this
braiding looks as follows when X and Y are circles:

X Y

bX,Y

⊗

Y X⊗

• The monoidal category Tangk has a standard braiding when k ≥ 2. For k = 2
this looks as follows when X and Y are each a single point:

bX,Y

X Y⊗

Y X⊗

2 Physics, Topology, Logic and Computation 119

The example of Tangk illustrates an important pattern. Tang0 is just a category,
because in 0-dimensional space we can only do processes in “series”: that is, com-
pose morphisms. Tang1 is a monoidal category, because in 1-dimensional space we
can also do processes in “parallel”: that is, tensor morphisms. Tang2 is a braided
monoidal category, because in 2-dimensional space there is room to move one
object around another. Next we shall see what happens when space has 3 or more
dimensions!

2.2.5 Symmetric Monoidal Categories

Sometimes switching two objects and switching them again is the same as doing
nothing at all. Indeed, this situation is very familiar. So, the first braided monoidal
categories to be discovered were “symmetric” ones [77]:

Definition 12 A symmetric monoidal category is a braided monoidal category
where the braiding satisfies bX,Y = b−1

Y,X .

So, in a symmetric monoidal category,

X Y

YX

= X Y

or equivalently:

X Y YX

Any cartesian category automatically becomes a symmetric monoidal category,
so Set is symmetric. It is also easy to check that Hilb, nCob are symmetric monoidal
categories. So is Tangk for k ≥ 3.

Interestingly, Tangk “stabilizes” at k = 3: increasing the value of k beyond this
value merely gives a category equivalent to Tang3. The reason is that we can already
untie all knots in 4-dimensional space; adding extra dimensions has no real effect.
In fact, Tangk for k ≥ 3 is equivalent to 1Cob. This is part of a conjectured larger
pattern called the “Periodic Table” of n-categories [14]. A piece of this is shown in
Table 2.3.

An n-category has not only morphisms going between objects, but 2-morphisms
going between morphisms, 3-morphisms going between 2-morphisms and so on up

120 J. Baez and M. Stay

Table 2.3 The periodic table: conjectured descriptions of (n + k)-categories with only one
j-morphism for j < k

n = 0 n = 1 n = 2

k = 0 Sets Categories 2-Categories
k = 1 Monoids Monoidal Monoidal

categories 2-categories
k = 2 Commutative Braided Braided

monoids monoidal monoidal
categories 2-categories

k = 3 ‘’ Symmetric Sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ Symmetric
monoidal
2-categories

k = 5 ‘’ ‘’ ‘’
k = 6 ‘’ ‘’ ‘’

to n-morphisms. In topology we can use n-categories to describe tangled higher-
dimensional surfaces [15], and in physics we can use them to describe not just
particles but also strings and higher-dimensional membranes [14, 16]. The Rosetta
Stone we are describing concerns only the n = 1 column of the Periodic Table. So,
it is probably just a fragment of a larger, still buried n-categorical Rosetta Stone.

2.2.6 Closed Categories

In quantum mechanics, one can encode a linear operator f : X → Y into a quantum
state using a technique called “gate teleportation” [51]. In topology, there is a way
to take any tangle f : X → Y and bend the input back around to make it part of
the output. In logic, we can take a proof that goes from some assumption X to some
conclusion Y and turn it into a proof that goes from no assumptions to the conclusion
“X implies Y ”. In computer science, we can take any program that takes input of
type X and produces output of type Y , and think of it as a piece of data of a new
type: a “function type”. The underlying concept that unifies all these examples is
the concept of a ‘closed category’.

Given objects X and Y in any category C , there is a set of morphisms from X
to Y , denoted hom(X, Y). In a closed category there is also an object of morphisms
from X to Y , which we denote by X � Y . (Many other notations are also used.) In
this situation we speak of an “internal hom”, since the object X � Y lives inside
C , instead of “outside”, in the category of sets.

Closed categories were introduced in 1966, by Eilenberg and Kelly [41]. While
these authors were able to define a closed structure for any category, it turns out that
the internal hom is most easily understood for monoidal categories. The reason is
that when our category has a tensor product, it is closed precisely when morphisms
from X ⊗ Y to Z are in natural one-to-one correspondence with morphisms from Y
to X � Z . In other words, it is closed when we have a natural isomorphism

2 Physics, Topology, Logic and Computation 121

hom(X ⊗ Y, Z) ∼= hom(Y, X � Z)

f �→ f̃

For example, in the category Set, if we take X ⊗Y to be the cartesian product X ×Y ,
then X � Z is just the set of functions from X to Z , and we have a one-to-one
correspondence between

• functions f that eat elements of X × Y and spit out elements of Z

and

• functions f̃ that eat elements of Y and spit out functions from X to Z .

This correspondence goes as follows:

f̃ (x)(y) = f (x, y).

Before considering other examples, we should make the definition of “closed
monoidal category” completely precise. For this we must note that for any category
C , there is a functor

hom : Cop × C → Set.

Definition 13 The opposite category Cop of a category C has the same objects as
C , but a morphism f : x → y in Cop is a morphism f : y → x in C , and the
composite g f in Cop is the composite f g in C .

Definition 14 For any category C , the hom functor

hom : Cop × C → Set

sends any object (X, Y) ∈ Cop × C to the set hom(X, Y), and sends any morphism
(f, g) ∈ Cop × C to the function

hom(f, g) : hom(X, Y) → hom(X ′, Y ′)
h �→ gh f

when f : X ′ → X and g : Y → Y ′ are morphisms in C .

Definition 15 A monoidal category C is left closed if there is an internal hom
functor

� : Cop × C → C

together with a natural isomorphism c called currying that assigns to any objects
X, Y, Z ∈ C a bijection

cX,Y,Z : hom(X ⊗ Y, Z)
∼−→ hom(X, Y � Z)

122 J. Baez and M. Stay

It is right closed if there is an internal hom functor as above and a natural isomor-
phism

cX,Y,Z : hom(X ⊗ Y, Z)
∼−→ hom(Y, X � Z).

The term “currying” is mainly used in computer science, after the work of Curry
[36, 37]. In the rest of this section we only consider right closed monoidal cate-
gories. Luckily, there is no real difference between left and right closed for a braided
monoidal category, as the braiding gives an isomorphism X ⊗ Y ∼= Y ⊗ X .

All our examples of monoidal categories are closed, but we shall see that, yet
again, Set is different from the rest:

• The cartesian category Set is closed, where X � Y is just the set of functions
from X to Y . In Set or any other cartesian closed category, the internal hom
X � Y is usually denoted Y X . To minimize the number of different notations
and emphasize analogies between different contexts, we shall not do this: we
shall always use X � Y . To treat Set as left closed, we define the curried version
of f : X × Y → Z as above:

f̃ (x)(y) = f (x, y).

To treat it as right closed, we instead define it by

f̃ (y)(x) = f (x, y).

This looks a bit awkward, but it will be nice for string diagrams.
• The symmetric monoidal category Hilb with its usual tensor product is closed,

where X � Y is the set of linear operators from X to Y , made into a Hilbert
space in a standard way. In this case we have an isomorphism

X � Y ∼= X∗ ⊗ Y

where X∗ is the dual of the Hilbert space X , that is, the set of linear operators
f : X → C, made into a Hilbert space in the usual way.

• The monoidal category Tangk (k ≥ 1) is closed. As with Hilb, we have

X � Y ∼= X∗ ⊗ Y

where X∗ is the orientation-reversed version of X .
• The symmetric monoidal category nCob is also closed; again

X � Y ∼= X∗ ⊗ Y

where X∗ is the (n − 1)-manifold X with its orientation reversed.

Except for Set, all these examples are actually “compact”. This basically means
that X � Y is isomorphic to X∗ ⊗ Y , where X∗ is some object called the “dual”

2 Physics, Topology, Logic and Computation 123

of X . But to make this precise, we need to define the ‘dual’ of an object in an arbi-
trary monoidal category.

To do this, let us generalize from the case of Hilb. As already mentioned, each
object X ∈ Hilb has a dual X∗ consisting of all linear operators f : X → I , where
the unit object I is just C. There is thus a linear operator

eX : X ⊗ X∗ → I
x ⊗ f �→ f (x)

called the counit of X . Furthermore, the space of all linear operators from X to
Y ∈ Hilb can be identified with X∗ ⊗ Y . So, there is also a linear operator called the
unit of X :

iX : I → X∗ ⊗ X
c �→ c 1X

sending any complex number c to the corresponding multiple of the identity
operator.

The significance of the unit and counit become clearer if we borrow some ideas
from Feynman. In physics, if X is the Hilbert space of internal states of some parti-
cle, X∗ is the Hilbert space for the corresponding antiparticle. Feynman realized that
it is enlightening to think of antiparticles as particles going backwards in time. So,
we draw a wire labelled by X∗ as a wire labelled by X , but with an arrow pointing
‘backwards in time’: that is, up instead of down:

X* = X

(Here we should admit that most physicists use the opposite convention, where time
marches up the page. Since we read from top to bottom, we prefer to let time run
down the page.)

If we draw X∗ as X going backwards in time, we can draw the unit as a cap:

X X

and the counit as a cup:

X X

In Feynman diagrams, these describe the creation and annihilation of virtual
particle-antiparticle pairs!

124 J. Baez and M. Stay

It then turns out that the unit and counit satisfy two equations, the zig-zag
equations:

X

X

X

X

X

X

Verifying these is a fun exercise in linear algebra, which we leave to the reader. If we
write these equations as commutative diagrams, we need to include some associators
and unitors, and they become a bit intimidating:

X I X (X ∗ X) (X X∗) X

X I X

I X∗ (X∗ X) X∗ X∗ (X X∗)

X∗ X∗ I

eX⊗1X

1X∗⊗eX

1X⊗iX

iX⊗1X

rX

aX,X∗,X
−1

rX∗

lX

lX

aX∗,X,X∗

⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗

⊗ ⊗ ⊗⊗

⊗

But, they really just say that zig-zags in string diagrams can be straightened out.
This is particularly vivid in examples like Tangk and nCob. For example, in

2Cob, taking X to be the circle, the unit looks like this:

iX

I

X∗ X⊗

2 Physics, Topology, Logic and Computation 125

while the counit looks like this:

eX

X X∗

I

⊗

In this case, the zig-zag identities say we can straighten a wiggly piece of pipe.
Now we are ready for some definitions:

Definition 16 Given objects X∗ and X in a monoidal category, we call X∗ a right
dual of X , and X a left dual of X∗, if there are morphisms

iX : I → X∗ ⊗ X

and

eX : X ⊗ X∗ → I,

called the unit and counit respectively, satisfying the zig-zag equations.

One can show that the left or right dual of an object is unique up to canonical
isomorphism. So, we usually speak of “the” right or left dual of an object, when
it exists.

Definition 17 A monoidal category C is compact if every object X ∈ C has both a
left dual and a right dual.

Often the term “autonomous” is used instead of “compact” here. Many authors
reserve the term “compact” for the case where C is symmetric or at least braided;
then left duals are the same as right duals, and things simplify [46]. To add to the
confusion, compact symmetric monoidal categories are often called simply “com-
pact closed categories”.

A partial explanation for the last piece of terminology is that any compact
monoidal category is automatically closed! For this, we define the internal hom on
objects by

X � Y = X∗ ⊗ Y.

We must then show that the ∗ operation extends naturally to a functor ∗: C →
C , so that � is actually a functor. Finally, we must check that there is a natural
isomorphism

hom(X ⊗ Y, Z) ∼= hom(Y, X∗ ⊗ Z)

126 J. Baez and M. Stay

In terms of string diagrams, this isomorphism takes any morphism

f

X Y

Z

and bends back the input wire labelled X to make it an output:

f

X

Y

Z

Now, in a compact monoidal category, we have:

X Z = X Z

But in general, closed monoidal categories don’t allow arrows pointing up! So for
these, drawing the internal hom is more of a challenge. We can use the same style of
notation as long as we add a decoration—a clasp—that binds two strings together:

X Z := X Z

Only when our closed monoidal category happens to be compact can we eliminate
the clasp.

Suppose we are working in a closed monoidal category. Since we draw a mor-
phism f : X ⊗ Y → Z like this:

f

X Y

Z

2 Physics, Topology, Logic and Computation 127

we can draw its curried version f̃ : Y → X � Z by bending down the input wire
labelled X to make it part of the output:

f

X

Y

Z

Note that where we bent back the wire labelled X , a cap like this appeared:

X X

Closed monoidal categories don’t really have a cap unless they are compact. So, we
drew a bubble enclosing f and the cap, to keep us from doing any illegal manipu-
lations. In the compact case, both the bubble and the clasp are unnecessary, so we
can draw f̃ like this:

f

X

Y

Z

An important special case of currying gives the name of a morphism f : X → Y ,

�f � : I → X � Y.

This is obtained by currying the morphism

f rx : I ⊗ X → Y.

In string diagrams, we draw �f � as follows:

f

X
Y

128 J. Baez and M. Stay

In the category Set, the unit object is the one-element set, 1. So, a morphism from
this object to a set Q picks out a point of Q. In particular, the name �f � : 1 → X �
Y picks out the element of X � Y corresponding to the function f : X → Y . More
generally, in any cartesian closed category the unit object is the terminal object 1,
and a morphism from 1 to an object Q is called a point of Q. So, even in this case,
we can say the name of a morphism f : X → Y is a point of X � Y .

Something similar works for Hilb, though this example is compact rather than
cartesian. In Hilb, the unit object I is just C. So, a nonzero morphism from I to any
Hilbert space Q picks out a nonzero vector in Q, which we can normalize to obtain
a state in Q: that is, a unit vector. In particular, the name of a nonzero morphism
f : X → Y gives a state of X∗ ⊗ Y . This method of encoding operators as states is
the basis of “gate teleportation” [51].

Currying is a bijection, so we can also uncurry:

c−1
X,Y,Z : hom(Y, X � Z)

∼−→ hom(X ⊗ Y, Z)

g �→ g
˜
.

Since we draw a morphism g : Y → X � Z like this:

g

X

Y

Z

we draw its “uncurried” version g
˜

: X ⊗ Y → Z by bending the output X up to
become an input:

gX

Y

Z

Again, we must put a bubble around the “cup” formed when we bend down the wire
labelled Y , unless we are in a compact monoidal category.

A good example of uncurrying is the evaluation morphism:

evX,Y : X ⊗ (X � Y) → Y.

2 Physics, Topology, Logic and Computation 129

This is obtained by uncurrying the identity

1X�Y : (X � Y) → (X � Y).

In Set, evX,Y takes any function from X to Y and evaluates it at any element of X
to give an element of Y . In terms of string diagrams, the evaluation morphism looks
like this:

ev

X
X

Y

Y

=

X
X

Y

Y

In any closed monoidal category, we can recover a morphism from its name using
evaluation. More precisely, this diagram commutes:

X I X

X (X Y) Y

1X⊗ f

r−1

f

evX,Y

⊗

⊗

Or, in terms of string diagrams:

f

X
X

Y

Y

= f

X

Y

We leave the proof of this as an exercise. In general, one must use the naturality of
currying. In the special case of a compact monoidal category, there is a nice picture
proof! Simply pop the bubbles and remove the clasp:

130 J. Baez and M. Stay

f

X
X

Y

Y

= f

X

Y

The result then follows from one of the zig-zag identities.
In our rapid introduction to string diagrams, we have not had time to illustrate

how these diagrams become a powerful tool for solving concrete problems. So, here
are some starting points for further study:

• Representations of Lie groups play a fundamental role in quantum physics, espe-
cially gauge field theory. Every Lie group has a compact symmetric monoidal
category of finite-dimensional representations. In his book Group Theory, Cvi-
tanovic [38] develops detailed string diagram descriptions of these representation
categories for the classical Lie groups SU(n), SO(n), SU(n) and also the more
exotic “exceptional” Lie groups. His book also illustrates how this technology
can be used to simplify difficult calculations in gauge field theory.

• Quantum groups are a generalization of groups which show up in 2d and
3d physics. The big difference is that a quantum group has compact braided
monoidal category of finite-dimensional representations. Kauffman’s Knots and
Physics [65] is an excellent introduction to how quantum groups show up in
knot theory and physics; it is packed with string diagrams. For more details on
quantum groups and braided monoidal categories, see the book by Kassel [64].

• Kauffman and Lins [66] have written a beautiful string diagram treatment of the
category of representations of the simplest quantum group, SUq(2). They also
use it to construct some famous 3-manifold invariants associated to 3d and 4d
topological quantum field theories: the Witten–Reshetikhin–Turaev, Turaev–Viro
and Crane–Yetter invariants. In this example, string diagrams are often called
“q-deformed spin networks” [101]. For generalizations to other quantum groups,
see the more advanced texts by Turaev [107] and by Bakalov and Kirillov [17].
The key ingredient is a special class of compact braided monoidal categories
called “modular tensor categories”.

• Kock [70] has written a nice introduction to 2d topological quantum field theories
which uses diagrammatic methods to work with 2Cob.

• Abramsky, Coecke and collaborators [2–4, 31, 33, 34] have developed string dia-
grams as a tool for understanding quantum computation. The easiest introduction
is Coecke’s “Kindergarten quantum mechanics” [32].

2 Physics, Topology, Logic and Computation 131

2.2.7 Dagger Categories

Our discussion would be sadly incomplete without an important admission: nothing
we have done so far with Hilbert spaces used the inner product! So, we have not yet
touched on the essence of quantum theory.

Everything we have said about Hilb applies equally well to Vect: the category of
finite-dimensional vector spaces and linear operators. Both Hilb and Vect are com-
pact symmetric monoidal categories. In fact, these compact symmetric monoidal
categories are “equivalent” in a certain precise sense [78].

So, what makes Hilb different? In terms of category theory, the special thing is
that we can take the Hilbert space adjoint of any linear operator f : X → Y between
finite-dimensional Hilbert spaces, getting an operator f † : Y → X . This ability to
‘reverse’ morphisms makes Hilb into a ‘dagger category’:

Definition 18 A dagger category is a category C such that for any morphism
f : X → Y in C there is a specified morphism f † : Y → X such that

(g f)† = f †g†

for every pair of composable morphisms f and g, and

(f †)† = f

for every morphism f .

Equivalently, a dagger category is one equipped with a functor † : C → Cop that is
the identity on objects and satisfies (f †)† = f for every morphism.

In fact, all our favorite examples of categories can be made into dagger cate-
gories, except for Set:

• There is no way to make Set into a dagger category, since there is a function from
the empty set to the 1-element set, but none the other way around.

• The category Hilb becomes a dagger category as follows. Given any morphism
f : X → Y in Hilb, there is a morphism f † : Y → X , the Hilbert space adjoint
of f , defined by

〈 f †ψ, φ〉 = 〈ψ, f φ〉

for all φ ∈ X , ψ ∈ Y .
• For any k, the category Tangk becomes a dagger category where we obtain

f † : Y → X by reflecting f : X → Y in the vertical direction, and then switching
the direction of the little arrows denoting the orientations of arcs and circles.

• For any n, the category nCob becomes a dagger category where we obtain
f † : Y → X by switching the input and output of f : X → Y , and then switching
the orientation of each connected component of f . Again, a picture speaks a
thousand words:

132 J. Baez and M. Stay

X

Y

f

Y

X

f †

In applications to physics, this dagger operation amounts to “switching the future
and the past”.

In all the dagger categories above, the dagger structure interacts in a nice way
with the monoidal structure and also, when it exists, the braiding. One can write a
list of axioms characterizing how this works [2, 3, 97]. So, it seems that the ability to
“reverse” morphisms is another way in which categories of a quantum flavor differ
from the category of sets and functions. This has important implications for the
foundations of quantum theory [12] and also for topological quantum field theory
[14], where dagger categories seem to be part of larger story involving “n-categories
with duals” [15]. However, this story is still poorly understood—there is much more
work to be done.

2.3 Logic

2.3.1 Background

Symmetric monoidal closed categories show up not only in physics and topology,
but also in logic. We would like to explain how. To set the stage, it seems worthwhile
to sketch a few ideas from twentieth-century logic.

Modern logicians study many systems of reasoning beside ordinary classical
logic. Of course, even classical logic comes in various degrees of strength. First
there is the “propositional calculus”, which allows us to reason with abstract propo-
sitions X, Y, Z , . . . and these logical connectives:

and ∧
or ∨

implies ⇒
not ¬
true �
false ⊥

Then there is the “predicate calculus”, which also allows variables like x, y, z, . . . ,
predicates like P(x) and Q(x, y, z), and the symbols “for all” (∀) and “there exists”
(∃), which allow us to quantify over variables. There are also higher-order systems
that allow us to quantify over predicates, and so on. To keep things simple, we

2 Physics, Topology, Logic and Computation 133

mainly confine ourselves to the propositional calculus in what follows. But even
here, there are many alternatives to the “classical” version!

The most-studied of these alternative systems are weaker than classical logic:
they make it harder or even impossible to prove things we normally take for granted.
One reason is that some logicians deny that certain familiar principles are actually
valid. But there are also subtler reasons. One is that studying systems with rules
of lesser strength allows for a fine-grained study of precisely which methods of
reasoning are needed to prove which results. Another reason—the one that concerns
us most here—is that dropping familiar rules and then adding them back in one at
at time sheds light on the connection between logic and category theory.

For example, around 1907 Brouwer [53] began advocating “intuitionism”. As
part of this, he raised doubts about the law of excluded middle, which amounts to a
rule saying that from ¬¬X we can deduce X . One problem with this principle is that
proofs using it are not “constructive”. For example, we may prove by contradiction
that some equation has a solution, but still have no clue how to construct the solution.
For Brouwer, this meant the principle was invalid.

Anyone who feels the law of excluded middle is invalid is duty-bound to study
intuitionistic logic. But, there is another reason for studying this system. Namely:
we do not really lose anything by dropping the law of excluded middle! Instead,
we gain a fine-grained distinction: the distinction between a direct proof of X and
a proof by contradiction, which yields merely ¬¬X . If we do not care about this
distinction we are free to ignore it, but there is no harm in having it around.

In the 1930’s, this idea was made precise by Gödel [49] and Gentzen [104]. They
showed that we can embed classical logic in intuitionistic logic. In fact, they found
a map sending any formula X of the propositional calculus to a new formula X◦,
such that X is provable classically if and only if X◦ is provable intuitionistically.
(More impressively, this map also works for the predicate calculus.)

Later, yet another reason for being interested in intuitionistic logic became appar-
ent: its connection to category theory. In its very simplest form, this connection
works as follows. Suppose we have a set of propositions X, Y, Z , . . . obeying the
laws of the intuitionistic propositional calculus. We can create a category C where
these propositions are objects and there is at most one morphism from any object X
to any object Y : a single morphism when X implies Y , and none otherwise!

A category with at most one morphism from any object to any other is called
a preorder. In the propositional calculus, we often treat two propositions as equal
when they both imply each other. If we do this, we get a special sort of preorder: one
where isomorphic objects are automatically equal. This special sort of preorder is
called a partially ordered set, or poset for short. Posets abound in logic, precisely
because they offer a simple framework for understanding implication.

If we start from a set of propositions obeying the intuitionistic propositional cal-
culus, the resulting category C is better than a mere poset. It is also cartesian, with
X ∧Y as the product of X and Y , and � as the terminal object! To see this, note that
any proposition Q has a unique morphism to X ∧Y whenever it has morphisms to X
and to Y . This is simply a fancy way of saying that Q implies X ∧Y when it implies
X and implies Y . It is also easy to see that � is terminal: anything implies the truth.

134 J. Baez and M. Stay

Even better, the category C is cartesian closed, with X ⇒ Y as the internal hom.
The reason is that

X ∧ Y implies Z iff Y implies X ⇒ Z .

This automatically yields the basic property of the internal hom:

hom(X ⊗ Y, Z) ∼= hom(Y, X � Z).

Indeed, if the reader is puzzled by the difference between “X implies Y ” and X ⇒
Y , we can now explain this more clearly: the former involves the homset hom(X, Y)

(which has one element when X implies Y and none otherwise), while the latter is
the internal hom, an object in C .

So, C is a cartesian closed poset. But, it also has one more nice property, thanks to
the presence of ∨ and ⊥ We have seen that ∧ and � make the category C cartesian;
∨ and ⊥ satisfy exactly analogous rules, but with the implications turned around, so
they make Cop cartesian.

And that is all! In particular, negation gives nothing more, since we can define
¬X to be X ⇒ ⊥, and all its intuitionistically valid properties then follow. So,
the kind of category we get from the intuitionistic propositional calculus by tak-
ing propositions as objects and implications as morphisms is precisely a Heyting
algebra: a cartesian closed poset C such that Cop is also cartesian.

Heyting, a student of Brouwer, introduced Heyting algebras in intuitionistic logic
before categories were even invented. So, he used very different language to define
them. But, the category-theoretic approach to Heyting algebras illustrates the con-
nection between cartesian closed categories and logic. It also gives more evidence
that dropping the law of excluded middle is an interesting thing to try.

Since we have explained the basics of cartesian closed categories, but not said
what happens when the opposite of such a category is also cartesian, in the sections
to come we will take a drastic step and limit our discussion of logic even further.
We will neglect ∨ and ⊥, and concentrate only on the fragment of the propositional
calculus involving ∧, � and ⇒.

Even here, it turns out, there are interesting things to say—and interesting ways
to modify the usual rules. This will be the main subject of the sections to come. But
to set the stage, we need to say a bit about proof theory.

Proof theory is the branch of mathematical logic that treats proofs as mathe-
matical entities worthy of study in their own right. It lets us dig deeper into the
propositional calculus by studying not merely whether or not some assumption X
implies some conclusion Y , but the whole set of proofs leading from X to Y . This
amounts to studying not just posets (or preorders), but categories that allow many
morphisms from one object to another.

In Hilbert’s approach to proof, there were many axioms and just one rule to
deduce new theorems: modus ponens, which says that from X and “X implies Y ”
we can deduce Y . Most of modern proof theory focuses on another approach, the

2 Physics, Topology, Logic and Computation 135

“sequent calculus”, due to Gentzen [104]. In this approach there are few axioms but
many inference rules.

An excellent introduction to the sequent calculus is the book Proofs and Types
by Girard, Lafont and Taylor, freely available online [48]. Here we shall content
ourselves with some sketchy remarks. A “sequent” is something like this:

X1, . . . , Xm � Y1, . . . , Yn

where Xi and Yi are propositions. We read this sequent as saying that all the propo-
sitions Xi , taken together, can be used to prove at least one of the propositions Yi .
This strange-sounding convention gives the sequent calculus a nice symmetry, as we
shall soon see.

In the sequent calculus, an “inference rule” is something that produces new
sequents from old. For example, here is the left weakening rule:

X1, . . . , Xm � Y1, . . . , Yn

X1, . . . , Xm, A � Y1, . . . , Yn

This says that from the sequent above the line we can get the sequent below the
line: we can throw in the extra assumption A without harm. Thanks to the strange-
sounding convention we mentioned, this rule has a mirror-image version called
right weakening:

X1, . . . , Xm � Y1, . . . , Yn

X1, . . . , Xm � Y1, . . . , Yn, A

In fact, Gentzen’s whole setup has this mirror symmetry! For example, his rule
called left contraction:

X1, . . . , Xm, A, A � Y1, . . . , Yn

X1, . . . , Xm, A � Y1, . . . , Yn

has a mirror partner called right contraction:

X1, . . . , Xm � Y1, . . . , Yn, A, A
X1, . . . , Xm � Y1, . . . , Yn, A

Similarly, this rule for “and”

X1, . . . , Xm, A � Y1, . . . , Yn

X1, . . . , Xm, A ∧ B � Y1, . . . , Yn

has a mirror partner for “or”:

X1, . . . , Xm � Y1, . . . , Yn, A
X1, . . . , Xm � Y1, . . . , Yn, A ∨ B

136 J. Baez and M. Stay

Logicians now realize that this mirror symmetry can be understood in terms of the
duality between a category and its opposite.

Gentzen used sequents to write inference rules for the classical propositional
calculus, and also the classical predicate calculus. Now, in these forms of logic we
have

X1, . . . , Xm � Y1, . . . , Yn

if and only if we have

X1 ∧ · · · ∧ Xm � Y1 ∨ · · · ∨ Yn .

So, why did Gentzen use sequents with a list of propositions on each side of the �
symbol, instead just a single proposition? The reason is that this let him use only
inference rules having the “subformula property”. This says that every proposition
in the sequent above the line appears as part of some proposition in the sequent
below the line. So, a proof built from such inference rules becomes a “tree” where
all the propositions further up the tree are subformulas of those below.

This idea has powerful consequences. For example, in 1936 Gentzen was able
prove the consistency of Peano’s axioms of arithmetic! His proof essentially used
induction on trees (Readers familiar with Gödel’s second incompleteness theorem
should be reassured that this sort of induction cannot itself be carried out in Peano
arithmetic.)

The most famous rule lacking the subformula property is the ‘cut rule’:

X1, . . . , Xm � Y1, . . . , Yk, A Xm+1, . . . , Xn, A � Yk+1, . . . , Y�

X1, . . . , Xn � Y1, . . . , Y�

From the two sequents on top, the cut rule gives us the sequent below. Note that the
intermediate step A does not appear in the sequent below. It is “cut out”. So, the cut
rule lacks the subformula property. But, one of Gentzen’s great achievements was
to show that any proof in the classical propositional (or even predicate) calculus
that can be done with the cut rule can also be done without it. This is called ‘cut
elimination’.

Gentzen also wrote down inference rules suitable for the intuitionistic proposi-
tional and predicate calculi. These rules lack the mirror symmetry of the classical
case. But in the 1980s, this symmetry was restored by Girard’s invention of “linear
logic” [47].

Linear logic lets us keep track of how many times we use a given premise to
reach a given conclusion. To accomplish this, Girard introduced some new logical
connectives! For starters, he introduced ‘linear’ connectives called ⊗ and �, and
a logical constant called I . These act a bit like ∧, ⇒ and �. However, they satisfy
rules corresponding to a symmetric monoidal category instead of a cartesian closed
category. In particular, from X we can prove neither X ⊗ X nor I . So, we cannot
freely “duplicate” and “delete” propositions using these new connectives. This is

2 Physics, Topology, Logic and Computation 137

reflected in the fact that linear logic drops Gentzen’s contraction and weakening
rules.

By itself, this might seem unbearably restrictive. However, Girard also kept the
connectives ∧, ⇒ and � in his system, still satisfying the usual rules. And, he
introduced an operation called the “exponential”, !, which takes a proposition X and
turns it into an “arbitrary stock of copies of X”. So, for example, from !X we can
prove 1, and X , and X ⊗ X , and X ⊗ X ⊗ X , and so on.

Full-fledged linear logic has even more connectives than we have described here.
It seems baroque and peculiar at first glance. It also comes in both classical and
intuitionistic versions! But, just as classical logic can be embedded in intuitionistic
logic, intuitionistic logic can be embedded in intuitionistic linear logic [47]. So, we
do not lose any deductive power. Instead, we gain the ability to make even more
fine-grained distinctions.

In what follows, we discuss the fragment of intuitionistic linear logic involving
only ⊗,� and I . This is called “multiplicative intuititionistic linear logic” [52,
91]. It turns out to be the system of logic suitable for closed symmetric monoidal
categories—nothing more or less.

2.3.2 Proofs as Morphisms

In Sect. 2.2 we described categories with various amounts of extra structure, starting
from categories pure and simple, and working our way up to monoidal categories,
braided monoidal categories, symmetric monoidal categories, and so on. Our treat-
ment only scratched the surface of an enormously rich taxonomy. In fact, each kind
of category with extra structure corresponds to a system of logic with its own infer-
ence rules!

To see this, we will think of propositions as objects in some category, and proofs
as giving morphisms. Suppose X and Y are propositions. Then, we can think of a
proof starting from the assumption X and leading to the conclusion Y as giving a
morphism f : X → Y . (In Sect. 2.3.3 we shall see that a morphism is actually an
equivalence class of proofs—but for now let us gloss over this issue.)

Let us write X � Y when, starting from the assumption X , there is a proof
leading to the conclusion Y . An inference rule is a way to get new proofs from old.
For example, in almost every system of logic, if there is a proof leading from X to
Y , and a proof leading from Y to Z , then there is a proof leading from X to Z . We
write this inference rule as follows:

X � Y Y � Z
X � Z

We can call this cut rule, since it lets us “cut out” the intermediate step Y . It is a spe-
cial case of Gentzen’s cut rule, mentioned in the previous section. It should remind
us of composition of morphisms in a category: if we have a morphism f : X → Y
and a morphism g : Y → Z , we get a morphism g f : X → Z .

138 J. Baez and M. Stay

Also, in almost every system of logic there is a proof leading from X to X . We can
write this as an inference rule that starts with nothing and concludes the existence
of a proof of X from X :

X � X

This rule should remind us of how every object in category has an identity mor-
phism: for any object X , we automatically get a morphism 1X : X → X . Indeed,
this rule is sometimes called the identity rule.

If we pursue this line of thought, we can take the definition of a closed symmetric
monoidal category and extract a collection of inference rules. Each rule is a way to
get new morphisms from old in a closed symmetric monoidal category. There are
various superficially different but ultimately equivalent ways to list these rules. Here
is one:

X � X (i)
X � Y Y � Z

X � Z
(◦)

W � X Y � Z
W ⊗ Y � X ⊗ Z

(⊗)
W � (X ⊗ Y) ⊗ Z

W � X ⊗ (Y ⊗ Z)
(a)

X � I ⊗ Y

X � Y
(l)

X � Y ⊗ I

X � Y
(r)

W � X ⊗ Y

W � Y ⊗ X
(b)

X ⊗ Y � Z

Y � X � Z
(c)

Double lines mean that the inverse rule also holds. We have given each rule a name,
written to the right in parentheses. As already explained, rules (i) and (◦) come from
the presence of identity morphisms and composition in any category. Rules (⊗),
(a), (l), and (r) come from tensoring, the associator, and the left and right unitors
in a monoidal category. Rule (b) comes from the braiding in a braided monoidal
category, and rule (c) comes from currying in a closed monoidal category.

Now for the big question: what does all this mean in terms of logic? These rules
describe a small fragment of the propositional calculus. To see this, we should read
the connective ⊗ as “and”, the connective � as “implies”, and the proposition I as
“true”.

In this interpretation, rule (c) says we can turn a proof leading from the assump-
tion “Y and X” to the conclusion Z into a proof leading from X to “Y implies Z”.
It also says we can do the reverse. This is true in classical, intuitionistic and linear
logic, and so are all the other rules. Rules (a) and (b) say that “and” is associative
and commutative. Rule (l) says that any proof leading from the assumption X to the
conclusion “true and Y ” can be converted to a proof leading from X to Y , and vice
versa. Rule (r) is similar.

What do we do with these rules? We use them to build “deductions”. Here is an
easy example:

2 Physics, Topology, Logic and Computation 139

(i)
X � Y � X � Y

(c−1)
X ⊗ (X � Y) � Y

First we use the identity rule, and then the inverse of the currying rule. At the end,
we obtain

X ⊗ (X � Y) � Y.

This should remind us of the evaluation morphisms we have in a closed monoidal
category:

evX,Y : X ⊗ (X � Y) → Y.

In terms of logic, the point is that we can prove Y from X and “X implies Y ”. This
fact comes in handy so often that we may wish to abbreviate the above deduction as
an extra inference rule—a rule derived from our basic list:

(ev)
X ⊗ (X � Y) � Y

This rule is called modus ponens.
In general, a deduction is a tree built from inference rules. Branches arise when

we use the (◦) or (⊗) rules. Here is an example:

(i)
(A ⊗ B) ⊗ C � (A ⊗ B) ⊗ C

(a)
(A ⊗ B) ⊗ C � A ⊗ (B ⊗ C) A ⊗ (B ⊗ C) � D

(◦)
(A ⊗ B) ⊗ C � D

Again we can abbreviate this deduction as a derived rule. In fact, this rule is
reversible:

A ⊗ (B ⊗ C) � D
(α)

(A ⊗ B) ⊗ C � D

For a more substantial example, suppose we want to show

(X � Y) ⊗ (Y � Z) � X � Z .

The deduction leading to this will not even fit on the page unless we use our abbre-
viations:

(ev)
X ⊗ (X � Y) � Y

(i)
Y � Z � Y � Z

(⊗)
(X ⊗ (X � Y)) ⊗ (Y � Z) � Y ⊗ (Y � Z)

(ev)
Y ⊗ (Y � Z) � Z

(X ⊗ (X � Y)) ⊗ (Y � Z) � Z
(α−1)

X ⊗ ((X � Y) ⊗ (Y � Z)) � Z
(c)

(X � Y) ⊗ (Y � Z) � X � Z

140 J. Baez and M. Stay

Since each of the rules used in this deduction came from a way to get new mor-
phisms from old in a closed monoidal category (we never used the braiding), it
follows that in every such category we have internal composition morphisms:

•X,Y,Z : (X � Y) ⊗ (Y � Z) → X � Z .

These play the same role for the internal hom that ordinary composition

◦: hom(X, Y) × hom(Y, Z) → hom(X, Z)

plays for the ordinary hom.
We can go ahead making further deductions in this system of logic, but the really

interesting thing is what it omits. For starters, it omits the connective “or” and the
proposition “false”. It also omits two inference rules we normally take for granted—
namely, contraction:

X � Y
(Δ)

X � Y ⊗ Y

and weakening:

X � Y
(!)

X � I

which are closely related to duplication and deletion in a cartesian category. Omit-
ting these rules is a distinctive feature of linear logic [47]. The word “linear” should
remind us of the category Hilb. As noted in Sect. 2.2.3, this category with its usual
tensor product is noncartesian, so it does not permit duplication and deletion. But,
what does omitting these rules mean in terms of logic?

Ordinary logic deals with propositions, so we have been thinking of the above
system of logic in the same way. Linear logic deals not just with propositions, but
also other resources—for example, physical things! Unlike propositions in ordinary
logic, we typically can’t duplicate or delete these other resources. In classical logic,
if we know that a proposition X is true, we can use X as many or as few times as
we like when trying to prove some proposition Y . But if we have a cup of milk, we
can’t use it to make cake and then use it again to make butter. Nor can we make it
disappear without a trace: even if we pour it down the drain, it must go somewhere.

In fact, these ideas are familiar in chemistry. Consider the following resources:

H2 = one molecule of hydrogen
O2 = one molecule of oxygen

H2 O = one molecule of water

We can burn hydrogen, combining one molecule of oxygen with two of hydrogen to
obtain two molecules of water. A category theorist might describe this reaction as a
morphism:

2 Physics, Topology, Logic and Computation 141

f : O2 ⊗ (H2 ⊗ H2) → H2 O ⊗ H2 O.

A linear logician might write:

O2 ⊗ (H2 ⊗ H2) � H2 O ⊗ H2 O

to indicate the existence of such a morphism. But, we cannot duplicate or delete
molecules, so for example

H2
�H2 ⊗ H2

and

H2
�I

where I is the unit for the tensor product: not iodine, but “no molecules at all”.
In short, ordinary chemical reactions are morphisms in a symmetric monoidal

category where objects are collections of molecules. As chemists normally conceive
of it, this category is not closed. So, it obeys an even more limited system of logic
than the one we have been discussing, a system lacking the connective �. To get
a closed category—in fact a compact one—we need to remember one of the great
discoveries of twentieth-century physics: antimatter. This lets us define Y � Z to
be “anti-Y and Z”:

Y � Z = Y ∗ ⊗ Z .

Then the currying rule holds:

Y ⊗ X � Z

X � Y ∗ ⊗ Z

Most chemists don’t think about antimatter very often—but particle physicists do.
They don’t use the notation of linear logic or category theory, but they know per-
fectly well that since a neutrino and a neutron can collide and turn into a proton and
an electron:

ν ⊗ n � p ⊗ e,

then a neutron can turn into a antineutrino together with a proton and an electron:

n � ν∗ ⊗ (p ⊗ e).

This is an instance of the currying rule, rule (c).

142 J. Baez and M. Stay

2.3.3 Logical Theories from Categories

We have sketched how different systems of logic naturally arise from different types
of categories. To illustrate this idea, we introduced a system of logic with inference
rules coming from ways to get new morphisms from old in a closed symmetric
monoidal category. One could substitute many other types of categories here, and
get other systems of logic.

To tighten the connection between proof theory and category theory, we shall
now describe a recipe to get a logical theory from any closed symmetric monoidal
category. For this, we shall now use X � Y to denote the set of proofs—or actually,
equivalence classes of proofs—leading from the assumption X to the conclusion Y .
This is a change of viewpoint. Previously we would write X � Y when this set of
proofs was nonempty; otherwise we would write X
 �Y . The advantage of treating
X � Y as a set is that this set is precisely what a category theorist would call
hom(X, Y): a homset in a category.

If we let X � Y stand for a homset, an inference rule becomes a function from a
product of homsets to a single homset. For example, the cut rule

X � Y Y � Z
(◦)

X � Z

becomes another way of talking about the composition function

◦X,Y,Z : hom(X, Y) × hom(Y, Z) → hom(X, Z),

while the identity rule

(i)
X � X

becomes another way of talking about the function

iX : 1 → hom(X, X)

that sends the single element of the set 1 to the identity morphism of X . (Note: the
set 1 is a zero-fold product of homsets.)

Next, if we let inference rules be certain functions from products of homsets to
homsets, deductions become more complicated functions of the same sort built from
these basic ones. For example, this deduction:

(i)
X ⊗ I � X ⊗ I

(r)
X ⊗ I � X

(i)
Y � Y

(⊗)
(X ⊗ I) ⊗ Y � X ⊗ Y

2 Physics, Topology, Logic and Computation 143

specifies a function from 1 to hom((X⊗I)⊗Y, X⊗Y), built from the basic functions
indicated by the labels at each step. This deduction:

(i)
(X ⊗ I) ⊗ Y � (X ⊗ I) ⊗ Y

(a)
(X ⊗ I) ⊗ Y � X ⊗ (I ⊗ Y)

(i)
I ⊗ Y � I ⊗ Y

(r)
I ⊗ Y � Y

(i)
X � X

(⊗)
X ⊗ (I ⊗ Y) � X ⊗ Y

(◦)
(X ⊗ I) ⊗ Y � X ⊗ Y

gives another function from 1 to hom((X ⊗ I) ⊗ Y, X ⊗ Y).
If we think of deductions as giving functions this way, the question arises when

two such functions are equal. In the example just mentioned, the triangle equation
in the definition of monoidal category (Definition 7):

X Y

aX,I,Y

rX⊗1Y 1X⊗lY

X ⊗ (I ⊗ Y)(X ⊗ I) ⊗ Y

⊗

says these two functions are equal. Indeed, the triangle equation is precisely the
statement that these two functions agree! (We leave this as an exercise for the
reader.)

So: even though two deductions may look quite different, they may give the same
function from a product of homsets to a homset if we demand that these are homsets
in a closed symmetric monoidal category. This is why we think of X � Y as a
set of equivalence classes of proofs, rather than proofs: it is forced on us by our
desire to use category theory. We could get around this by using a 2-category with
proofs as morphisms and “equivalences between proofs” as 2-morphisms [93, 94].
This would lead us further to the right in the Periodic Table (Table 2.3). But let
us restrain ourselves and make some definitions formalizing what we have done
so far.

From now on we shall call the objects X, Y, . . . “propositions”, even though
we have seen they may represent more general resources. Also, purely for the sake
of brevity, we use the term “proof” to mean “equivalence class of proofs”. The
equivalence relation must be coarse enough to make the equations in the following
definitions hold:

Definition 19 A closed monoidal theory consists of the following:

• A collection of propositions. The collection must contain a proposition I , and if
X and Y are propositions, then so are X ⊗ Y and X � Y .

• For every pair of propositions X, Y, a set X � Y of proofs leading from X to Y .
If f ∈ X � Y, then we write f : X → Y .

• Certain functions, written as inference rules:

144 J. Baez and M. Stay

X � X (i)
X � Y Y � Z

X � Z
(◦)

W � X Y � Z
W ⊗ Y � X ⊗ Z

(⊗)
W � (X ⊗ Y) ⊗ Z

W � X ⊗ (Y ⊗ Z)
(a)

X � I ⊗ Y

X � Y
(l)

X � Y ⊗ I

X � Y
(r)

X ⊗ Y � Z

Y � X � Z
(c)

A double line means that the function is invertible. So, for example, for each
triple X, Y, Z we have a function

◦X,Y,Z : (X � Y) × (Y � Z) → (X � Z)

and a bijection

cX,Y,Z : (X ⊗ Y � Z) → (Y � X � Z).

• Certain equations that must be obeyed by the inference rules. The inference rules
(◦) and (i) must obey equations describing associativity and the left and right
unit laws. Rule (⊗) must obey an equation saying it is a functor. Rules (a), (l),
(r), and (c) must obey equations saying they are natural transformations. Rules
(a), (l), (r) and (⊗) must also obey the triangle and pentagon equations.

Definition 20 A closed braided monoidal theory is a closed monoidal theory with
this additional inference rule:

W � X ⊗ Y

W � Y ⊗ X
(b)

We demand that this rule give a natural transformation satisfying the hexagon equa-
tions.

Definition 21 A closed symmetric monoidal theory is a closed braided monoidal
theory where the rule (b) is its own inverse.

These are just the usual definitions of various kinds of closed category—
monoidal, braided monoidal and symmetric monoidal—written in a new style. This
new style lets us build such categories from logical systems. To do this, we take the
objects to be propositions and the morphisms to be equivalence classes of proofs,
where the equivalence relation is generated by the equations listed in the definitions
above.

However, the full advantages of this style only appear when we dig deeper into
proof theory, and generalize the expressions we have been considering:

X � Y

2 Physics, Topology, Logic and Computation 145

to “sequents” like this:

X1, . . . , Xn � Y.

Loosely, we can think of such a sequent as meaning

X1 ⊗ · · · ⊗ Xn � Y.

The advantage of sequents is that they let us use inference rules that—except for the
cut rule and the identity rule—have the “subformula property” mentioned near the
end of Sect. 2.3.1.

Formulated in terms of these inference rules, the logic of closed symmetric
monoidal categories goes by the name of “multiplicative intuitionistic linear logic”,
or MILL for short [52, 91]. There is a “cut elimination” theorem for MILL, which
says that with a suitable choice of other inference rules, the cut rule becomes redun-
dant: any proof that can be done with it can be done without it. This is remark-
able, since the cut rule corresponds to composition of morphisms in a category. One
consequence is that in the free symmetric monoidal closed category on any set of
objects, the set of morphisms between any two objects is finite. There is also a
decision procedure to tell when two morphisms are equal. For details, see Trimble’s
thesis [105] and the papers by Jay [58] and Soloviev [100]. Also see Kelly and Mac
Lane’s coherence theorem for closed symmetric monoidal categories [67], and the
related theorem for compact symmetric monoidal categories [68].

MILL is just one of many closely related systems of logic. Most include extra
features, but some subtract features. Here are just a few examples:

• Algebraic theories. In his famous thesis, Lawvere [75] defined an algebraic the-
ory to be a cartesian category where every object is an n-fold cartesian power
X × · · · × X (n ≥ 0) of a specific object X . He showed how such categories
regarded as logical theories of a simple sort—the sort that had previously been
studied in “universal algebra” [26]. This work initiated the categorical approach
to logic which we have been sketching here. Crole’s book [35] gives a gentle
introduction to algebraic theories as well as some richer logical systems. More
generally, we can think of any cartesian category as a generalized algebraic
theory.

• Intuitionistic linear logic (ILL). ILL supplements MILL with the operations
familiar from intuitionistic logic, as well as an operation ! turning any proposition
(or resource) X into an “indefinite stock of copies of X”. Again there is a nice
category-theoretic interpretation. Bierman’s thesis [24] gives a good overview,
including a proof of cut elimination for ILL and a proof of the result, originally
due to Girard, that intuitionistic logic can be be embedded in ILL.

• Linear logic (LL). For full-fledged linear logic, the online review article by Di
Cosmo and Miller [39] is a good place to start. For more, try the original paper
by Girard [47] and the book by Troelstra [106]. Blute and Scott’s review article
[25] serves as a Rosetta Stone for linear logic and category theory, and so do the
lectures notes by Schalk [91].

146 J. Baez and M. Stay

• Intuitionistic Logic (IL). Lambek and Scott’s classic book [73] is still an excel-
lent introduction to intuitionistic logic and cartesian closed categories. The
online review article by Moschovakis [83] contains many suggestions for further
reading.

To conclude, let us say precisely what an “inference rule” amounts to in the setup
we have described. We have said it gives a function from a product of homsets to
a homset. While true, this is not the last word on the subject. After all, instead of
treating the propositions appearing in an inference rule as fixed, we can treat them
as variable. Then an inference rule is really a “schema” for getting new proofs from
old. How do we formalize this idea?

First we must realize that X � Y is not just a set: it is a set depending in a
functorial way on X and Y . As noted in Definition 14, there is a functor, the “hom
functor”

hom : Cop × C → Set,

sending (X, Y) to the homset hom(X, Y) = X � Y . To look like logicians, let us
write this functor as �.

Viewed in this light, most of our inference rules are natural transformations. For
example, rule (a) is a natural transformation between two functors from Cop × C3

to Set, namely the functors

(W, X, Y, Z) �→ W � (X ⊗ Y) ⊗ Z

and

(W, X, Y, Z) �→ W � X ⊗ (Y ⊗ Z).

This natural transformation turns any proof

f : W → (X ⊗ Y) ⊗ Z

into the proof

aX,Y,Z f : W → X ⊗ (Y ⊗ Z).

The fact that this transformation is natural means that it changes in a systematic
way as we vary W, X, Y and Z . The commuting square in the definition of natural
transformation, Definition 4, makes this precise.

Rules (l), (r), (b) and (c) give natural transformations in a very similar way. The
(⊗) rule gives a natural transformation between two functors from Cop×C×Cop×C
to Set, namely

(W, X, Y, Z) �→ (W � X) × (Y � Z)

and

(W, X, Y, Z) �→ W ⊗ Y � X ⊗ Z .

2 Physics, Topology, Logic and Computation 147

This natural transformation sends any element (f, g) ∈ hom(W, X) × hom(Y, Z)

to f ⊗ g.
The identity and cut rules are different: they do not give natural transformations,

because the top line of these rules has a different number of variables than the bot-
tom line! Rule (i) says that for each X ∈ C there is a function

iX : 1 → X � X

picking out the identity morphism 1X . What would it mean for this to be natural in
X? Rule (◦) says that for each triple X, Y, Z ∈ C there is a function

◦: (X � Y) × (Y � Z) → X � Z .

What would it mean for this to be natural in X, Y and Z? The answer to both ques-
tions involves a generalization of natural transformations called “dinatural” trans-
formations [77].

As noted in Definition 4, a natural transformation α : F ⇒ G between two func-
tors F, G : C → D makes certain squares in D commute. If in fact C = Cop

1 × C2,

then we actually obtain commuting cubes in D. Namely, the natural transformation
α assigns to each object (X1, X2) a morphism αX1,X2 such that for any morphism
(f1 : Y1 → X1, f2 : X2 → Y2) in C , this cube commutes:

G(Y1, X2) G(Y1, Y2)

F(Y1, X2) F(Y1,Y2)

G(X1, X2) G(X1, Y2)

F(X1, X2) F(X1, Y2)

G(f1, 1Y2)

F(f1, 1X2)

F(1Y1, f2)

αY1, X2
G(f1, 1X2)

F(f
1
, 1Y2

)

αY1
, Y2

G(1X1, f2)

G(1Y1, f2)

F(1X1, f2)

αX1, X2 αX1, Y2

If C1 = C2, we can choose a single object X and a single morphism f : X → Y
and use it in both slots. As shown in Fig. 2.1, there are then two paths from one
corner of the cube to the antipodal corner that only involve α for repeated arguments:
that is, αX,X and αY,Y , but not αX,Y or αY,X . These paths give a commuting hexagon.

148 J. Baez and M. Stay

G(Y, X) G(Y, Y)

F(Y, X) F(Y, Y)

G(X, X) G(X, Y)

F(X, X) F(X, Y)

G(f, 1Y)

F(f, 1X)

F(1Y, f)

αY,Y

G(1X, f)

αX, X

Fig. 2.1 A natural transformation between functors F, G : Cop × C → D gives a commuting cube
in D for any morphism f : X → Y , and there are two paths around the cube that only involve α

for repeated arguments

This motivates the following:

Definition 22 A dinatural transformation α : F ⇒ G between functors
F, G : Cop × C → D assigns to every object X in C a morphism αX : F(X, X) →
G(X, X) in D such that for every morphism f : X → Y in C , the hexagon in
Fig. 2.1 commutes.

In the case of the identity rule, this commuting hexagon follows from the fact that
the identity morphism is a left and right unit for composition: see Fig. 2.2. For the
cut rule, this commuting hexagon says that composition is associative: see Fig. 2.3.

Y Y

1Y

1
•

1
•

X X
1X

X Y
f 1X = 1Y f

1
•

11

11

iY

iX

–◦f

f◦–

◦ ◦

Fig. 2.2 Dinaturality of the (i) rule, where f : X → Y . Here • ∈ 1 denotes the one element of the
one-element set

2 Physics, Topology, Logic and Computation 149

X Z

h ◦ (f ◦ g)

(X W) × (Y Z)
(g, h)

(X Y) × (Y Z)
(f ◦ g, h)

X Z

(h ◦ f) ◦ g

X Z

(h ◦ f) ◦ g = h ◦ (f ◦ g)

(X W) × (W Z)
(g, h ◦ f)

(1X W,−◦f)

(f◦−,1Y Z)

◦

◦

1X Z

1X Z

Fig. 2.3 Dinaturality of the cut rule, where f : W → Y, g : X → W, h : Y → Z

So, in general, the sort of logical theory we are discussing involves:

• A category C of propositions and proofs.
• A functor �: Cop ×C → Set sending any pair of propositions to the set of proofs

leading from one to the other.
• A set of dinatural transformations describing inference rules.

2.4 Computation

2.4.1 Background

In the 1930s, while Turing was developing what are now called “Turing machines”
as a model for computation, Church and his student Kleene were developing a dif-
ferent model, called the “lambda calculus” [30, 69]. While a Turing machine can be
seen as an idealized, simplified model of computer hardware, the lambda calculus
is more like a simple model of software.

By now the are many careful treatments of the lambda calculus in the literature,
from Barendregt’s magisterial tome [18] to the classic category-theoretic treatment
of Lambek and Scott [73], to Hindley and Seldin’s user-friendly introduction [55]
and Selinger’s elegant free online notes [96]. So, we shall content ourselves with a
quick sketch.

Poetically speaking, the lambda calculus describes a universe where everything
is a program and everything is data: programs are data. More prosaically, everything
is a “λ-term”, or “term” for short. These are defined inductively:

150 J. Baez and M. Stay

• Variables: there is a countable set of “variables” x, y, z, . . . which are all terms.
• Application: if f and t are terms, we can “apply” f to t and obtain a term f (t).
• Lambda-abstraction: if x is a variable and t is a term, there is a term (λx .t).

Let us explain the meaning of application and lambda-abstraction. Application
is simple. Since “programs are data”, we can think of any term either as a program
or a piece of data. Since we can apply programs to data and get new data, we can
apply any term f to any other term t and get a new term f (t).

Lambda-abstraction is more interesting. We think of (λx .t) as the program that,
given x as input, returns t as output. For example, consider

(λx .x(x)).

This program takes any program x as input and returns x(x) as output. In other
words, it applies any program to itself. So, we have

(λx .x(x))(s) = s(s)

for any term s.
More generally, if we apply (λx .t) to any term s, we should get back t , but with

s substituted for each free occurrence of the variable x . This fact is codified in a rule
called beta reduction:

(λx .t)(s) = t[s/x]
where t[s/x] is the term we get by taking t and substituting s for each free occur-
rence of x . But beware: this rule is not an equation in the usual mathematical sense.
Instead, it is a “rewrite rule”: given the term on the left, we are allowed to rewrite it
and get the term on the right. Starting with a term and repeatedly applying rewrite
rules is how we take a program and let it run!

There are two other rewrite rules in the lambda calculus. If x is a variable and t
is a term, the term

(λx .t (x))

stands for the program that, given x as input, returns t (x) as output. But this is just
a fancy way of talking about the program t . So, the lambda calculus has a rewrite
rule called eta reduction, saying

(λx .t (x)) = t.

The third rewrite rule is alpha conversion. This allows us to replace a bound
variable in a term by another variable. For example:

(λx .x(x)) = (λy.y(y))

since x is “bound” in the left-hand expression by its appearance in “λx”. In other
words, x is just a dummy variable; its name is irrelevant, so we can replace it
with y. On the other hand,

2 Physics, Topology, Logic and Computation 151

(λx .y(x))
= (λx .z(x)).

We cannot replace the variable y by the variable z here, since this variable is “free”,
not bound. Some care must be taken to make the notions of free and bound variables
precise, but we shall gloss over this issue, referring the reader to the references above
for details.

The lambda calculus is a very simple formalism. Amazingly, starting from just
this, Church and Kleene were able to build up Boolean logic, the natural numbers,
the usual operations of arithmetic, and so on. For example, they defined “Church
numerals” as follows:

0 = (λ f.(λx .x))

1 = (λ f.(λx . f (x)))

2 = (λ f.(λx . f (f (x))))

3 = (λ f.(λx . f (f (f (x)))))

and so on. Note that f is a variable above. Thus, the Church numeral n is the pro-
gram that “takes any program to the nth power”: if you give it any program f as
input, it returns the program that applies f n times to whatever input x it receives.

To get a feeling for how we can define arithmetic operations on Church numerals,
consider

λg.3(2(g)).

This program takes any program g, squares it, and then cubes the result. So, it raises
g to the sixth power. This suggests that

λg.3(2(g)) = 6.

Indeed this is true. If we treat the definitions of Church numerals as reversible
rewrite rules, then we can start with the left side of the above equation and grind
away using rewrite rules until we reach the right side:

(λg.3(2(g)) = (λg.3((λ f.(λx . f (f (x)))))(g)) def. of 2
= (λg.3(λx .g(g(x)))) beta
= (λg.(λ f.(λx . f (f (f (x)))))(λx .g(g(x)))) def. of 3
= (λg.(λx .(λx .g(g(x)))((λx .g(g(x)))((λx .g(g(x)))(x))))) beta
= (λg.(λx .(λx .g(g(x)))((λg.g(g(x)))(g(g(x)))))) beta
= (λg.(λx .(λx .g(g(x)))(g(g(g(g(x))))))) beta
= (λg.(λx .g(g(g(g(g(g(x)))))))) beta
= 6 def. of 6

If this calculation seems mind-numbing, that is precisely the point: it resembles the
inner workings of a computer. We see here how the lambda calculus can serve as a
programming language, with each step of computation corresponding to a rewrite
rule.

152 J. Baez and M. Stay

Of course, we got the answer 6 because 3 × 2 = 6. Generalizing from this
example, we can define a program called “times” that multiplies Church numerals:

times = (λa.(λb.(λx .a(b(x))))).

For example,

times(3)(2) = 6.

The enterprising reader can dream up similar programs for the other basic operations
of arithmetic. With more cleverness, Church and Kleene were able to write terms
corresponding to more complicated functions. They eventually came to believe that
all computable functions f : N → N can be defined in the lambda calculus.

Meanwhile, Gödel was developing another approach to computability, the theory
of “recursive functions”. Around 1936, Kleene proved that the functions definable in
the lambda calculus were the same as Gödel’s recursive functions. In 1937 Turing
described his “Turing machines”, and used these to give yet another definition of
computable functions. This definition was later shown to agree with the other two.
Thanks to this and other evidence, it is now widely accepted that the lambda calculus
can define any function that can be computed by any systematic method. We say it
is “Turing complete”.

After this burst of theoretical work, it took a few decades for programmable com-
puters to actually be built. It took even longer for computer scientists to profit from
Church and Kleene’s insights. This began around 1958, when McCarthy invented
the programming language Lisp, based on the lambda calculus [80]. In 1965, an
influential paper by Landin [74] pointed out a powerful analogy between the lambda
calculus and the language ALGOL. These developments led to a renewed interest
in the lambda calculus which continues to this day. By now, a number of com-
puter languages are explicitly based on ideas from the lambda calculus. The most
famous of these include Lisp, ML and Haskell. These languages, called “functional
programming languages”, are beloved by theoretical computer scientists for their
conceptual clarity. In fact, for many years, everyone majoring in computer science
at MIT has been required to take an introductory course that involves programming
in Scheme, a dialect of Lisp. The cover of the textbook for this course [1] even has
a big λ on the cover!

We should admit that languages of a different sort—“imperative programming
languages”—are more popular among working programmers. Examples include
FORTRAN, BASIC, and C. In imperative programming, a program is a series of
instructions that tell the computer what to do. By constrast, in functional program-
ming, a program simply describes a function. To run the program, we apply it to
an input. So, as in the lambda calculus, “application” is a fundamental operation
in functional programming. If we combine application with lambda abstraction, we
obtain a language powerful enough to compute any computable function.

However, most functional programming languages are more regimented than the
original lambda calculus. As we have seen, in the lambda calculus as originally
developed by Church and Kleene, any term can be applied to any other. In real life,

2 Physics, Topology, Logic and Computation 153

programming involves many kinds of data. For example, suppose we are writing a
program that involves days of the week. It would not make sense to write

times(3)(Tuesday)

because Tuesday is not a number. We might choose to represent Tuesday by a num-
ber in some program, but doubling that number doesn’t have a good interpretation:
is the first day of the week Sunday or Monday? Is the week indexed from zero or
one? These are arbitrary choices that affect the result. We could let the programmer
make the choices, but the resulting unstructured framework easily leads to mistakes.

It is better to treat data as coming in various “types”, such as integers, floating-
point numbers, alphanumeric strings, and so on. Thus, whenever we introduce a
variable in a program, we should make a “type declaration” saying what type it is.
For example, we might write:

Tuesday : day

This notation is used in Ada, Pascal and some other languages. Other notations are
also in widespread use. Then, our system should have a “type checker” (usually part
of the compiler) that complains if we try to apply a program to a piece of data of the
wrong type.

Mathematically, this idea is formalized by a more sophisticated version of the
lambda calculus: the “typed” lambda calculus, where every term has a type. This
idea is also fundamental to category theory, where every morphism is like a black
box with input and output wires of specified types:

f

X

Y

and it makes no sense to hook two black boxes together unless the output of the first
has the same type as the input of the next:

f

g

X

Y

Z

154 J. Baez and M. Stay

Indeed, there is a deep relation between the typed lambda calculus and carte-
sian closed categories. This was discovered by Lambek in 1980 [72]. Quite roughly
speaking, a “typed lambda-theory” is a very simple functional programming lan-
guage with a specified collection of basic data types from which other more com-
plicated types can be built, and a specified collection of basic terms from which
more complicated terms can be built. The data types of this language are objects in
a cartesian closed category, while the programs—that is, terms—give morphisms!

Here we are being a bit sloppy. Recall from Sect. 2.3.3 that in logic we can build
closed monoidal categories where the morphisms are equivalence classes of proofs.
We need to take equivalence classes for the axioms of a closed monoidal category to
hold. Similarly, to get closed monoidal categories from computer science, we need
the morphisms to be equivalence classes of terms. Two terms count as equivalent if
they differ by rewrite rules such as beta reduction, eta reduction and alpha conver-
sion. As we have seen, these rewrites represent the steps whereby a program carries
out its computation. For example, in the original “untyped” lambda calculus, the
terms times(3)(2) and 6 differ by rewrite rules, but they give the same morphism.
So, when we construct a cartesian closed category from a typed lambda-theory, we
neglect the actual process of computation. To remedy this we should work with a
cartesian closed 2-category which has:

• types as objects,
• terms as morphisms,
• equivalence classes of rewrites as 2-morphisms.

For details, see the work of Seely [93, 94], Hilken [54], and Melliés [79]. Someday
this work will be part of the larger n-categorical Rosetta Stone mentioned at the end
of Sect. 2.2.5.

In any event, Lambek showed that every typed lambda-theory gives a cartesian
closed category—and conversely, every cartesian closed category gives a typed
lambda-theory. This discovery led to a rich line of research blending category theory
and computer science. There is no way we can summarize the resulting enormous
body of work, though it constitutes a crucial aspect of the Rosetta Stone. Two good
starting points for further reading are the textbook by Crole [35] and the online
review article by Scott [89].

In what follows, our goal is more limited. First, in Sect. 2.4.2, we explain how
every “typed lambda-theory” gives a cartesian closed category, and conversely. We
follow the treatment of Lambek and Scott [73], in a somewhat simplified form.
Then, in Sect. 2.4.3, we describe how every “linear type theory” gives a closed
symmetric monoidal category, and conversely.

The idea here is roughly that a “linear type theory” is a programming language
suitable for both classical and quantum computation. This language differs from the
typed lambda calculus in that it forbids duplication and deletion of data except when
expressly permitted. The reason is that while every object in a cartesian category
comes equipped with “duplication” and “deletion” morphisms:

2 Physics, Topology, Logic and Computation 155

ΔX : X → X ⊗ X, !X : X → 1,

a symmetric monoidal category typically lacks these. As we saw in Sect. 2.2.3, a
great example is the category Hilb with its usual tensor product. So, a programming
language suitable for quantum computation should not assume we can duplicate all
types of data [29, 110].

Various versions of “quantum” or “linear” lambda calculus have already been
studied, for example by Benton, Bierman de Paiva and Hyland [22], Dorca and van
Tonder [108], and Selinger and Valiron [98]. Abramsky and Tzevelekos sketch a
version in their paper in this volume [6]. We instead explain the ‘linear type theories’
developed by Simon Ambler in his 1991 thesis [7].

2.4.2 The Typed Lambda Calculus

Like the original “untyped” lambda calculus explained above, the typed lambda
calculus uses terms to represent both programs and data. However, now every term
has a specific type. A program that inputs data of type X and outputs data of type Y
is said to be of type X � Y . So, we can only apply a term s to a term t of type X if
s is of type X � Y for some Y . In this case s(t) is a well-defined term of type Y .
We call X � Y a function type.

Whenever we introduce a variable, we must declare its type. We write t : X to
mean that t is a term of type X . So, in lambda abstraction, we no longer simply
write expressions like (λx . t). Instead, if x is a variable of type X , we write

(λx : X . t).

For example, here is a simple program that takes a program of type X � X and
“squares” it:

(λ f : X � X . (λx : X . f (f (x)))).

In the original lambda calculus, all programs take a single piece of data as input.
In other words, they compute unary functions. This is no real limitation, since we
can handle functions that take more than one argument using a trick called “cur-
rying”, discussed in Sect. 2.2.6 This turns a function of several arguments into a
function that takes the first argument and returns a function of the remaining argu-
ments. We saw an example in the last section: the program “times”. For example,
times(3) is a program that multiplies by 3, so times(3)(2) = 6.

While making all programs compute unary functions is economical, it is not
very kind to the programmer. So, in the typed lambda calculus we also introduce
products: given types X and Y , there is a type X × Y called a product type. We
can think of a datum of type X × Y as a pair consisting of a datum of type X and
a datum of type Y . To make this intuition explicit, we insist that given terms s : X
and t : Y there is a term (s, t) : X × Y . We also insist that given a term u : X × Y

156 J. Baez and M. Stay

there are terms p(u) : X and p′(u) : Y , which we think of as the first and second
components of the pair t . We also include rewrite rules saying:

(p(u), p′(u)) = u for all u : X × Y,

p(s, t) = s for all s : X and t :Y,

p′(s, t) = t for all s : X and t :Y.

Product types allow us to write programs that take more than one input. Even
more importantly, they let us deal with programs that produce more than one output.
For example, we might have a type called “integer”. Then we might want a program
that takes an integer and duplicates it:

duplicate : integer � (integer × integer)

Such a program is easy to write:

duplicate = (λx : integer . (x, x)).

Of course this a program we should not be allowed to write when duplicating infor-
mation is forbidden, but in this section our considerations are all “classical”, i.e.,
suited to cartesian closed categories.

The typed lambda calculus also has a special type called the “unit type”, which
we denote as 1. There is a single term of this type, which we denote as (). From
the viewpoint of category theory, the need for this type is clear: a category with
finite products must have not only binary products but also a terminal object (see
Definition 10). For example, in the category Set, the terminal object can be taken as
any one-element set, and () is the unique element of this set. It may be less clear why
this type is useful in programming. One reason is that it lets us think of a constant
of type X as a function of type 1 � X—that is, a “nullary” function, one that
takes no arguments. There are some other reasons, but they go beyond the scope of
this discussion. Suffice it to say that Haskell, Lisp and even widely used imperative
languages such as C, C++ and Java include the unit type.

Having introduced the main ingredients of the typed lambda calculus, let us give
a more formal treatment. As we shall see, a “typed lambda-theory” consists of types,
terms and rewrite rules. From a typed lambda-theory we can get a cartesian closed
category. The types will give objects, the terms will give morphisms, and the rewrite
rules will give equations between morphisms.

First, the types are given inductively as follows:

• Basic types: There is an arbitarily chosen set of types called basic types.
• Product types: Given types X and Y , there is a type X × Y .
• Function types: Given types X and Y , there is a type X � Y .
• Unit type: There is a type 1.

There may be unexpected equations between types: for example we may have a type
X satisfying X × X = X . However, we demand that:

2 Physics, Topology, Logic and Computation 157

• If X = X ′ and Y = Y ′ then X × Y = X ′ × Y ′.
• If X = X ′ and Y = Y ′ then X � Y = X ′ � Y ′.

Next we define terms. Each term has a specific type, and if t is a term of type X
we write t : X . The rules for building terms are as follows:

• Basic terms: For each type X there is a set of basic terms of type X .
• Variables: For each type X there is a countably infinite collection of terms of

type X called variables of type X .
• Application: If f : X � Y and t : X then there is a term f (t) of type Y .
• Lambda abstraction: If x is a variable of type X and t : Y then there is a term

(λx : X . t) of type X � Y .
• Pairing: If s : X and t : Y then there is a term (s, t) of type X × Y .
• Projection: If t : X × X ′ then there is a term p(t) of X and a term p′(t) of

type X ′.
• Unit term: There is a term () of type 1.

Finally there are rewrite rules going between terms of the same type. Given
any fixed set of variables S, there will be rewrite rules between terms of the same
type, all of whose free variables lie in the set S. For our present purposes, we only
need these rewrite rules to decide when two terms determine the same morphism
in the cartesian closed category we shall build. So, what matters is not really the
rewrite rules themselves, but the equivalence relation they generate. We write this
equivalence relation as s ∼S t .

The relation ∼S can be any equivalence relation satisfying the following list
of rules. In what follows, t[s/x] denotes the result of taking a term t and replacing
every free occurence of the variable x by the term s. Also, when when we say ‘term’
without further qualification, we mean ‘term all of whose free variables lie in the
set S’.

• Type preservation: If t ∼S t ′ then t and t ′ must be terms of the same type, all
of whose free variables lie in the set S.

• Beta reduction: Suppose x is a variable of type X , s is a term of type X , and t is
any term. If no free occurrence of a variable in s becomes bound in t[s/x], then:

(λx : X . t)(s) ∼S t[s/x].

• Eta reduction: Suppose the variable x does not appear in the term f . Then:

(λx : X . f (x))∼S f.

• Alpha conversion: Suppose x and y are variables of type X , and no free occur-
rence of any variable in t becomes bound in t[x/y]. Then:

(λx : X . t) ∼S (λy : X . t[x/y]).

158 J. Baez and M. Stay

• Application: Suppose t and t ′ are terms of type X with t ∼S t ′, and suppose that
f : X � Y . Then:

f (t) ∼S f (t ′).

• Lambda abstraction: Suppose t and t ′ are terms of type Y , all of whose free
variables lie in the set S ∪ {x}. Suppose that t ∼S∪{x} t ′. Then:

(λx : X . t) ∼S (λx : X . t ′)

• Pairing: If u is a term of type X × Y then:

(p(u), p′(u)) ∼S u.

• Projection: if s is a term of type X and t is a term of type Y then:

p(s, t) ∼S s
p′(s, t) ∼S t.

• Unit term: If t is a term of type 1 then:

t ∼S ().

Now we can describe Lambek’s classic result relating typed lambda-theories to
cartesian closed categories. From a typed lambda-theory we get a cartesian closed
category C for which:

• The objects of C are the types.
• The morphisms f : X → Y of C are equivalence classes of pairs (x, t) consisting

of a variable x : X and a term t : Y with no free variables except perhaps x . Here
(x, t) is equivalent to (x, t ′) if and only if:

t ∼{x} t ′[x/x ′].

• Given a morphism f : X → Y coming from a pair (x, t) and a morphism
g : Y → Z coming from a pair (y, u) as above, the composite g f : X → Y
comes from the pair (x, u[t/y]).

We can also reverse this process and get a typed lambda-theory from a cartesian
closed category. In fact, Lambek and Scott nicely explain how to construct a cat-
egory of category of cartesian closed categories and a category of typed-lambda
theories. They construct functors going back and forth between these categories
and show these functors are inverses up to natural isomorphism. We thus say these
categories are “equivalent” [73].

2 Physics, Topology, Logic and Computation 159

2.4.3 Linear Type Theories

In his thesis [7], Ambler described how to generalize Lambek’s classic result from
cartesian closed categories to closed symmetric monoidal categories. To do this,
he replaced typed lambda-theories with “linear type theories”. A linear type theory
can be seen as a programming language suitable for both classical and quantum
computation. As we have seen, in a noncartesian category like Hilb, we cannot freely
duplicate or delete information. So linear type theories must prevent duplication or
deletion of data except when it is expressly allowed.

To achieve this, linear type theories must not allow us to write a program like
this:

(λx : X . (x, x)).

Even a program that “squares” another program, like this:

(λ f : X � X . (λx : X . f (f (x)))),

is not allowed, since it “reuses” the variable f . On the other hand, a program that
composes two programs is allowed!

To impose these restrictions, linear type theories treat variables very differently
than the typed lambda calculus. In fact, in a linear type theory, any term will contain
a given variable at most once. But linear type theories depart even more dramati-
cally from the typed lambda calculus in another way. They make no use of lambda
abstraction! Instead, they use “combinators”.

The idea of a combinator is very old: in fact, it predates the lambda calculus.
Combinatory logic was born in a 1924 paper by Schönfinkel [92], and was redis-
covered and extensively developed by Curry [36, 37] starting in 1927. In retrospect,
we can see their work as a stripped-down version of the untyped lambda calculus
that completely avoids the use of variables. Starting from a basic stock of terms
called “combinators”, the only way to build new ones is application: we can apply
any term f to any term t and get a term f (t).

To build a Turing-complete programming language in such an impoverished
setup, we need a sufficient stock of combinators. Remarkably, it suffices to use
three. In fact it is possible to use just one cleverly chosen combinator—but this
tour de force is not particularly enlightening, so we shall describe a commonly used
set of three. The first, called I , acts like the identity, since it comes with the rewrite
rule:

I (a) = a

for every term a. The second, called K , gives a constant function K (a) for each
term a. In other words, it comes with a rewrite rule saying

K (a)(b) = a

160 J. Baez and M. Stay

for every term b. The third, called S, is the tricky one. It takes three terms, applies
the first to the third, and applies the result to the second applied to the third:

S(a)(b)(c) = a(c)(b(c)).

Later it was seen that the combinator calculus can be embedded in the untyped
lambda calculus as follows:

I = (λx .x)

K = (λx .(λy.x))

S = (λx .(λy.(λz.x(z)(y(z))))).

The rewrite rules for these combinators then follow from rewrite rules in the
lambda calculus. More surprisingly, any function computable using the lambda
calculus can also be computed using just I, K and S! While we do not need
this fact to understand linear type theories, we cannot resist sketching the proof,
since it is a classic example of using combinators to avoid explicit use of lambda
abstraction.

Note that all the variables in the lambda calculus formulas for I, K , and S are
bound variables. More generally, in the lambda calculus we define a combinator to
be a term in which all variables are bound variables. Two combinators c and d are
extensionally equivalent if they give the same result on any input: that is, for any
term t , we can apply lambda calculus rewrite rules to c(t) and d(t) in a way that
leads to the same term. There is a process called “abstraction elimination” that takes
any combinator in the lambda calculus and produces an extensionally equivalent
one built from I, K , and S.

Abstraction elimination works by taking a term t = (λx .u) with a single lambda
abstraction and rewriting it into the form (λx . f (x)), where f has no instances of
lambda abstraction. Then we can apply eta reduction, which says (λx . f (x)) = f .
This lets us rewrite t as a term f that does not involve lambda abstraction. We shall
use the notation [[u]]x to mean “any term f satisfing f (x) = u”.

There are three cases to consider; each case justifies the definition of one combi-
nator:

1. t = (λx .x). We can rewrite this as t = (λx .I (x)), so t = [[x]]x = I .
2. t = (λx .u), where u does not depend on x . We can rewrite this as t = (λx .

K (u)(x)), so t = [[u]]x = K (u).

3. t = (λx .u(v)), where u and v may depend on x . We can rewrite this as t =
(λx .(([[u]]x x)([[v]]x x)) or t = (λx .S([[u]]x)([[v]]x)(x)), so t = S([[u]]x)

([[v]]x).

We can eliminate all use of lambda abstraction from any term by repeatedly using
these three rules “from the inside out”. To see how this works, consider the lambda
term t = (λx .(λy.y)), which takes two inputs and returns the second. Using the
rules above we have:

2 Physics, Topology, Logic and Computation 161

(λx .(λy.y)) = (λx .(λy.[[y]]y(y)))

= (λx .(λy.I (y)))

= (λx .I)
= (λx .[[I]]x (x))

= (λx .K (I)(x)

= K (I).

We can check that it works as desired: K (I)(x)(y) = I (y) = y.

Now let us return to our main theme: linear type theories. Of the three combi-
nators described above, only I is suitable for use in an arbitrary closed symmetric
monoidal category. The reason is that K deletes data, while S duplicates it. We can
see this directly from the rewrite rules they satisfy:

K (a)(b) = a
S(a)(b)(c) = a(c)(b(c)).

Every linear type theory has a set of “basic combinators”, which neither duplicate
nor delete data. Since linear type theories generalize typed lambda-theories, these
basic combinators are typed. Ambler writes them using notation resembling the
notation for morphisms in category theory.

For example, given two types X and Y in a linear type theory, there is a tensor
product type X ⊗ Y . This is analogous to a product type in the typed lambda
calculus. In particular, given a term s of type X and a term t of type Y , we can
combine them to form a term of type X ⊗ Y , which we now denote as (s ⊗ t). We
reparenthesize iterated tensor products using the following basic combinator:

assocX,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z).

This combinator comes with the following rewrite rule:

assocX,Y,Z ((s ⊗ t) ⊗ u) = (s ⊗ (t ⊗ u))

for all terms s : X , t : Y and u : Z .
Of course, the basic combinator assocX,Y,Z is just a mildly disguised version

of the associator, familiar from category theory. Indeed, all the basic combinators
come from natural or dinatural transformations implicit in the definition of “closed
symmetric monoidal category”. In addition to these, any given linear type theory
also has combinators called “function symbols”. These come from the morphisms
particular to a given category. For example, suppose in some category the tensor
product X ⊗ X is actually the cartesian product. Then the corresponding linear type
theory should have a function symbol

ΔX : X → X ⊗ X

which lets us duplicate data of type X , together with function symbols

162 J. Baez and M. Stay

p : X ⊗ X → X, p′ : X ⊗ X → X

that project onto the first and second factors. To make sure these work as desired,
we can include rewrite rules:

Δ(s) = (s ⊗ s)
p(s ⊗ t) = s
p′(s ⊗ t) = t.

So, while duplication and deletion of data is not a “built-in feature” of linear type
theories, we can include it when desired.

Using combinators, we could try to design a programming language suitable for
closed symmetric monoidal categories that completely avoid the use of variables.
Ambler follows a different path. He retains variables in his formalism, but they
play a very different—and much simpler—-role than they do in the lambda cal-
culus. Their only role is to help decide which terms should count as equivalent.
Furthermore, lambda abstraction plays no role in linear type theories, so the whole
issue of free versus bound variables does not arise! In a sense, all variables are free.
Moreover, every term contains any given variable at most once.

After these words of warning, we hope the reader is ready for a more formal
treatment of linear type theories. A linear type theory has types, combinators,
terms, and rewrite rules. The types will correspond to objects in a closed symmet-
ric monoidal category, while equivalence classes of combinators will correspond to
morphisms. Terms and rewrite rules are only used to define the equivalence relation.

First, the set of types is defined inductively as follows:

• Basic types: There is an arbitarily chosen set of types called basic types.
• Product types: Given types X and Y , there is a type (X ⊗ Y).
• Function types: Given types X and Y , there is a type (X � Y).
• Trivial type: There is a type I .

There may be equations between types, but we require that:

• If X = X ′ and Y = Y ′ then X ⊗ Y = X ′ ⊗ Y ′.
• If X = X ′ and Y = Y ′ then X � Y = X ′ � Y ′.

Second, a linear type theory has for each pair of types X and Y a set of com-
binators of the form f : X → Y . These are defined by the following inductive
rules:

• Given types X and Y there is an arbitrarily chosen set of combinators f : X → Y
called function symbols.

• Given types X, Y, and Z we have the following combinators, called basic com-
binators:

– idX : X → X
– assocX,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z)

– unassocX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y) ⊗ Z

2 Physics, Topology, Logic and Computation 163

– braidX,Y : X ⊗ Y → Y ⊗ X
– leftX : I ⊗ X → X
– unleftX : X → I ⊗ X
– rightX : I ⊗ X → X
– unrightX : X → I ⊗ X
– evalX,Y : X ⊗ (X � Y) → Y

• If f : X → Y and g : Y → Z are combinators, then (g ◦ f) : X → Z is a com-
binator.

• If f : X → Y and g : X ′ → Y ′ are combinators, then (f ⊗ g) : X ⊗ X ′ → Y ⊗ Y ′
is a combinator.

• If f : X ⊗ Y → Z is a combinator, then we can curry f to obtain a combinator
f̃ : Y → (X � Z).

It will generally cause no confusion if we leave out the subscripts on the basic com-
binators. For example, we may write simply “assoc” instead of assocX,Y,Z .

Third, a linear type theory has a set of terms of any given type. As usual, we write
t : X to say that t is a term of type X . Terms are defined inductively as follows:

• For each type X there is a countably infinite collection of variables of type X . If
x is a variable of type X then x : X .

• There is a term 1 with 1 : I .
• If s : X and t : Y, then there is a term (s ⊗ t) with (s ⊗ t) : X ⊗ Y , as long as no

variable appears in both s and t .
• If f : X → Y is a combinator and t : X then there is a term f (t) with f (t) : X .

Note that any given variable may appear at most once in a term.
Fourth and finally, a linear type theory has rewrite rules going between terms of

the same type. As in our treatment of the typed lambda calculus, we only care here
about the equivalence relation ∼ generated by these rewrite rules. This equivalence
relation must have all the properties listed below. In what follows, we say a term is
basic if it contains no combinators. Such a term is just an iterated tensor product of
distinct variables, such as

(z ⊗ ((x ⊗ y) ⊗ w)).

These are the properties that the equivalence relation ∼ must have:

• If t ∼ t ′ then t and t ′ must be terms of the same type, containing the same
variables.

• The equivalence relation is substitutive:

– Given terms s ∼ s ′, a variable x of type X , and terms t ∼ t ′ of type X whose
variables appear in neither s nor s′, then s[t/x] ∼ s′[t ′/x].

– Given a basic term t with the same type as a variable x , if none of the variables
of t appear in the terms s or s′, and s[t/x] ∼ s ′[t/x], then s ∼ s′.

• The equivalence relation is extensional: if f : X�Y , g :X�Y and eval(t ⊗ f) =
eval(t ⊗ g) for all basic terms t : X , then f = g.

164 J. Baez and M. Stay

• We have:

– id(s) ∼ s
– (g ◦ f)(s) ∼ g(f (s))
– (f ⊗ g)(s ⊗ t) ∼ (f (s) ⊗ g(t))
– assoc((s ⊗ t) ⊗ u) ∼ (s ⊗ (t ⊗ u))

– unassoc(s ⊗ (t ⊗ u)) ∼ ((s ⊗ t) ⊗ u)

– braid(s ⊗ t) ∼ (t ⊗ s)
– left(1 ⊗ s) ∼ s
– unleft(s) ∼ (1 ⊗ s)
– right(1 ⊗ s) ∼ s
– unright(s) ∼ (1 ⊗ s)
– eval(s ⊗ f̃ (t)) ∼ f (s ⊗ t)

Note that terms can have variables appearing anywhere within them. For exam-
ple, if x, y, z are variables of types X, Y and Z , and f : Y ⊗ Z → W is a function
symbol, then

braid(x ⊗ f (y ⊗ z))

is a term of type W ⊗ X . However, every term t is equivalent to a term of the form
cp(t)(vp(t)), where cp(t) is the combinator part of t and vp(t) is a basic term
called the variable part of t . For example, the above term is equivalent to

braid ◦ (id ⊗ (f ◦ (id ⊗ id)))(x ⊗ (y ⊗ z)).

The combinator and variable parts can be computed inductively as follows:

• If x is a variable of type X , cp(x) = id : X → X .
• cp(1) = id : I → I .
• For any terms s and t , cp(s ⊗ t) = cp(s) ⊗ cp(t).
• For any term s : X and any combinator f : X → Y , cp(f (s)) = f ◦ cp(s).
• If x is a variable of type X , vp(x) = x .
• vp(1) = 1.
• For any terms s and t , vp(s ⊗ t) = vp(s) ⊗ vp(t).
• For any term s : X and any combinator f : X → Y , vp(f (s)) = vp(s).

Now, suppose that we have a linear type theory. Ambler’s first main result is this:
there is a symmetric monoidal category where objects are types and morphisms
are equivalence classes of combinators. The equivalence relation on combinators is
defined as follows: two combinators f, g : X → Y are equivalent if and only if

f (t) ∼ g(t)

for some basic term t of type X . In fact, Ambler shows that f (t) ∼ g(t) for some
basic term t : X if and only if f (t) ∼ g(t) for all such basic terms.

Ambler’s second main result describes how we can build a linear type theory
from any closed symmetric monoidal category, say C . Suppose C has composi-
tion �, tensor product •, internal hom�, and unit object ι. We let the basic types of

2 Physics, Topology, Logic and Computation 165

our linear type theory be the objects of C . We take as equations between types those
generated by:

• ι = I
• A • B = A ⊗ B
• A � B = A � B

We let the function symbols be all the morphisms of C . We take as our equivalence
relation on terms the smallest allowed equivalence relation such that:

• 1A(x) ∼ A
• (g � f)(x) ∼ g(f (x))

• (f • g)(x ⊗ y) ∼ (f (x) ⊗ g(y))

• aA,B,C ((x ⊗ y) ⊗ z) ∼ (x ⊗ (y ⊗ z))
• bA,B(x ⊗ y) ∼ (y ⊗ x)

• lA(1 ⊗ x) ∼ x
• rA(x ⊗ 1) ∼ x
• evA,B(x ⊗ f̃ (y)) ∼ f (x ⊗ y)

Then we define

• id = 1
• assoc = a
• unassoc = a−1

• braid = b
• left = l
• unleft = l−1

• right = r
• unleft = r−1

• eval = ev
• g ◦ f = g � f

and we’re done!
Ambler also shows that this procedure is the “inverse” of his procedure for turn-

ing linear type theories into closed symmetric monoidal categories. More precisely,
he describes a category of closed symmetric monoidal categories (which is well-
known), and also a category of linear type theories. He constructs functors going
back and forth between these, based on the procedures we have sketched, and shows
that these functors are inverses up to natural isomorphism. So, these categories are
“equivalent”.

In this section we have focused on closed symmetric monoidal categories. What
about closed categories that are just braided monoidal, or merely monoidal? While
we have not checked the details, we suspect that programming languages suited to
these kinds of categories can be obtained from Ambler’s formalism by removing
various features. To get the braided monoidal case, the obvious guess is to remove
Ambler’s rewrite rule for the ‘braid’ combinator and add two rewrite rules corre-
sponding to the hexagon equations (see Sect. 2.2.4 for these). To get the monoidal
case, the obvious guess is to completely remove the combinator “braid” and all

166 J. Baez and M. Stay

rewrite rules involving it. In fact, Jay [57] gave a language suitable for closed
monoidal categories in 1989; Ambler’s work is based on this.

2.5 Conclusions

In this paper we sketched how category theory can serve to clarify the analogies
between physics, topology, logic and computation. Each field has its own concept
of “thing” (object) and “process” (morphism)—and these things and processes are
organized into categories that share many common features. To keep our task man-
ageable, we focused on those features that are present in every closed symmetric
monoidal category. Table 2.4, an expanded version of the Rosetta Stone, shows some
of the analogies we found.

Table 2.4 The Rosetta Stone (larger version)

Category Theory Physics Topology Logic Computation

Object X Hilbert space X Manifold X Proposition X Data type X
Morphism

f : X → Y
Operator

f : X → Y
Cobordism

f : X → Y
Proof f : X → Y Program

f : X → Y
Tensor product of

objects: X ⊗ Y
Hilbert space of

joint system:
X ⊗ Y

Disjoint union of
manifolds:
X ⊗ Y

Conjunction of
propositions:
X ⊗ Y

Product of data
types: X ⊗ Y

Tensor product of
morphisms:
f ⊗ g

Parallel processes:
f ⊗ g

Disjoint union of
cobordisms:
f ⊗ g

Proofs carried out
in parallel:
f ⊗ g

Programs
executing in
parallel: f ⊗ g

Internal hom:
X � Y

Hilbert space of
“anti-X and Y ”:
X∗ ⊗ Y

Disjoint union of
orientation-
reversed X and
Y : X∗ ⊗ Y

Conditional
proposition:
X � Y

Function type:
X � Y

However, we only scratched the surface! There is much more to say about cate-
gories equipped with extra structure, and how we can use them to strengthen the ties
between physics, topology, logic and computation—not to mention what happens
when we go from categories to n-categories. But the real fun starts when we exploit
these analogies to come up with new ideas and surprising connections. Here is an
example.

In the late 1980s, Witten [109] realized that string theory was deeply connected
to a 3d topological quantum field theory and thus the theory of knots and tangles
[71]. This led to a huge explosion of work, which was ultimately distilled into a
beautiful body of results focused on a certain class of compact braided monoidal
categories called “modular tensor categories” [17, 107].

All this might seem of purely theoretical interest, were it not for the fact that
superconducting thin films in magnetic fields seem to display an effect—the “frac-
tional quantum Hall effect”—that can be nicely modelled with the help of such
categories [102, 103]. In a nutshell, the idea is that excitations of these films can act

2 Physics, Topology, Logic and Computation 167

like particles, called ‘anyons’. When two anyons trade places, the result depends on
how they go about it:

So, collections of anyons are described by objects in a braided monoidal cat-
egory! The details depend on things like the strength of the magnetic field; the
range of possibilities can be worked out with the help of modular tensor categories
[82, 88].

So far this is all about physics and topology. Computation entered the game
around 2000, when Freedman, Kitaev, Larsen and Wang [43–45] showed that certain
systems of anyons could function as “universal quantum computers”. This means
that, in principle, arbitrary computations can be carried out by moving anyons
around. Doing this in practice will be far from easy. However, Microsoft has set
up a research unit called Project Q attempting to do just this. After all, a working
quantum computer could have huge practical consequences.

But regardless of whether topological quantum computation ever becomes prac-
tical, the implications are marvelous. A simple diagram like this:

can now be seen as a quantum process, a tangle, a computation—or an abstract
morphism in any braided monoidal category! This is just the sort of thing one would
hope for in a general science of systems and processes.

Acknowledgments We owe a lot to participants of the seminar at UCR where some of this mate-
rial was first presented: especially David Ellerman, Larry Harper, Tom Payne—and Derek Wise,
who took notes [13]. This paper was also vastly improved by comments by Andrej Bauer, Tim
Chevalier, Derek Elkins, Greg Friedman, Matt Hellige, Robin Houston, Theo Johnson–Freyd, Jür-
gen Koslowski, Todd Trimble, Dave Tweed, and other regulars at the n-Category Café. MS would
like to thank Google for letting him devote 20% of his time to this research, and Ken Shirriff for
helpful corrections. This work was supported by the National Science Foundation under Grant No.
0653646.

168 J. Baez and M. Stay

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer Programs,
MIT Press, Cambridge (1996). Available at http://mitpress.mit.edu/sicp/ 152

2. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed
categories. In: Proceedings of CALCO 2005, Lecture Notes in Computer Science
3629, Springer, Berlin, 2005, 1–31. Also available at http://web.comlab.ox.ac.uk/
oucl/work/samson.abramsky/calco05.pdf 130, 132

3. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. Available at
arXiv:quant-ph/0402130 97, 130, 132

4. Abramsky, S., Duncan, R.: A categorical quantum logic, to appear in Mathematical Structures
in Computer Science (2006). Also available as arXiv:quant-ph/0512114 130

5. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear combi-
natory algebras, Math. Struct. Comput. Sci. 12, 625–665 (2002). Also available at
http://citeseer.ist.psu.edu/491623.html

6. Abramsky, S., Tzevelokos, N.: Introduction to categories and categorical logic, in this vol-
ume. Also available at http://web.comlab.ox.ac.uk/people/Bob.Coecke/AbrNikos.pdf 155

7. Ambler, S.: First order logic in symmetric monoidal closed categories, Ph.D. thesis, U. of
Edinburgh, 1991. Available at http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92–194/ 155, 159

8. Atiyah, M.F.: Topological quantum field theories. Publ. Math. IHES Paris 68, 175–186
(1989). 105

9. Atiyah, M.F.: The Geometry and Physics of Knots. Cambridge University Press, Cambridge
(1990) 105

10. Baez, J.: An introduction to spin foam models of quantum gravity and BF theory. In:
Gausterer, H., Grosse, H. (eds.) Geometry and Quantum Physics, pp. 25–93. Springer, Berlin
(2000). Also available at arXiv:gr-qc/9905087 99

11. Baez, J.: Higher-dimensional algebra and Planck-scale physics. In: Callender, C., Huggett, N.
(eds.) Physics Meets Philosophy at the Planck Length, pp. 177–195. Cambridge University
Press, Cambridge (2001). Also available as arXiv:gr-qc/9902017 99

12. Baez, J.: Quantum quandaries: A category-theoretic perspective. In: French, S., Rickles, D.,
Saatsi, J. (eds.) Structural Foundations of Quantum Gravity, pp. 240–265. Oxford University
Press, Oxford (2006). Also available as arXiv:quant-ph/0404040 99, 102, 132

13. Baez, J.: Classical versus quantum computation, U. C. Riverside seminar notes by D. Wise.
Available at http://math.ucr.edu/home/baez/qg-fall2006/ and http://math.ucr.edu/home/baez/
qg-winter2007 167

14. Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J.
Math. Phys. 36, 6073–6105 (1995). Also available as arXiv:q-alg/9503002 99, 104, 119, 120, 132

15. Baez, J., Langford, L.: Higher-dimensional algebra IV: 2-tangles. Adv. Math. 180, 705–764
(2003). Also available as arXiv:q-alg/9703033 120, 132

16. Baez, J., Lauda, A.: A prehistory of n-categorical physics. In: Hans Halvorson (ed.) To
Appear in Proceedings of Deep Beauty: Mathematical Innovation and the Search for an
Underlying Intelligibility of the Quantum World, Princeton, October 3, 2007. Also available
at http://math.ucr.edu/home/baez/history.pdf 120

17. Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors, Ameri-
can Mathematical Society, Providence, Rhode Island, 2001. Preliminary version available at
http://www.math.sunysb.edu/_kirillov/tensor/tensor.html 130, 166

18. Barendregt, H.: The Lambda Calculus, Its Syntax and Semantics. North-Holland, Amsterdam
(1984) 149

19. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1983). Revised and
corrected version available at http://www.cwru.edu/artsci/math/wells/pub/ttt.html

20. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox, Physics1, 195–200 (1964) 115
21. Bell, J.L.: The Development of Categorical Logic. Available at http://publish.uwo.ca/ _jbell/

catlogprime.pdf 100

2 Physics, Topology, Logic and Computation 169

22. Benton, N., Bierman, G.M., de Paiva, V., Hyland, J.M.E.: Linear lambda-calculus and cat-
egorical models revisited, in Computer Science Logic (CSL’92), Selected Papers, Lecture
Notes in Computer Science 702, pp. 61–84. Springer, Berlin (1992). Also available at
http://citeseer.ist.psu.edu/benton92linear.html 155

23. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: Term Assignment for Intuitionistic Linear
Logic, Technical Report 262, University of Cambridge Computer Laboratory, August 1992.
Also available at http://citeseer.ist.psu.edu/1273.html

24. Bierman, G.: On Intuitionistic Linear Logic, PhD Thesis, Cambridge University. Available
at http://research.microsoft.com/_gmb/Papers/thesis.pdf 145

25. Blute, R., Scott, P.: Category theory for linear logicians. In: Ehrhard, T., Girard, J.-Y., Ruet,
P., Scott, P. (eds.) Linear Logic in Computer Science, pp. 3–64. Cambridge University
Press, Cambridge (2004). Also available at http://www.site.uottawa.ca/_phil/ papers/catsurv.
web.pdf 145

26. Burris, S.N., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Berlin (1981).
Also available at http://www.math.uwaterloo.ca/_snburris/htdocs/ualg.html 145

27. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cam-
bridge (1995)

28. Cheng, E., Lauda, A.: Higher-Dimensional Categories: An Illustrated Guidebook. Available
at http://www.dpmms.cam.ac.uk/_elgc2/guidebook/

29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000) 97, 155

30. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363
(1936) 149

31. Coecke, B.: De-linearizing linearity: projective quantum axiomatics from strong compact
closure. In: Proceedings of the 3rd International Workshop on Quantum Programming Lan-
guages (QPL 2005), pp. 49–72. Elsevier (2007). Also available as arXiv:quantph/0506134 130

32. Coecke, B.: Kindergarten quantum mechanics. To appear in Proceedings of QTRF-III. Also
available as arXiv:quant-ph/0510032 130

33. Coecke, B., Paquette, E.O.: POVMs and Naimark’s theorem without sums. To appear in
Proceedings of the 4th International Workshop on Quantum Programming Languages (QPL
2006). Also available as arXiv:quant-ph/0608072 130

34. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L.,
Lomonaco, S. (eds.) To appear in the Mathematics of Quantum Computation and Technology.
Taylor and Francis. Also available as arXiv:quant-ph/0608035 130

35. Crole, R.L.: Categories for Types. Cambridge University Press, Cambridge (1993) 100, 145, 154
36. Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1958) 97, 122, 159
37. Curry, H.B., Findley, J.R., Selding, J.P.: Combinatory Logic, vol. II. North-Holland,

Amsterdam (1972) 97, 122, 159
38. Cvitanovic, P.: Group Theory. Princeton University Press, Princeton (2003). Available at

http://www.nbi.dk/GroupTheory/ 130
39. Di Cosmo, R., Miller, D.: Linear logic, Stanford Encyclopedia of Philosophy. Available at

http://plato.stanford.edu/entries/logic-linear/ 145
40. Dorca, M., van Tonder, A.: Quantum computation, categorical semantics and linear logic.

Available as arXiv:quant-ph/0312174 100
41. Eilenberg, S., Kelly, G.M.: Closed categories. In: Proceedings of the Conference on

Categorical Algebra (La Jolla, 1965), pp. 421–562. Springer, Berlin (1966) 120
42. Eilenberg, S., Mac Lane, S.: General theory of natural equivalences. Trans. Am. Math. Soc.

58, 231–294 (1945)
43. Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation.

Available as arXiv:quant-ph/0101025 167
44. Freedman, M., Kitaev, A., Wang, Z.: Simulation of topological field theories by

quantum computers. Commun. Math. Phys. 227, 587–603 (2002). Also available as
arXiv:quantph/0001071 167

170 J. Baez and M. Stay

45. Freedman, M., Kitaev, A., Wang, Z.: A modular functor which is universal for
quantum computation. Commun. Math. Phys. 227, 605–622 (2002). Also available as
arXiv:quantph/0001108 167

46. Freyd, P., Yetter, D.: Braided compact monoidal categories with applications to low
dimensional topology. Adv. Math. 77, 156–182 (1989) 103, 125

47. Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987). Also available at
http://iml.univ-mrs.fr/ girard/linear.pdf 97, 136, 137, 140, 145

48. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press,
Cambridge (1990). Also available at http://www.monad.me.uk/stable/Proofs%2BTypes.html 135

49. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathema-
tischen Kolloquiums4, 34–38 (1933) 133

50. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. North-Holland, New York (1984).
Also available at http://cdl.library.cornell.edu/cgi-bin/cul.math/docviewer?did=Gold010 100

51. Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive.
Nature 402, 390–393 (1999). Also available as arXiv:quant-ph/9908010 120, 128

52. Hasegawa, M.: Logical predicates for intuitionistic linear type theories. In: Girard, J.-Y.
(ed.) Typed Lambda Calculi and Applications: 4th International Conference, TLCA ’99.
Lecture Notes in Computer Science 1581. Springer, Berlin (1999). Also available at
http://citeseer.ist.psu.edu/187161.html 137, 145

53. Heyting, A., Brouwer, L.E.J. (ed.): Collected Works 1: Philosophy and Foundations of
Mathematics. Elsevier, Amsterdam (1975) 133

54. Hilken, B.: Towards a proof theory of rewriting: The simply-typed 2∗-calculus. Theor.
Comput. Sci. 170, 407–444 (1996) 154

55. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge
University Press, Cambridge (2008) 149

56. Howard, W.A.: The formulae-as-types notion of constructions. In: Seldin, J.P., Hindley, J.R.
(eds.) To Curry, H.B.: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pp. 479–490. Academic Press, New York (1980) 97

57. Jay, C.B.: Languages for monoidal categories. J. Pure Appl. Alg. 59, 61–85 (1989) 166
58. Jay, C.B.: The structure of free closed categories. J. Pure Appl. Alg. 66, 271–285 (1990) 145
59. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–113 (1991) 110
60. Joyal, A., Street, R.: The geometry of tensor calculus II. Available at

http://www.math.mq.edu.au/ street/GTCII.pdf 110
61. Joyal, A., Street, R.: Braided monoidal categories, Macquarie Math Reports 860081 (1986).

Available at http://rutherglen.ics.mq.edu.au/_street/JS86.pdf 118
62. Joyal, A., Street, R.: Braided tensor categories. Adv. Math.102, 20–78 (1993) 118
63. Kaiser, D.: Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar

Physics. University of Chicago Press, Chicago (2005) 96
64. Kassel, C.: Quantum Groups. Springer, Berlin (1995) 103, 130
65. Kauffman, L.H.: Knots and Physics. World Scientific, Singapore (1991) 130
66. Kauffman, L.H., Lins, S.: Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds.

Princeton University Press, Princeton (1994) 130
67. Kelly, G.M., Mac Lane, S.: Coherence in closed categories. J. Pure Appl. Alg. 1, 97–140,

219 (1971) 145
68. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Alg.19,

193–213 (1980) 145
69. Kleene, S.: ∗-definability and recursiveness. Duke Math. J. 2, 340–353 (1936) 149
70. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories, London

Mathematical Society Student Texts 59. Cambridge University Press, Cambridge (2004) 130
71. Kohno, T. (ed.): New Developments in the Theory of Knots. World Scientific, Singapore

(1990) 166
72. Lambek, J.: From ∗-calculus to cartesian closed categories. In: Seldin, J.P., Hindley, J.R.

(eds.) To Curry, H.B.: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pp. 375–402. Academic Press, New York (1980) 154

2 Physics, Topology, Logic and Computation 171

73. Lambek, J., Scott, P.J.: Introduction to Higher-order Categorical Logic. Cambridge
University Press, Cambridge (1986) 146, 149, 154, 158

74. Landin, P.: A correspondence between ALGOL 60 and Church’s lambda-notation. Commun.
ACM 8, 89–101, 158–165 (1965) 152

75. Lawvere, F.W.: Functorial Semantics of Algebraic Theories, Ph.D. Dissertation, Columbia
University (1963). Also available at http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html 105, 145

76. Leinster, T.: A survey of definitions of n-category. Theor. Appl. Cat. 10, 1–70 (2002). Also
available as arXiv:math/0107188

77. Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49 28–46 (1963) 106, 109, 119, 147
78. Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin (1998) 100, 131
79. Melliès, P.: Axiomatic rewriting theory I: A diagrammatic standardisation theorem.

In: Processes, Terms and Cycles: Steps on the Road to Infinity, Lecture Notes in
Computer Science 3838, pp. 554–638. Springer, New York (2005). Also available at
http://www.pps.jussieu.fr/ mellies/papers/jwkfestschrift.pdf 154

80. McCarthy, J.: Recursive functions of symbolic expressions and their computa-
tion by machine, Part I. Comm. ACM 4, 184–195 (1960). Also available at
http://wwwformal.stanford.edu/jmc/recursive.html 152

81. McLarty, C.: Elementary Categories, Elementary Toposes. Clarendon Press, Oxford (1995) 100
82. Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360,

362–396 (1991) 167
83. Moschovakis, J.: Intuitionistic logic, Stanford Encyclopedia of Philosophy. Available at

http://plato.stanford.edu/entries/logic-intuitionistic/ 146
84. Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D. (ed.) Combinatorial

Mathematics and Its Applications, pp. 221–244. Academic Press, New York (1971) 96
85. Penrose, R.: Angular momentum: An approach to combinatorial space-time. In: Bastin, T.

(ed.) Quantum Theory and Beyond, pp. 151–180. Cambridge University Press, Cambridge
(1971) 96

86. Penrose, R.: On the nature of quantum geometry. In: Klauder J. (ed.) Magic Without Magic,
pp. 333–354. Freeman, San Francisco (1972) 96

87. Penrose, R.: Combinatorial quantum theory and quantized directions. In: Hughston, L.,
Ward, R. (eds.) Advances in Twistor Theory, Pitman Advanced Publishing Program,
pp. 301–317 (1979) 96

88. Rowell, E., Stong, R., Wang, Z.: On classification of modular tensor categories, available as
arXiv:0712.1377 167

89. Scott, P.: Some aspects of categories in computer science. In: Hazewinkel, M. (ed.) Handbook
of Algebra, vol. 2, Elsevier, Amsterdam (2000). Also available at http://www.site.uottawa.ca/
phil/papers/handbook.ps 154

90. Sawin, S.: Links, quantum groups and TQFTs. Bull. Am. Math. Soc.33, 413–445 (1996).
Also available as arXiv:q-alg/9506002 102, 103

91. Schalk, A.: What is a categorical model for linear logic? Available at
http://www.cs.man.ac.uk/_schalk/notes/llmodel.pdf 137, 145

92. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92, 305–316
(1924). Also available as On the building blocks of mathematical logic. Trans. Bauer-
Mengelberg, S.: In: van Heijenoort, J. (ed.) A Source Book in Mathematical Logic,
1879–1931, pp. 355–366. Harvard University Press, Cambridge, Massachusetts (1967) 159

93. Seely, R.A.G.: Weak adjointness in proof theory, Applications of Sheaves, Lecture Notes in
Mathematics 753, pp. 697–701. Springer, Berlin. Also available at http://www.math.mcgill.
ca/rags/WkAdj/adj.pdf 143, 154

94. Seely, R.A.G.: Modeling computations: A 2-categorical framework. In: Proceedings of the
Symposium Logic Computer Science 1987, Computer Society of the IEEE, pp. 65–71. Also
available at http://www.math.mcgill.ca/rags/WkAdj/LICS.pdf 143, 154

95. Segal, G.: The definition of a conformal field theory. In: Tillmann, U.L. (ed.) Topology,
Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Hon-
our of the 60th Birthday of Graeme Segal. Cambridge University Press, Cambridge (2004) 105

172 J. Baez and M. Stay

96. Selinger, P.: Lecture notes on the lambda calculus. Available at http://www.mscs.dal.ca/_
selinger/papers/#lambdanotes 149

97. Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL
2005), pp. 139–163. Elsevier, Amsterdam (2007). Also available at http://www.mscs.dal.ca/_
selinger/papers/#dagger 132

98. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control.
Math. Struct. Comp. Sci. 13, 527–552 (2006). Also available at http://www.mathstat.dal.ca/_
selinger/papers/#qlambda 155

99. Shum, M.-C.: Tortile tensor categories. J. Pure Appl. Alg. 93, 57–110 (1994) 103, 104
100. Soloviev, S.: Proof of a conjecture of S. Mac Lane. Ann. Pure Appl. Logic 90, 101–162

(1997) 145
101. Smolin, L.: The future of spin networks. In: Hugget, S., Tod, P., Mason, L.J. (eds.) The

Geometric Universe: Science, Geometry, and the Work of Roger Penrose. Oxford University
Press, Oxford (1998). Also available as arXiv:gr-qc/9702030 130

102. Stern, A.: Anyons and the quantum Hall effect – A pedagogical review. Ann. Phys. 323,
204–249 (2008). Available as arXiv:0711.4697 166

103. Stone, M. (ed.): Quantum Hall Effect. World Scientific, Singapore (1992) 166
104. Szabo, M.E. (ed.): Collected Papers of Gerhard Gentzen. North–Holland, Amsterdam (1969) 133, 135
105. Trimble, T.: Linear Logic, Bimodules, and Full Coherence for Autonomous Categories,

Ph.D. thesis, Rutgers University (1994) 145
106. Troelstra, A.S.: Lectures on Linear Logic, Center for the Study of Language and Information.

Stanford, California (1992) 145
107. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter, Berlin (1994) 103, 130, 166
108. van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput. 33,

1109–1135 (2004). Also available as arXiv:quant-ph/0307150 155
109. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121,

351–399 (1989) 166
110. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803

(1982) 115, 155
111. Yetter, D.N.: Functorial Knot Theory: Categories of Tangles, Coherence, Categorical

Deformations, and Topological Invariants. World Scientific, Singapore (2001) 103, 110

Chapter 3
Categories for the Practising Physicist

B. Coecke and É.O. Paquette

Abstract In this chapter we survey some particular topics in category theory in a
somewhat unconventional manner. Our main focus will be on monoidal categories,
mostly symmetric ones, for which we propose a physical interpretation. Special
attention is given to the category which has finite dimensional Hilbert spaces as
objects, linear maps as morphisms, and the tensor product as its monoidal structure
(FdHilb). We also provide a detailed discussion of the category which has sets as
objects, relations as morphisms, and the cartesian product as its monoidal structure
(Rel), and thirdly, categories with manifolds as objects and cobordisms between
these as morphisms (2Cob). While sets, Hilbert spaces and manifolds do not share
any non-trivial common structure, these three categories are in fact structurally very
similar. Shared features are diagrammatic calculus, compact closed structure and
particular kinds of internal comonoids which play an important role in each of
them. The categories FdHilb and Rel moreover admit a categorical matrix calculus.
Together these features guide us towards topological quantum field theories. We also
discuss posetal categories, how group representations are in fact categorical con-
structs, and what strictification and coherence of monoidal categories is all about.
In our attempt to complement the existing literature we omitted some very basic
topics. For these we refer the reader to other available sources.

3.1 Prologue: Cooking with Vegetables

Consider a “raw potato”. Conveniently, we refer to it as A. Raw potato A admits
several states e.g. “dirty”, “clean”, “skinned”, . . . Since raw potatoes don’t digest
well we need to process A into “cooked potato” B. We refer to A and B as kinds or
types of food. Also B admits several states e.g. “boiled”, “fried”, “baked with skin”,

B. Coecke (B)
OUCL, University of Oxford, Oxford, UK
e-mail: coecke@comlab.ox.ac.uk

É.O. Paquette (B)
School of Computer Science, McGill University, Montreal, QC, Canada
e-mail: eopaquette@holon23.net

Coecke, B., Paquette, É.O.: Categories for the Practising Physicist. Lect. Notes Phys. 813,
173–286 (2011)
DOI 10.1007/978-3-642-12821-9_3 c© Springer-Verlag Berlin Heidelberg 2011

174 B. Coecke and É.O. Paquette

“baked without skin”, . . . Correspondingly, there are several ways to turn raw potato
A into cooked potato B e.g. “boiling”, “frying”, “baking”, to which we respectively
refer as f , f ′ and f ′′. We make the fact that each of these cooking processes applies
to raw potato A and produces cooked potato B explicit via labelled arrows:

A
f� B A

f ′� B A
f ′′� B .

Sequential composition. A plain cooked potato tastes dull so we’d like to pro-
cess it into “spiced cooked potato” C . We refer to the composite process that consists

of first “boiling” A
f� B and then “salting” B

g� C as

A
g◦ f� C .

We refer to the trivial process of “doing nothing to vegetable X” as

X
1X� X .

Clearly we have 1Y ◦ ξ = ξ ◦ 1X = ξ for all processes X
ξ� Y . Note that there

is a slight subtlety here: we need to specify what we mean by equality of cooking

processes. We will conceive two cooking processes X
ξ� Y and X

ζ� Y as
equal, and write ξ = ζ , if the resulting effect on each of the states which X admits
is the same. A stronger notion of equality arises when we also want some additional
details of the processes to coincide e.g. the brand of the cooking pan that we use.

Let D be a “raw carrot”. Note that it is indeed very important to explicitly dis-
tinguish our potato and our carrot and any other vegetable such as “lettuce” L in
terms of their respective names A, D and L , since each admits distinct ways of
processing. And also a cooked potato admits different ways of processing than a
raw one, for example, while we can mash cooked potatoes, we can’t mash raw ones.
We denote all processes which turn raw potato A into cooked potato B by C(A, B).
Consequently, we can repackage composition of cooking processes as a function

− ◦ − : C(X, Y)× C(Y, Z) → C(X, Z) .

Parallel composition. We want to turn “raw potato” A and “raw carrot” D into
“carrot-potato mash” M . We refer to the fact that this requires (or consumes) both

A and D as A ⊗ D. Refer to ‘frying the carrot’ as D
h� E . Then, by

A ⊗ D
f⊗h� B ⊗ E

we mean “boiling potato A” while “frying carrot D” and by

C ⊗ F
x� M

we mean “mashing spiced cooked potato C and spiced cooked carrot F”.

3 Categories for the Practising Physicist 175

Laws. The whole process from raw components A and D to “meal” M is

A ⊗ D
f⊗h� B ⊗ E

g⊗k� C ⊗ F
x� M = A ⊗ D

x◦(g⊗k)◦(f⊗h)� M ,

where “peppering the carrot” is referred to as E
k� F . We refer to the list of the

operations that we apply, i.e. (f while h, g while k, x), as a recipe. Distinct recipes
can yield the same meal. The reason for this is that the two operations “and then”
(i.e. − ◦ −) and “while” (i.e. −⊗−) which we have at our disposal are not totally
independent but interact in a certain way. This is exemplified by the equality

(1B ⊗ h) ◦ (f ⊗ 1D) = (f ⊗ 1E) ◦ (1A ⊗ h) (3.1)

on cooking processes, which states that it makes no difference whether “we first boil
the potato and then fry the carrot”, or, “first fry the carrot and then boil the potato”.

Equation (3.1) is in fact a generally valid equational law for cooking processes,
which does not depend on specific properties of A, B, D, E, f nor h.

Of course, chefs do not perform computations involving Eq. (3.1), since their
“intuition” accounts for its content. But, if we were to teach an android how to
become a chef, which would require it/him/her to reason about recipes, then we
would need to teach it/him/her the laws governing these recipes.

In fact, there is a more general law governing cooking processes from which
Eq. (3.1) can be derived, namely,

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) . (3.2)

That is, “boiling the potato and then salting it, while, frying the carrot and then
peppering it”, is equal to “boiling the potato while frying the carrot, and then, salting
the potato while peppering the carrot”.1 A proof of the fact that Eq. (3.1) can be
derived from Eq. (3.2) is in Proposition 2 below.

Logic. Equation (3.2) is indeed a logical statement. In particular, note the remark-
able similarity, but at the same time also the essential difference, of Eq. (3.2) with
the well-known distributive law of classical logic, which states that

A and (B or C) = (A and B) or (A and C) . (3.3)

For simple situations, if one possesses enough brainpower, “intuition” again
accounts for this distributive law. Ot the other hand, it needs to be explicitly taught
to androids, since this distributive law is key to the resolution method which is the
standard implementation of artificial reasoning in AI and robotics [58]. Also for
complicated sentences we ourselves will need to rely on this method too.

1 In the light of the previous footnote, note here that this law applies to any reasonable notion of
equality for processes.

176 B. Coecke and É.O. Paquette

The (◦,⊗)-logic is a logic of interaction. It applies to cooking processes, phys-
ical processes, biological processes, logical processes (i.e. proofs), or computer
processes (i.e. programs). The theory of monoidal categories, the subject of this
chapter, is the mathematical framework that accounts for the common structure of
each of these theories of processes. The framework of monoidal categories moreover
enables modeling and axiomatising (or “classify”) the extra structure which certain
families of processes may have. For example, how cooking processes differ from
physical processes, and how quantum processes differ from classical processes.

Pictures. We mentioned that our intuition accounts for (◦,⊗)-logic. Wouldn’t it
be nice if there would be mathematical structures which also “automatically” (or
“implicitly”) account for the logical mechanisms which we intuitively perform?
Well, these mathematical structures do exist. While they are only a fairly recent
development, they are becoming more and more prominent in mathematics, includ-
ing in important “Fields Medal awarding areas” such as algebraic topology and
representation theory—see for example [53, and references therein]. Rather than
being symbolic, these mathematical structures are purely graphical. Indeed, by far
the coolest thing about monoidal categories is that they admit a purely pic-
torial calculus, and these pictures automatically account for the logical mechanisms
which we intuitively perform. As pictures, both sides of Eq. (3.2) become:

h

k

f

g

Hence Eq. (3.2) becomes an implicit salient feature of the graphical calculus and
needs no explicit attention anymore. This, as we will see below, substantially sim-
plifies many computations. To better understand in which manner these pictures
simplify computations note that the differences between the two sides of Eq. (3.2)
can be recovered by introducing “artificial” brackets within the two pictures:

=

f fh h

g kg k

⊗

⊗

⊗

◦◦◦ =

f fh h

g kg k

⊗

⊗

⊗

◦◦◦

A detailed account on this graphical calculus is in Sect. 3.3.2.
In the remainder of this chapter we provide a formal tutorial on several kinds of

monoidal categories that are relevant to physics. If you’d rather stick to the informal

3 Categories for the Practising Physicist 177

story of this prologue you might want to first take a bite of [20, 21].2 Section 3.2
introduces categories and Sect. 3.3 introduces tensor structure. Section 3.4 studies
quantum-like tensors and Sect. 3.5 studies classical-like tensors. Sect. 3.6 introduces
mappings between monoidal categories (=monoidal functors), and natural transfor-
mations between these, which enable to concisely define topological quantum field
theories. Section 3.7 suggests further reading.

3.2 The 1D Case: New Arrows for Your Quiver

The bulk of the previous section discussed the two manners in which we can com-
pose processes, namely sequentially and in parallel, or more physically put, in time
and in space. These are indeed the situations we truly care about in this chapter.
Historically however, category theoreticians cared mostly about one-dimensional
fragments of the two-dimensional monoidal categories. These one-dimensional frag-
ments are (ordinary) categories, hence the name category theory. Some people will
get rebuked by the terminology and particular syntactic language used in category
theory—which can sound and look like unintelligible jargon—resulting in its unfor-
tunate label of generalised abstract nonsense. The reader should realise that initially
category theory was crafted as “a theory of mathematical structures”. Hence sub-
stantial effort was made to avoid any reference to the underlying concrete models,
resulting in its seemingly idiosyncratic format. The personalities involved in crafting
category theory, however brilliant minds they had, also did not always help the cause
of making category theory accessible to a broader community.

But this “theory of mathematical structures” view is not the only way to conceive
category theory. As we argued above, and as is witnessed by its important use in
computer science, in proof theory, and more recently also in quantum informatics
and in quantum foundations, category theory is a theory which brings the notions
of (type of) system and process to the forefront, two notions which are hard to cast
within traditional monolithic mathematical structures.

We profoundly believe that the fact that the mainstream physics community has
not yet acquired this (type of) systems/process structure as a primal part of its theo-
ries is merely accidental, and temporary, . . . and will soon change.

3.2.1 Categories

We will use the following syntax to denote a function:

f : X → Y :: x �→ y

2 Paper [20] provided a conceptual template for setting up the content of this paper. However, here
we go in more detail and provide more examples.

178 B. Coecke and É.O. Paquette

where X is the set of arguments, Y the set of possible values, and

x �→ y

means that argument x is mapped on value y.

Definition 1 A category C consists of

1. A family3 |C| of objects ;
2. For any A, B ∈ |C|, a set C(A, B) of morphisms, the hom-set;
3. For any A, B, C ∈ |C|, and any f ∈ C(A, B) and g ∈ C(B, C), a composite

g ◦ f ∈ C(A, C), i.e., for all A, B, C ∈ |C| there is a composition operation

− ◦ − : C(A, B)× C(B, C) → C(A, C) :: (f, g) �→ g ◦ f ,

and this composition operation is associative and has units, that is,

i. for any f ∈ C(A, B), g ∈ C(B, C) and h ∈ C(C, D) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

ii. for any A ∈ |C|, there exists a morphism 1A ∈ C(A, A), called the identity,
which is such that for any f ∈ C(A, B) we have

f = f ◦ 1A = 1B ◦ f .

A shorthand for f ∈ C(A, B) is A
f� B. As already mentioned above, this

definition was proposed by Samuel Eilenberg and Saunders Mac Lane in 1945 as
part of a framework which intended to unify a variety of mathematical constructions
within different areas of mathematics [33]. Consequently, most of the examples of
categories that one encounters in the literature encode mathematical structures: the
objects will be examples of this mathematical structure and the morphisms will
be the structure-preserving maps between these. This kind of categories is usually
referred to as concrete categories [5]. We will also call them concrete categorical
models.

3.2.2 Concrete Categories

Traditionally, mathematical structures are defined as a set equipped with some oper-
ations and some axioms, for instance:

3 Typically, “family” will mean a class rather than a set. While for many constructions the size of
|C| is important, it will not play a key role in this paper.

3 Categories for the Practising Physicist 179

– A group is a set G with an associative binary operation −•− : G×G → G and
with a two-sided identity 1 ∈ G, relative to which each element is invertible, that
is, for all g ∈ G there exists g−1 ∈ G such that g • g−1 = g−1 • g = 1.

Similarly we define rings and fields. Slightly more involved but in the same
spirit:

– A vector space is a pair (V, K), respectively a commutative group and a field,
and these interact via the notion of scalar multiplication, i.e. a map V ×K → V
which is subject to a number of axioms.

It is to these operations and axioms that one usually refers to as structure.
Functions on the underlying sets which preserve (at least part of) this structure are
called structure preserving maps. Here are some examples of structure preserving
maps:

– group homomorphisms, i.e. functions which preserve the group multiplication,
from which it then also follows that the unit and inverses are preserved;

– linear maps, i.e. functions from a vector space to a vector space which preserve
linear combinations of vectors.

Example 1 Let Set be the concrete category with:

1. all sets as objects,
2. all functions between sets as morphisms, that is, more precisely, if X and Y are

sets and f : X → Y is a function between these sets, then f ∈ Set(X, Y),
3. ordinary composition of functions, that is, for f : X → Y and g : Y → Z we

have (g ◦ f)(x) := g(f (x)) for the composite g ◦ f : X → Z , and,
4. the obvious identities i.e. 1X (x) := x .

Set is indeed a category since:

– function composition is associative, and,
– for any function f : X → Y we have (1Y ◦ f)(x) = f (x) = (f ◦ 1X)(x) .

Example 2 FdVectK is the concrete category with:

1. finite dimensional vectors spaces over K as objects,
2. all linear maps between these vectors spaces as morphisms, and
3. ordinary composition of the underlying functions, and,
4. identity functions.

FdVectK is indeed category since:

– the composite of two linear maps is again a linear map, and,
– identity functions are linear maps.

180 B. Coecke and É.O. Paquette

Example 3 Grp is the concrete category with:

1. groups as objects,
2. group homomorphisms between these groups as morphisms, and,
3. ordinary function composition, and,
4. identity functions.

Grp is indeed category since:

– the composite of two group homomorphisms is a group homomorphism, and,
– identity functions are group homomorphisms.

Example 4 (elements) Above we explained that mathematical structures such as
groups typically consist of a set with additional structure. In the case of a category
we have a collection of objects, and for each pair of objects a set of morphisms.
The “structure of a category” then consists of the composition operation on mor-
phisms and the identities on objects. So there is no reference to what the individual
objects actually are (e.g. a set, a vector space, or a group). Consequently, one would
expect that when passing from a mathematical structure (cf. group) to the corre-
sponding concrete category with these mathematical structures as objects (cf. Grp),
one looses the object’s “own” structure. But fortunately, this happens not to be the
case. The fact that we consider structure preserving maps as morphisms will allow
us to recover the mathematical structures that we started from. In particular, by only
relying on categorical concepts we are still able to identify the “elements” of the
objects.

For the set X ∈ |Set| and some chosen element x ∈ X the function

ex : {∗} → X :: ∗ �→ x ,

where {∗} is any one-element set, maps the unique element of {∗} onto the chosen
element x . If X contains n elements, then there are n such functions each corre-
sponding to the element on which ∗ is mapped. Hence the elements of the set X are
now encoded as the set Set({∗}, X).

In a similar manner we can single out vectors in vectors spaces. For the vector
space V ∈ |FdVectK| and some fixed vector v ∈ V the linear map

ev : K → V :: 1 �→ v ,

where K is now the one-dimensional vector space over itself, maps the element
1 ∈ K onto the chosen element v. Since ev is linear, it is completely characterised
by the image of the single element 1. Indeed, ev(α) = ev(α · 1) = α · ev(1) = α · v,
that is, the element 1 is a basis for the one-dimensional vector space K.

Example 5 Pos is the concrete category with:

1. partially ordered sets, that is, a set together with a reflexive, anti-symmetric and
transitive relation, as objects,

3 Categories for the Practising Physicist 181

2. order preserving maps, i.e. x ≤ y ⇒ f (x) ≤ f (y), as morphisms, and,
3. ordinary function composition, and identity functions.

An extended version of this category is Pre where we consider arbitrary pre-ordered
sets, that is, a set together with a reflexive and transitive relation.

Example 6 Cat is the concrete category with4:

1. categories as objects,
2. so-called functors between these as morphisms (see Sect. 3.2.6), and,
3. functor composition, and identity functors.

3.2.3 Real World Categories

But viewing category theory as some kind of metatheory about mathematical struc-
ture is not necessarily the most useful perspective for the sort of applications that
we have in mind. Indeed, here are a few examples of the kind of categories we truly
care about, and which are not categories with mathematical structures as objects and
structure preserving maps as morphisms.

Example 7 The category PhysProc with

1. all physical systems A, B, C, . . . as objects,
2. all physical processes which take a physical system of type A into a physical

system of type B as the morphisms of type A � B (these processes typically
require some finite amount of time to be completed), and,

3. sequential composition of these physical processes as composition, and the pro-
cess which leaves system A invariant as the identity 1A.

Note that in this case associativity of composition admits a physical interpretation: if
we first have process f , then process g, and then process h, it doesn’t matter whether
we either consider (g ◦ f) as a single entity after which we apply h, or whether we
consider (h ◦ g) as a single entity which we apply after f . Hence brackets constitute
superfluous data that can be omitted i.e.

h ◦ g ◦ f := h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Example 8 The category PhysOpp is an operational variant of the above where,
rather than general physical systems such as stars, we focus on systems which can be
manipulated in the lab, and rather than general processes, we consider the operations
which the practising experimenter performs on these systems, for example, applying
force-fields, performing measurements etc.

4 In order to conceive Cat as a concrete category, the family of objects should be restricted to the
so-called “small” categories i.e., categories for which the family of objects is a set.

182 B. Coecke and É.O. Paquette

Example 9 The category QuantOpp is a restriction of the above where we
restrict ourselves to quantum systems and operations thereon. Special processes
in QuantOpp are preparation procedures, or states. If Q denotes a qubit, then
the type of a preparation procedure would be I � Q where I stands for
“unspecified”. Indeed, the point of a preparation procedure is to provide a qubit
in a certain state, and the resources which we use to produce that state are typ-
ically not of relevance for the remainder of the experimental procedure. We can
further specialise to either pure (or closed) quantum systems or mixed (or open)
quantum systems, categories to which we respectively refer as PurQuantOpp and
MixQuantOpp.

Obviously, Example 9 is related to the concrete category which has Hilbert
spaces as objects and certain types of linear mappings (e.g. completely positive
maps) as morphisms. The preparation procedures discussed above then correspond
to “categorical elements” in the sense of Example 4. We discuss this correspondence
below.

While to the sceptical reader the above examples still might not seem very useful
yet, the next two ones, which are very similar, have become really important for
Computer Science and Logic. They are the reason that, for example, University of
Oxford Computing Laboratory offers category theory to its undergraduates.

Example 10 The category Comp with

1. all data types, e.g. Booleans, integers, reals, as objects,
2. all programs which take data of type A as their input and produce data of type B

as their output as the morphisms of type A � B, and,
3. sequential composition of programs as composition, and the programs which

output their input unaltered as identities.

Example 11 The category Prf with

1. all propositions as objects,
2. all proofs which conclude from proposition A that proposition B holds as the

morphisms of type A � B, and,
3. concatenation (or chaining) of proofs as composition, and the tautologies “from

A follows A” as identities.

Computer scientists particularly like category theory because it explicitly intro-

duces the notion of type: an arrow A
f� B has type A � B. These types

prevent silly mistakes when writing programs, e.g. the composition g ◦ f makes no

sense for C
g� D because the output — called the codomain — of f doesn’t

match the input — called the domain — of g. Computer scientists would say:

“types don’t match”.

3 Categories for the Practising Physicist 183

Similar categories BioProc and ChemProc can be build for organisms and bio-
logical processes, chemicals and chemical reactions, etc.5 The recipe for producing
these categories is obvious:

Name Objects Morphisms
some area of science corresponding systems corresponding processes

Composition boils down to “first f and then g happens” and identities are just
“nothing happens”. Somewhat more operationally put, composition is “first do f
and then do g” and identities are just “doing nothing”. The reason for providing both
the “objectivist” (= passive) and “instrumentalist” (= active) perspective is that we
both want to appeal to members of the theoretical physics community and members
of the quantum information community. The first community typically doesn’t like
instrumentalism since it just doesn’t seem to make sense in the context of theories
such as cosmology; on the other hand, instrumentalism is as important to quantum
informatics as it is to ordinary informatics. We leave it up to the reader to decide
whether it should play a role in the interpretation of quantum theory.

3.2.4 Abstract Categorical Structures and Properties

One can treat categories as mathematical structures in their own right, just as groups
and vector spaces are mathematical structures. In contrast with concrete categories,
abstract categorical structures then arise by either endowing categories with more
structure or by requiring them to satisfy certain properties.

We are of course aware that this is not a formal definition. Our sheepish excuse
is that physicists rarely provide precise definitions. There is however a formal defi-
nition which can be found in [5]. We do provide one below in Example 24.

Example 12 A monoid (M, •, 1) is a set together with a binary associative operation

− • − : M × M → M

which admits a unit—i.e. a “group without inverses”. Equivalently, we can define a
monoid as a category M with a single object ∗. Indeed, it suffices to identify

• the elements of the hom-set M(∗, ∗) with those of M ,
• the associative composition operation

5 The first time the 1st author heard about categories was in a Philosophy of Science course, given
by a biologist specialised in population dynamics, who discussed the importance of category theory
in the influential work of Robert Rosen [59].

184 B. Coecke and É.O. Paquette

− ◦ − : M(∗, ∗)×M(∗, ∗) → M(∗, ∗)

with the associative monoid multiplication •, and
• the identity 1∗ : ∗ → ∗ with the unit 1.

Dually, in any category C, for any A ∈ |C|, the set C(A, A) is always a monoid.

Definition 2 Two objects A, B ∈ |C| are isomorphic if there exists morphisms f ∈
C(A, B) and g ∈ C(B, A) such that g ◦ f = 1A and f ◦ g = 1B . The morphism f
is called an isomorphism and f −1 := g is called the inverse to f .

The notion of isomorphism known to the reader is the set-theoretical one, namely
that of a bijection. We now show that in the concrete category Set the category-
theoretical notion of isomorphism coincides with the notion of bijection. Given
functions f : X → Y and g : Y → X satisfying g(f (x)) = x for all x ∈ X
and f (g(y)) = y for all y ∈ Y we have:

• f (x1) = f (x2) ⇒ g(f (x1)) = g(f (x2)) ⇒ x1 = x2 so f is injective, and,
• for all y ∈ Y , setting x := g(y), we have f (x) = y so f is surjective,

so f is indeed a bijection. We leave it to the reader to verify that the converse also
holds. For the other concrete categories mentioned above the categorical notion of
isomorphism also coincides with the usual one.

Example 13 Since a group (G, •, 1) is a monoid with inverses it can now be equiv-
alently defined as a category with one object in which each morphism is an isomor-
phism. More generally, a groupoid is a category in which each morphism has an
inverse. For instance, the category Bijec which has sets as objects and bijections as
morphisms is such a groupoid. So is FdUnit which has finite dimensional Hilbert
spaces as objects and unitary operators as morphisms. Groupoids have important
applications in mathematics, for example, in algebraic topology [17].

From this, we see that any group is an example of an abstract categorical struc-
ture. At the same time, all groups together, with structure preserving maps between
them, constitute a concrete category. Still following? That categories allow several
ways of representing mathematical structures might seem confusing at first, but it is
a token of their versatility. While monoids correspond to categories with only one
object, with groups as a special case, similarly, pre-orders are categories with very
few morphisms, with partially ordered sets as a special case.

Example 14 Any preordered set (P,≤) can be seen as a category P:

• The elements of P are the objects of P,
• Whenever a ≤ b for a, b ∈ P then there is a single morphism of type a � b,

that is, P(a, b) is a singleton, and whenever a �≤ b then there is no morphism of
type a � b, that is, P(a, b) is empty.

• Whenever there is pair of morphisms of types a � b and b � c, that is,
whenever a ≤ b and b ≤ c, then transitivity of ≤ guarantees the existence of a
unique morphism of type a � c, which we take to be the composite of the
morphisms of type a � b and b � c.

3 Categories for the Practising Physicist 185

• Reflexivity guarantees the existence of a unique morphism of type a � a,
which we take to be the identity on the object a.

Conversely, a category C of which the objects constitute a set, and in which there
is at most one morphism of any type i.e., hom-sets are either singletons or empty, is
in fact a preordered set. Concretely:

• The set |C| are the elements of the preordered set,
• We set A ≤ B if and only if C(A, B) is non-empty,
• Since C is a category, whenever there exist morphisms f ∈ C(A, B) and g ∈

C(B, C), that is, whenever both C(A, B) and C(B, C) are non-empty, then there
exist a morphism g◦ f ∈ C(A, C), so C(A, C) is also non-empty. Hence, A ≤ B
and B ≤ C yields A ≤ C , so ≤ is transitive.

• Since 1A ∈ C(A, A) we also have A ≤ A, so ≤ is reflexive.

Hence, preordered sets indeed constitute an abstract category: its defining property
is that every hom-set contains at most one morphism. Such categories are some-
times called thin categories. Conversely, categories with non-trivial hom-sets are
called thick. Partially ordered sets also constitute an abstract category, namely one
in which:

• every hom-set contains at most one morphism;
• whenever two objects are isomorphic then they must be equal.

This second condition imposes anti-symmetry on the partial order.

Let {∗} and ∅ denote a singleton set and the empty set respectively. Then for
any set A ∈ |Set|, the set Set(A, {∗}) of all functions of type A → {∗} is itself a
singleton, since there is only one function which maps all a ∈ A on ∗, the single
element of {∗}. This concept can be dualised. The set Set(∅, A) of functions of type
∅ → A is again a singleton consisting of the “empty function”. Due to these special
properties, we call {∗} and ∅ respectively the terminal object and the initial object
in Set. All this can be generalised to arbitrary categories as follows:

Definition 3 An object � ∈ |C| is terminal in C if, for any A ∈ |C|, there is only
one morphism of type A � �. Dually, an object ⊥ ∈ |C| is initial in C if, for
any A ∈ |C|, there is only one morphism of type ⊥ � A.

Proposition 1 If a category C has two initial objects then they are isomorphic. The
same property holds for terminal objects.

Indeed. Let ⊥ and ⊥′ both be initial objects in C. Since ⊥ is initial, there is a
unique morphism f such that C(⊥,⊥′) = { f }. Analogously, there is a unique
morphism g such that C(⊥′,⊥) = {g}. Now, since C is a category and relying
again on the fact that⊥ is initial, it follows that g ◦ f ∈ C(⊥,⊥) = {1⊥}. Similarly,
g ◦ f ∈ C(⊥′,⊥′) = {1⊥′}. Hence, ⊥ � ⊥′ as claimed. Similarly we show that
� � �′.
Example 15 A partially ordered set P is bounded if there exist two elements � and
⊥ such that for all a ∈ P we have ⊥ ≤ a ≤ �. Hence, when P is viewed as a
category, this means that it has both a terminal and an initial object.

186 B. Coecke and É.O. Paquette

The next example of an abstract categorical structure is the most important one
in this paper. Therefore, we state it as a definition. Among many (more important)
things, it axiomatises “cooking with vegetables”.

Definition 4 A strict monoidal category is a category for which:

1. objects come with monoid structure (|C|,⊗, I) i.e, for all A, B, C ∈ |C|,

A ⊗ (B ⊗ C) = (A ⊗ B)⊗ C and I⊗ A = A = A ⊗ I ,

2. for all objects A, B, C, D ∈ |C| there exists an operation

−⊗− : C(A, B)× C(C, D) → C(A ⊗ C, B ⊗ D) :: (f, g) �→ f ⊗ g

which is associative and has 1I as its unit, that is,6

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h and 1I ⊗ f = f = f ⊗ 1I ,

3. for all morphisms f, g, h, k with matching types we have

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) , (3.4)

4. for all objects A, B ∈ |C| we have

1A ⊗ 1B = 1A⊗B . (3.5)

As we will see in Sect. 3.6.1, the two equational constraints Eqs. (3.4) and (3.5)
can be conceived as a single principle.

The symbol ⊗ is sometimes called the tensor. We will also use this terminology,
since “tensor” is shorter than “monoidal product”. However, the reader should not
deduce from this that the above definition necessitates⊗ to be anything like a tensor
product, since this is not at all the case.

The categories of systems and processes discussed in Sect. 3.2.3 are all exam-
ples of strict monoidal categories. We already explained in Sect. 3.1 what − ⊗ −
stands for: it enables dealing with situations where several systems are involved. To
a certain extent −⊗− can be interpreted as a logical conjunction:

A ⊗ B := system A and system B

f ⊗ g := process f and process g .

There is however considerable care required with this view: while

A ∧ A = A ,

6 Note that this operation on morphisms is a typed variant of the notion of monoid.

3 Categories for the Practising Physicist 187

in general

A ⊗ A �= A .

This is where the so-called linear logic [36, 61] kicks in, which is discussed in
substantial detail in [4].

For the special object I we have

A ⊗ I = A = I⊗ A

since it is the unit for the monoid. Hence, it refers to a system which leaves any
system invariant when adjoined to it. In short, it stands for “unspecified”, for “no
system”, or even for “nothing”. We already made reference to it in Example 9 when
discussing preparation procedures. Similarly, 1I is the operation which “does noth-
ing to nothing”. The system I will allow us to encode a notion of state within arbi-
trary monoidal categories, and also a notion of number and probabilistic weight—
see Example 27 below.

Example 16 Now, a monoid (M, •, 1) can also be conceived as a strict monoidal
category in which all morphisms are identities. Indeed, take M to be the objects,
• to be the tensor and 1 to be the unit for the tensor. By taking identities to be the
only morphisms, we can equip these with the same monoid structure as the monoid
structure on the objects. Hence it satisfies Eq. (3.5). By

(1A ◦1A)⊗ (1B ◦1B) = 1A⊗1B = 1A⊗B = 1A⊗B ◦1A⊗B = (1A⊗1B)◦(1A⊗1B)

eq. (3.2) is also satisfied.

3.2.5 Categories in Physics

In the previous section, we saw how groups and partial orders, both of massive
importance for physics, are themselves abstract categorical structures.

• While there is no need to argue for the importance of group theory to physics
here, it is worth mentioning that John Slater (cf. Slater determinant in quantum
chemistry) referred to Weyl, Wigner and others’ use of group theory in quantum
physics as der Gruppenpest, what translates as the “plague of groups”. Even in
1975 he wrote: As soon as [my] paper became known, it was obvious that a great
many other physicists were as disgusted as I had been with the group-theoretical
approach to the problem. As I heard later, there were remarks made such as
“Slater has slain the Gruppenpest”. I believe that no other piece of work I have
done was so universally popular. Similarly, we may wonder whether it are the
category theoreticians or their opponents which are the true aliens.

• Partial orders model spatio-temporal causal structure [56, 64]. Roughly speaking,
if a ≤ b then events a and b are causally related, if a < b then they are time-like

188 B. Coecke and É.O. Paquette

separated, and if a and b don’t compare then they are space-like separated. This
theme is discussed in great detail in [49].

• The degree of bipartite quantum entanglement gives rise to a preorder on bipartite
quantum states [52]. The relevant preorder is Muirheads’ majorization order [51].
However, multipartite quantum entanglement and mixed state quantum entan-
glement are not well understood yet. We strongly believe that category theory
provides the key to the solution, in the following sense:

bipartite entanglement

some preorder
= multipartite entanglement

some thick category

We also acknowledge the use of category theory in several involved subjects in
mathematical physics ranging from topological quantum field theories (TQFTs) to
proposals for a theory of quantum gravity; here the motivation to use category theory
is of a mathematical nature. We discuss one such topic, namely TQFT, in Sect. 3.6.5.

But the particular perspective which we would like to promote here is categories
as physical theories. Above we discussed three kinds of categories:

• Concrete categories have mathematical structures as objects, and structure pre-
serving maps between these as morphisms.

• Real world categories have some notion of system as objects, and corresponding
processes thereoff as morphisms.

• Abstract categorical structures are mathematical structures in their own right;
they are defined in terms of additional structure and/or certain properties.

The real world categories constitute the area of our focus (e.g. quantum physics,
proof theory, computation, organic chemistry, . . .), the concrete categories consti-
tute the formal mathematical models for these (e.g., in the case of quantum physics,
Hilbert spaces as objects, certain types of linear maps as morphisms, and the tensor
product as the monoidal structure), while the abstract categorical structures consti-
tute axiomatisations of these.

The latter is the obvious place to start when one is interested in comparing the-
ories. We can study which axioms and/or structural properties give rise to certain
physical phenomena, for example, which tensor structures give rise to teleportation
(e.g. [2]), or to non-local quantum-like behavior [24]. Or, we can study which struc-
tural features distinguish classical from quantum theories (e.g. [27, 26]).

Quantum theory is subject to the so-called No-Cloning, No-Deleting and No-
Broadcasting theorems [7, 54, 69], which impose key constraints on our capabilities
to process quantum states. Expressing these clearly requires a formalism that allows
to vary types from a single to multiple systems, as well as one which explicitly
accommodates processes (cf. copying/deleting process). Monoidal categories pro-
vide the appropriate mathematical arena for this on-the-nose.

Example 17 Why does a tiger have stripes and a lion doesn’t? One might expect
that the explanation is written within the fundamental building blocks which these
animals are made up from, so one could take a big knife and open the lion’s and

3 Categories for the Practising Physicist 189

the tiger’s bellies. One finds intestines, but these are the same for both animals. So
maybe the answer is hidden in even smaller constituents. With a tiny knife we keep
cutting and identify a smaller kind of building block, namely the cell. Again, there
is no obvious difference between tigers and lions at this level. So we need to go
even smaller. After a century of advancing “small knife technology” we discover
DNA and this constituent truly reveals the difference. So yes, now we know why
tigers have stripes and lions don’t! Do we really? No, of course not. Following in
the footsteps of Charles Darwin, your favorite nature channel would tell you that the
explanation is given by a process of type

prey⊗ predator⊗ environment � dead prey⊗ eating predator

which represents the successful challenge of a predator, operating within some
environment, on some prey. Key to the success of such a challenge is the preda-
tor’s camouflage. Sandy savanna is the lion’s habitat while forests constitute the
tiger’s habitat, so their respective coat blends them within their natural habitat.
Any (neo-)Darwinist biologist will tell you that the fact that this is encoded in the
animal’s DNA is not a cause, but rather a consequence, via the process of natural
selection.

This example illustrates how monoidal categories enable to shift the focus from
an atomistic or reductionist attitude to one where systems are studied in terms
of their interactions with other systems, rather than in terms of their constituents.
Clearly, in recent history, physics has solely focused on chopping down things into
smaller things. Focussing on interactions might provide us with a complementary
understanding of the fundamental theories of nature.

3.2.6 Structure Preserving Maps for Categories

The notion of structure preserving map between categories—which we referred to
in Example 6—wasn’t made explicit yet. These “maps which preserve categorical
structure”, the so-called functors, must preserve the structure of a category, that is,
composition and identities. An example of a functor that might be known to the
reader because of its applications in physics, is the linear representation of a group.
A representation of a group G on a vector space V is a group homomorphism from
G to GL(V), the general linear group on V , i.e., a map ρ : G → GL(V) such that

ρ(g1 • g2) = ρ(g1) ◦ ρ(g2) for all g1, g2 ∈ G , and , ρ(1) = 1V .

Consider G as a category G as in Example 13. We also have that GL(V) ⊂
FdVectK(V, V) (cf. Example 2). Hence, a group representation ρ from G to GL(V)

induces “something” from G to FdVectK:

ρ : G → GL(V) � G
Rρ−→ FdVectK .

190 B. Coecke and É.O. Paquette

However, specifying G
Rρ−→ FdVectK requires some care:

• Firstly, we need to specify that we are representing on the general linear group of
the vector space V ∈ FdVectK. We do this by mapping the unique object ∗ of G
on V , thus defining a map from objects to objects

Rρ : |G| → |FdVectK| :: ∗ �→ V .

• Secondly, we need to specify to which linear map in

GL(Rρ(∗)) ⊂ FdVectK(Rρ(∗), Rρ(∗))

a group element

g ∈ G(∗, ∗) = G

is mapped. This defines a map from a hom-set to a hom-set, namely

Rρ : G(∗, ∗) → FdVectK(Rρ(∗), Rρ(∗)) :: g �→ ρ(g) .

The fact that ρ is a group homomorphism implies in our category-theoretic con-
text that Rρ preserves composition of morphisms as well as identities, that is, Rρ

preserves the categorical structure.

Having this example in mind, we infer that a functor must consist not of a single
but of two kinds of mappings: one map on the objects, and a family of maps on the
hom-sets which preserve identities and composition.

Definition 5 Let C and D be categories. A functor

F : C −→ D

consists of:

1. A mapping

F : |C| → |D| :: A �→ F(A) ;

2. For any A, B ∈ |C|, a mapping

F : C(A, B) → D(F(A), F(B)) :: f �→ F(f)

which preserves identities and composition, i.e.,

i. for any f ∈ C(A, B) and g ∈ C(B, C) we have

F(g ◦ f) = F(g) ◦ F(f) ,

3 Categories for the Practising Physicist 191

ii. and, for any A ∈ |C| we have

F(1A) = 1F(A) .

Typically one drops the parentheses unless they are necessary. For instance, F(A)

and F(f) will be denoted simply as F A and F f .
Consider the category PhysProc of Example 7 and a concrete category Mod

in which we wish to model these mathematically by assigning to each process a
morphism in the concrete category Mod. Functoriality of

F : PhysProc −→ Mod

means that sequential composition of physical processes is mapped on composi-
tion of morphisms in Mod, and that void processes are mapped on the identity
morphisms. From this, we see that functoriality is an obvious requirement when
designing mathematical models for physical processes.

Example 18 Define the category MatK with

1. the set of natural numbers N as objects,
2. all m × n-matrices with entries in K as morphisms of type n � m, and
3. matrix composition, and identity matrices.

This example is closely related to Example 2. However, it strongly emphasizes that
objects are but labels with no internal structure. Strictly speaking this is not a con-
crete category in the sense of Sect. 3.2.2. However, for all practical purposes, it can
serve as well as a model as any other concrete category. Therefore, we can relax our
conception of concrete categories to accommodate such models.

Assume now that for each vector space V ∈ |FdVectK|, we pick a fixed basis.
Then any linear function f ∈ FdVectK(V, W) admits a matrix in these bases. This
“assigning of matrices” to linear maps is described by the functor

F : FdVectK −→ MatK

which maps vector spaces on their respective dimension, and which maps linear
maps on their matrices in the chosen bases. Importantly, note that it is the functor F
which encodes the choices of bases, and not the categorical structure of FdVectK.

Example 19 In MatC, if we map each natural number on itself and conjugate all the
entries of each matrix we also obtain a functor.

We now introduce the concept of duality which we already hinted at above. Sim-
ply put, it means reversal of the arrows in a given category C. We illustrate this
notion in term of an example. Transposition of matrices, just like a functor, is a
mapping on both objects and morphisms which:

i. preserves objects and identities,
ii. reverses the direction of the morphisms since when the matrix M has type

n � m, then the matrix MT has type m � n, and

192 B. Coecke and É.O. Paquette

iii. preserves the composition ‘up to this reversal of the arrows’, i.e. for any pair of
matrices N and M for which types match we have

(N ◦ M)T = MT ◦ N T .

So transposition is a functor up to reversal of the arrows.

Definition 6 A contravariant functor F : C → D consists of the same data as a
functor, it also preserves identities, but reverses composition that is:

F(g ◦ f) = F f ◦ Fg ,

In contrast to contravariant functors, ordinary functors are often referred to as
covariant functors.

Definition 7 The opposite category Cop of a category C is the category with

• the same objects as C,
• in which morphisms are “reversed”, that is,

f ∈ C(A, B) ⇔ f ∈ Cop(B, A) ,

where to avoid confusion from now on we denote f ∈ Cop(B, A) by f op,
• identities in Cop are those of C, and

f op ◦ gop = (g ◦ f)op .

Contravariant functors of type C → D can now be defined as functors of type
Cop → D. Of course, the operation (−)op on categories is involutive: reversing the
arrows twice is the same as doing nothing. The process of reversing the arrow is
sometimes indicated by the prefix “co”, indicating that the defining equations for
those structures are the same as the defining equations for the original structure, but
with arrows reversed.

Example 20 The transpose is the involutive contravariant functor

T : FdVectop
K
→ FdVectK

which maps each vector space on the corresponding dual vector space, and which
maps each linear map f on its transpose f T .

Example 21 A Hilbert space is a vector space over C with an inner-product

〈−,−〉 : H×H→ C .

Let FdHilb be the category with finite dimensional Hilbert spaces as objects and
with linear maps as morphisms. Of course, one could define other categories with

3 Categories for the Practising Physicist 193

Hilbert spaces as objects, for example, the groupoid FdUnit of Example 13. But as
we will see below in Sect. 3.3.3, the category FdHilb as defined here comes with
enough extra structure to extract all unitary maps from it. Hence, FdHilb subsumes
FdUnit. This extra structure comes as a functor, whose action is taking the adjoint
or hermitian transpose. This is the contravariant functor

† : FdHilbop −→ FdHilb

which:

1. is identity-on-object, that is,

† : |FdHilbop| → |FdHilb| :: H �→ H ,

2. and assigns morphisms to their adjoints, that is,

† : FdHilbop(H,K) → FdHilb(K,H) :: f �→ f † .

Since for f ∈ FdHilb(H,K) and g ∈ FdHilb(K,L) we have:

1†
H = 1H and (g ◦ f)† = f † ◦ g†

we indeed obtain an identity-on-object contravariant functor. This functor is more-
over involutive, that is, for all morphisms f we have

f †† = f .

While the morphisms of FdHilb do not reflect the inner-product structure, the latter
is required to specify the adjoint. In turn, this adjoint will allow us to recover the
inner-product in purely category-theoretic terms, as we shall see in Sect. 3.3.3.

Example 22 Define the category FunctC,D with

1. all functors from C to D as objects,
2. natural transformations between these as morphisms (cf. Sect. 3.6.2), and,
3. composition of natural transformations and corresponding identities.

Example 23 The defining equations of strict monoidal categories, that is,

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) and 1A ⊗ 1B = 1A⊗B , (3.6)

to which we from now on refer as bifunctoriality, is nothing but functoriality of a
certain functor. We will discuss this in detail in Sect. 3.6.1.

Example 24 A concrete category, or even better, a Set-concrete category, is a cat-
egory C together with a functor U : C −→ Set. The way in which we construct
this functor for categories with mathematical structures as objects is by sending

194 B. Coecke and É.O. Paquette

each object to the underlying set, and morphisms to the underlying functions. So we
forget the extra structure the object has. Therefore the functor U is typically called
forgetful. For example, the category Grp is a concrete category for the functor

U : Grp −→ Set ::
{

(G, •, 1) �→ G

f �→ f

which “forgets” the group’s multiplication and unit, and morphisms are mapped on
their underlying functions. More generally, a D-concrete category is a category C
with a functor U : C −→ D.

Example 25 The TQFTs of Sect. 3.6.5 are special kinds of functors.

3.3 The 2D Case: Muscle Power

We now genuinely start to study the interaction of the parallel and the sequential
modes of composing systems, and operations thereon.

3.3.1 Strict Symmetric Monoidal Categories

The starting point of this Section is the notion of a strict monoidal category as
given in Definition 4. Such categories enable us to give formal meaning to physical
processes which involve several types, e.g. classical and quantum as the following
example clearly demonstrates.

Example 26 Define CQOpp to be the strict monoidal category containing both clas-
sical and quantum systems, with operations thereon as morphisms, and with the
obvious notion of monoidal tensor, that is, a physical analogue of the tensor for
vegetables that we saw in the prologue. Concretely, by A ⊗ B we mean that we
have both A and B available to operate on. Note in particular that at this stage
of the discussion there are no Hilbert spaces involved, so ⊗ cannot stand for the
tensor product, but this does not exclude that we may want to model it by the tensor
product at a later stage. In this category, non-destructive (projective) measurements
have type

Q � X ⊗ Q

where Q is a quantum system and X is the classical data produced by the measure-
ment. Obviously, the hom-sets

CQOpp(Q, Q) and CQOpp(X, X)

have a very different structure since CQOpp(Q, Q) stands for the operations we
can perform on a quantum system while CQOpp(X, X) stands for the classical
operations (e.g. classical computations) which we can perform on classical systems.
But all of these now live within a single mathematical entity CQOpp.

3 Categories for the Practising Physicist 195

The structure of a strict monoidal category does not yet capture certain important
properties of cooking with vegetables. Denote the strict monoidal category con-
structed in the Prologue by Cook.

Clearly “boil the potato while fry the carrot” is very much the same thing as “fry
the carrot while boil the potato”. But we cannot just bluntly say that in the category
Cook the equality

h ⊗ f = f ⊗ h

holds. By plain set theory, for this equality to be meaningful, the two morphisms
h ⊗ f and f ⊗ h need to live in the same set. That is, respecting the structure of a
category, within the same hom-set. So

A ⊗ D
f⊗h� B ⊗ F and D ⊗ A

h⊗ f� F ⊗ B

need to have the same type, which implies that

A ⊗ D = D ⊗ A and B ⊗ F = F ⊗ B (3.7)

must hold. But this completely blurs the distinction between a carrot and a potato.
For example, we cannot distinguish anymore between “boil the potato while fry the
carrot”, which we denoted by

A ⊗ D
f⊗h� B ⊗ F ,

and “fry the potato while boil the carrot”, which given Eq. (3.7), we can write as

A ⊗ D = D ⊗ A
h⊗ f� F ⊗ B = B ⊗ F .

So we basically threw out the child with the bath water.
The solution to this problem is to introduce an operation

σA,D : A ⊗ D � D ⊗ A

which swaps the role of the potato and the carrot relative to the monoidal tensor.
The fact that “boil the potato while fry the carrot” is essentially the same thing as
“fry the carrot while boil the potato” can now be expressed as

σB,F ◦ (f ⊗ h) = (h ⊗ f) ◦ σA,D .

In our “real world example” of cooking this operation can be interpreted as physi-
cally swapping the vegetables [21]. An equational law governing “swapping” is:

σB,A ◦ σA,B = 1A⊗B .

196 B. Coecke and É.O. Paquette

Definition 8 A strict symmetric monoidal category is a strict monoidal category C
which moreover comes with a family of isomorphisms

{
A ⊗ B

σA,B� B ⊗ A
∣
∣
∣ A, B ∈ |C|

}

called symmetries, and which are such that:

• for all A, B ∈ |C| we have σ−1
A,B = σB,A, and

• for all A, B, C, D ∈ |C| and all f, g of appropriate type we have

σC,D ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,B . (3.8)

All Examples of Sect. 3.2.3 are strict symmetric monoidal categories for the
obvious notion of symmetry in terms of “swapping”.

We can rewrite Eq. (3.8) in a form which makes the types explicit:

A ⊗ B

f⊗g

σA,B
B ⊗ A

g⊗ f

C ⊗ D
σC,D

D ⊗ C

(3.9)

This representation is referred to as commutative diagrams.

Proposition 2 In any strict monoidal category we have

A ⊗ B

f⊗1B

1A⊗g
A ⊗ D

f⊗1D

C ⊗ B
1C⊗g

C ⊗ D

(3.10)

Indeed, relying on bifunctoriality we have:

(f ⊗ 1D) ◦ (1A ⊗ g) = (f ◦ 1A)⊗ (1D ◦ g)

||
f ⊗ g

||
(1C ◦ f)⊗ (g ◦ 1B) = (1C ⊗ g) ◦ (f ⊗ 1B) .

3 Categories for the Practising Physicist 197

The reader can easily verify that, given a connective −⊗− defined both on objects
and morphisms as in items 1 & 2 of Definition 4, the four equations

(f ◦ 1A)⊗ (1D ◦ g) = f ⊗ g = (1B ◦ f)⊗ (g ◦ 1C) (3.11)

(g ⊗ 1B) ◦ (f ⊗ 1B) = (g ◦ f)⊗ 1B (3.12)

(1A ⊗ g) ◦ (1A ⊗ f) = 1A ⊗ (g ◦ f) , (3.13)

when varying over all objects A, B, C, D ∈ |C| and all morphisms f and g of
appropriate type, are equivalent to the single equation

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) (3.14)

when varying over f, g, h, k. Eqs. (3.12), (3.13) together with

1A ⊗ 1B = 1A⊗B

is usually referred to as −⊗− being functorial in both arguments. They are indeed
equivalent to the mappings on objects and morphisms

(1A ⊗−) : C −→ C and (−⊗ 1B) : C −→ C

both being functors, for all objects A, B ∈ |C| — their action on objects is

(1A ⊗−) :: X �→ A ⊗ X and (−⊗ 1B) :: X �→ X ⊗ B .

Hence, functoriality in both arguments is strictly weaker than bifunctoriality
(cf. Example 23), since the latter also requires Eq. (3.11).

3.3.2 Graphical Calculus for Symmetric Monoidal Categories

The most attractive, and at the same time, also the most powerful feature of strict
symmetric monoidal categories, is that they admit a purely diagrammatic calculus.
Such a graphical language is subject to the following characteristics:

• The symbolic ingredients in the definition of strict symmetric monoidal structure,
e.g. ⊗, ◦, A, I, f etc., or any other abstract categorical structure which refines it,
all have a purely diagrammatic counterpart ;

• The corresponding axioms become very intuitive graphical manipulations ;
• And crucially, an equational statement is derivable in the graphical language

if and only if it is symbolically derivable from the axioms of the theory.

For a more formal presentation of what we precisely mean by a graphical calculus
we refer the reader to Peter Selinger’s marvelous paper [63] in these volumes.

198 B. Coecke and É.O. Paquette

These diagrammatic calculi trace back to Penrose’s work in the early 1970s, and
have been given rigorous formal treatments in [35, 38, 39, 62]. Some examples
of possible elaborations and corresponding applications of the graphical language
presented in this paper are in [25, 26, 23, 45, 63, 65, 67, 68].

The graphical counterparts to the axioms are typically much simpler then their
formal counterparts. For example, in the Prologue we mentioned that bifunctoriality
becomes a tautology in this context. Therefore such a graphical language radically
simplifies algebraic manipulations, and in many cases trivialises something very
complicated. Also the physical interpretation of the axioms, something which is
dear to the authors of this paper, becomes very direct.

The graphical counterparts to strict symmetric monoidal structure are:

– The identity 1I is the empty picture (= it is not depicted).
– The identity 1A for and object A different of I is depicted as

A

– A morphism f : A � B is depicted as

A

B

f

– The composition of morphisms f : A � B and g : B � C is depicted by
locating g above f and by connecting the output of f to the input of g, i.e.

A

B

f

g

C

– The tensor product of morphisms f : A � B and g : C � D is depicted
by aligning the graphical representation of f and g side by side in the order they
occur within the expression f ⊗ g, i.e.

3 Categories for the Practising Physicist 199

A

B

f g

C

D

– Symmetry

σAB : A ⊗ B � B ⊗ A

is depicted as

A

A

B

B

– Morphisms

ψ : I � A , φ : A � I and s : I � I

are respectively depicted as

A s

ψ
A

φ

The diamond shape of the morphisms of type I � I indicates that they arise when
composing two triangles:

ψ

φ

Example 27 In the category QuantOpp the triangles of respective types I � A
and A � I represent states and effects, and the diamonds of type I � I can
be interpreted as probabilistic weights: they give the likeliness of a certain effect to
occur when the system is in a certain state. In the usual quantum formalism these
values are obtained when computing the Born rule or Luders’ rule. In appropriate

200 B. Coecke and É.O. Paquette

categories, we find these exact values back as one of these diamonds, by composing
a state and an effect [22, 63].

The equation

f ⊗ g = (f ⊗ 1D) ◦ (1A ⊗ g) = (1B ⊗ g) ◦ (f ⊗ 1C) (3.15)

established in Proposition 2 is depicted as:

A

B

f g

C

D

=

A

B
f

g

C

D

=

A

B
g

C

D

f

In words: we can “slide” boxes along their wires.
The first defining equation of symmetry, i.e. Eq. (3.9), depicts as:

A

B

f g

C

D

=

A

B
g

C

D

f

i.e., we can still “slide” boxes along crossings of wires. The equation

σB,A ◦ σA,B = 1A,B , (3.16)

which when varying A, B ∈ |C| states that

σ−1
A,B = σB,A ,

depicts as

A

A

A

B

B

B =

A B

Suppose now that for any three arbitrary morphisms

f : A � A′ , g : B � B′ and h : C � C ′

in any strict symmetric monoidal category, one intends to prove that

3 Categories for the Practising Physicist 201

(σB′,C ′ ⊗ f) ◦ (g ⊗ σA,C ′) ◦ (σA,B ⊗ h)

= (h ⊗ σA′,B ′) ◦ (σA′,C ⊗ 1B ′) ◦ (1A′ ⊗ σB′,C) ◦ (f ⊗ g ⊗ 1C)

always holds. Then, the typical textbook proof proceeds by diagram chasing:

A ⊗ B ⊗ C

1A⊗g⊗1C

σA,B⊗1C

1A⊗B⊗h
A ⊗ B ⊗ C ′ σA,B⊗1C ′

B ⊗ A ⊗ C ′

g⊗1A⊗C ′B ⊗ A ⊗ C

1B⊗A⊗h

g⊗1A⊗C

A ⊗ B ′ ⊗ C
σA,B′⊗1C

f⊗1B′⊗C

B ′ ⊗ A ⊗ C
1B′⊗A⊗h

1B′⊗σA,C1B′⊗ f⊗1C

B′ ⊗ A ⊗ C ′

1B′⊗σA,C ′

A′ ⊗ B ′ ⊗ C
σA′,B′⊗1C

1A′⊗σB′,C

B ′ ⊗ A′ ⊗ C

σB′,A⊗C 1B′⊗σA′,C

B ′ ⊗ C ⊗ A
1B′⊗h⊗1A

1B′⊗C⊗ f

B′ ⊗ C ′ ⊗ A

1B′⊗C ′⊗ f

A′ ⊗ C ⊗ B ′

σA′,C⊗1B′

B′ ⊗ C ⊗ A′

σB′,C⊗A′

1B′⊗h⊗1A′

σB′,C⊗1A′

B′ ⊗ C ′ ⊗ A′

σB′,C ′⊗1A′

C ⊗ A′ ⊗ B ′
1C⊗σA′,B′

C ⊗ B ′ ⊗ A′
h⊗1B′⊗A′

C ′ ⊗ B′ ⊗ A′

One needs to read this “dragon” as follows. The two outer paths both going from
the left-upper-corner to the right-lower-corner represent the two sides of the equality
we want to prove. Then, we do what category-theoreticians call diagram chasing,
that is, “pasting” together several commutative diagrams, which connect one of the
outer paths to the other. For example, the triangle at the top of the diagram expresses
that

(σA,B ⊗ 1C ′) ◦ (1A⊗B ⊗ h) = (1B⊗A ⊗ h) ◦ (σA,B ⊗ 1C) ,

that is, an instance of bifunctoriality. Using properties of strict symmetric monoidal
categories, namely bifunctoriality and Eq. (3.9) expressed as commutative diagrams,
we can pass from the outer path at the top and the right to the outer path on the left

202 B. Coecke and É.O. Paquette

and the bottom. This is clearly a very tedious task and getting these diagrams into
LaTeX becomes a time-consuming activity.

On the other hand, when using the graphical calculus, one immediately sees that

ABC

A B C A B C

ABC

=

f gh

f

g

h

must hold. We pass from one picture to the other by sliding the boxes along wires
and then by rearranging these wires. In terms of the underlying equations of strict
symmetric monoidal structure, “sliding the boxes along wires” uses Eqs. (3.9) and
(3.15), while “rearranging these wires” means that we used Eq. (3.9) as follows:

=

Indeed, since symmetry is a morphism it can be conceived as a box, and hence we
can “slide it along wires”.

In a broader historical perspective, we are somewhat unfair here. Writing equa-
tional reasoning down in terms of these commutative diagrams rather than long lists
of equalities was an important step towards a better geometrical understanding of
the structure of proofs.

3.3.3 Extended Dirac Notation

Definition 9 A strict dagger monoidal category C is a strict monoidal category
equipped with an involutive identity-on-objects contravariant functor

† : Cop−→C ,

that is,

• A† = A for all A ∈ |C|, and
• f †† = f for all morphisms f ,

3 Categories for the Practising Physicist 203

and this functor preserves the tensor, that is,

(f ⊗ g)† = f † ⊗ g† . (3.17)

We will refer to B
f †
� A as the adjoint to A

f� B. A strict dagger symmetric
monoidal category C is both a strict dagger monoidal category and a strict symmet-
ric monoidal category such that

σ
†
A,B = σ−1

A,B .

Definition 10 [2] A morphism U : A � B in a strict dagger monoidal category
C is called unitary if its inverse and its adjoint coincide, that is, if

U† = U−1 .

Let ψ, φ : I � A be “elements” in C. Their inner-product is the “scalar”

〈φ |ψ〉 := φ† ◦ ψ : I � I .

So in any strict monoidal category we refer to morphisms of type

I � A

as elements (cf. Example 4), to those of type

A � I

as co-elements, and to those of type

I � I

as scalars. As already discussed in Example 27 in the category QuantOpp these
corresponds respectively to states, effects and probabilistic weights.

Even at this abstract level, many familiar things follow from Definition 10. For
example, we recover the defining property of adjoints for any dagger functor:

〈 f † ◦ ψ |φ〉 = (f † ◦ ψ)† ◦ φ

= (ψ† ◦ f) ◦ φ

= ψ† ◦ (f ◦ φ)

= 〈ψ | f ◦ φ〉.

204 B. Coecke and É.O. Paquette

From this it follows that unitary morphisms preserve the inner-product:

〈U ◦ ψ |U ◦ φ〉 = 〈U† ◦ (U ◦ ψ) |φ〉
= 〈(U † ◦U) ◦ ψ |φ〉
= 〈ψ |φ〉.

Importantly, the graphical calculus of the previous section extends to strict dagger
symmetric monoidal categories. Following Selinger [63], we introduce an asymme-

try in the graphical notation of the morphisms A
f� B as follows:

f for

Then we depict the adjoint B
f †
� A of A

f� B as follows:

forf

that is, we turn the box representing f upside-down. All this enables interpreting
Dirac notation [31] in terms of strict dagger symmetric monoidal categories, and in
particular, in terms of the corresponding graphical calculus:

ψψψ

φφφ

ψ

φ
ψφψφ

The latter notation merely requires closing the bra’s and ket’s and performing a 90◦
rotation.7 Summarising we now have:

7 This 90◦ rotation is merely a consequence of our convention to read pictures from bottom-to-top.
Other authors obey different conventions e.g. top-to-bottom or left-to-right.

3 Categories for the Practising Physicist 205

In particular, note that in the language of strict dagger symmetric monoidal cate-
gories both a bra-ket and a ket-bra are compositions of morphisms, namely φ† ◦ ψ

and ψ ◦ φ† respectively. What the diagrammatic calculus adds to standard Dirac
notation is a second dimension to accommodate the monoidal composition:

◦◦

⊗

⊗

composites

monoidal tensor

The advantages of this have already been made clear in the previous section and will
even become clearer in Sect. 3.4.1.

Concerning the types of the morphisms in the third column of the above table,
recall that in Example 4 we showed that the vectors in Hilbert spaces H can be
faithfully represented by linear maps of type C → H. Similarly, complex numbers
c ∈ C, that is, equivalently, vectors in the ‘one-dimensional Hilbert space C’, can
be faithfully represented by linear maps

sc : C → C :: 1 �→ c ,

since by linearity the image of 1 fully specifies this map.
However, by making explicit reference to FdHilb and hence also by having

matrices (morphisms in FdHilb expressed relative to some bases) in the above
table, we are actually cheating. The fact that Hilbert spaces and linear maps

206 B. Coecke and É.O. Paquette

are set-theoretic based mathematical structures has non-trivial “unpleasant” impli-
cations. In particular, while the ⊗-notation for the monoidal structure of strict
monoidal categories insinuates that the tensor product would turn FdHilb into a
strict symmetric monoidal category, this turns out not to be true in the “strict” sense
of the word true.

3.3.4 The Set-Theoretic Verdict on Strictness

As outlined in Sect. 3.2.5, we “model” real world categories in terms of concrete
categories. While the real world categories are indeed strict monoidal categories,
their corresponding models typically aren’t.

What goes wrong is the following: for set-theory based mathematical structures
such as groups, topological spaces, partial orders and vector spaces, neither

A ⊗ (B ⊗ C) = (A ⊗ B)⊗ C nor I⊗ A = A = A ⊗ I

hold. This is due to the fact that for the underlying sets X, Y, Z we have that

(x, (y, z)) �= ((x, y), z) and (∗, x) �= x �= (x, ∗)

so, as a consequence, neither

X × (Y × Z) = (X × Y)× Z nor {∗} × X = X = X × {∗}

hold. We do have something very closely related to this, namely

X × (Y × Z) � (X × Y)× Z and {∗} × X � X � X × {∗} .

That is, we have isomorphisms rather than strict equations. But these isomorphisms
are not just ordinary isomorphisms but so-called natural isomorphisms. They are
an instance of the more general natural transformations which we will discuss in
Sect. 3.6.2.8 Meanwhile we introduce a restricted version of this general notion of
natural transformation, one which comes with a clear interpretation.

Consider a category C that comes with an operation on objects

−⊗− : |C| × |C| → |C| :: (A, B) �→ A ⊗ B , (3.18)

and with for all objects A, B, C, D ∈ |C| we also have an operation on hom-sets

−⊗− : C(A, B)× C(C, D) → C(A ⊗ C, B ⊗ D) :: (f, g) �→ f ⊗ g. (3.19)

8 Naturality is one of the most important concepts of formal category theory. In fact, in the found-
ing paper [33] Eilenberg and MacLane argue that their main motivation for introducing the notion
of a category is to introduce the notion of a functor, and that their main motivation for introducing
the notion of a functor is to introduce the notion of a natural transformation.

3 Categories for the Practising Physicist 207

Let

Λ(x1, . . . , xn, C1, . . . , Cm) and Ξ(x1, . . . , xn, C1, . . . , Cm)

be two well-formed expressions built from:

• − ⊗−,
• brackets,
• variables x1, . . . , xn ,
• and constants C1, . . . , Cm ∈ |C|.
Then a natural transformation is a family

{
Λ(A1, . . . , An, C1, . . . , Cm)

ξA1,...,An� Ξ(A1, . . . , An, C1, . . . , Cm) | A1, . . . , An ∈ C
}

of morphisms which are such that for all objects A1, . . . , An, B1, . . . , Bn ∈ |C| and

all morphisms A1
f1� B1 , . . . , An

fn� Bn we have:

Λ(A1, . . . , An, C1, . . . , Cm)
ξA1,...,An� Ξ(A1, . . . , An, C1, . . . , Cm)

Λ(B1, . . . , Bn, C1, . . . , Cm)

Λ(f1,..., fn ,1C1 ,...,1Cm)

�

ξB1,...,Bn

� Ξ(B1, . . . , Bn, C1, . . . , Cm)

Ξ(f1,..., fn ,1C1 ,...,1Cm)

�

A natural transformation is a natural isomorphism if, in addition, all these mor-
phisms ξA1,...,An are isomorphisms in the sense of Definition 2.

Examples of such well-formed expressions are

x ⊗ (y ⊗ z) and (x ⊗ y)⊗ z

and the corresponding constraint on the morphims is

A ⊗ (B ⊗ C)

f⊗(g⊗h)

αA,B,C
(A ⊗ B)⊗ C

(f⊗g)⊗h

A′ ⊗ (B′ ⊗ C ′) αA′,B′,C ′ (A′ ⊗ B ′)⊗ C ′

(3.20)

If Diagram (3.20) commutes for all A, B, C, A′, B′, C ′, f, g, h and the morphisms

α := {αA,B,C | A, B, C ∈ C}

208 B. Coecke and É.O. Paquette

are all isomorphisms, then this natural isomorphism is called associativity. Its name
refers to the fact that this natural isomorphism embodies a weaker form of the strict
associative law A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C . A better name would actually be
re-bracketing, since that is what it truly does: it is a morphism—which we like to
think of as a process—which transforms type A⊗ (B ⊗C) into type (A⊗ B)⊗C .
In other words, it provides a formal witness to the actual processes of re-bracketing
a mathematical expression. The naturality condition in Diagram (3.20) formally
states that re-bracketing commutes with any triple of operations f, g, h we apply to
the systems, and hence it tells us that the process of re-bracketing does not interfere
with any non-trivial processes f, g, h—almost as if it wasn’t there.

Other important pairs of well-formed formal expressions are

x and c ⊗ x x and x ⊗ c

and, if I is taken to be the constant object, the corresponding naturality constraint is

A
λA

f

I⊗ A

1I⊗ f

A
ρA

f

A ⊗ I

f⊗1I

B
λB

I⊗ B B ρB
B ⊗ I

(3.21)

The natural isomorphisms λ and ρ in Diagrams (3.21) are called left- and right unit.
In this case, a better name would have been left- and right introduction since they
correspond to the process of introducing a new object relative to an existing one.

We encountered a fourth important example in Definition 8, namely

x ⊗ y and y ⊗ x ,

for which Diagram (3.9) is the naturality condition. The isomorphism σ is called
symmetry but a better name could have been exchange or swapping.

Example 28 The category Set has associativity, left- and right unit, and symmetry
natural isomorphisms relative to the Cartesian product, with the singleton set {∗} as
the monoidal unit. Explicitly, setting

f × f ′ : X × X ′ → Y × Y ′ :: (x, x ′) �→ (f (x), f ′(x ′))

for f : X → Y and f ′ : X ′ → Y ′, these natural isomorphisms are

αX,Y,Z : X × (Y × Z) → (X × Y)× Z :: (x, (y, z)) �→ ((x, y), z)

λX : X → {∗} × X :: x �→ (∗, x) ρX : X → X × {∗} :: x �→ (x, ∗)
σX,Y : X × Y → Y × X :: (x, y) �→ (y, x)

3 Categories for the Practising Physicist 209

The reader can easily verify that Diagrams (3.9), (3.20) and (3.21) all commute.
Showing that bifunctoriality holds is somewhat more tedious.

Definition 11 A monoidal category consists of the following data:

1. a category C ,
2. an object I ∈ |C| ,
3. a bifunctor −⊗−, that is, an operation both on objects and on morphisms as in

prescriptions (3.18) and (3.19) above, which moreover satisfies

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) and 1A ⊗ 1B = 1A⊗B

for all A, B ∈ |C| and all morphisms f, g, h, k of appropriate type , and
4. three natural isomorphisms

α = {A ⊗ (B ⊗ C)
αA,B,C� (A ⊗ B)⊗ C | A, B, C ∈ |C|} ,

λ = {A λA� I⊗ A | A ∈ |C|} and ρ = {A ρA� A ⊗ I | A ∈ |C|} ,

hence satisfying Eqs. (3.20) and (3.21), and such that the Mac Lane pentagon

(A ⊗ B)⊗ (C ⊗ D)
α−

A ⊗ (B ⊗ (C ⊗ D))

α−

1A⊗α−

((A ⊗ B)⊗ C)⊗ D

A ⊗ ((B ⊗ C)⊗ D)
α− (A ⊗ (B ⊗ C))⊗ D

α−⊗1D

(3.22)

commutes for all A, B, C, D ∈ |C|, that also

A ⊗ B
1A⊗λB

ρA⊗1B

A ⊗ (I⊗ B)

αA,I,B

(A ⊗ I)⊗ B

(3.23)

commutes for all A, B ∈ |C|, and that

λI = ρI . (3.24)

A monoidal category is moreover symmetric if there is a fourth natural isomorphism

σ = {A ⊗ B
σA,B� B ⊗ A | A, B ∈ |C|} ,

210 B. Coecke and É.O. Paquette

satisfying Eq. (3.9), and such that

A ⊗ B
σA,B

1A⊗B

B ⊗ A

σB,A

A ⊗ B

(3.25)

commutes for all A, B ∈ |C|, that

A
λA

ρA

I⊗ A

σI,A

A ⊗ I

(3.26)

commutes for all A ∈ |C|, and that

A ⊗ (B ⊗ C)
α−

1A⊗σB,C

(A ⊗ B)⊗ C
σ(A⊗B),C

C ⊗ (A ⊗ B)

α−

A ⊗ (C ⊗ B)
α− (A ⊗ C)⊗ B

σA,C⊗1B
(C ⊗ A)⊗ B

(3.27)

commutes for all A, B, C ∈ |C| .
The set-theoretic verdict on strictness is very hard! The punishment is grave: a

definition which stretches over two pages, since we need to carry along associativity
and unit natural isomorphisms, which, on top of that, are subject to a formal over-
dose of coherence conditions, that is, Eqs. (3.22), (3.23), (3.24), (3.25), (3.27). They
embody rules which should be obeyed when natural ismorphisms interact with each
other, in addition to the naturality conditions which state how natural isomorphisms
interact with other morphisms in the category. For example, Eq. (3.26) tells us that
if we introduce I on the left of A, and then swap I and A, that this should be the
same as introducing I on the right of A. Equation (3.26) tells us that the two ways
of re-bracketing the four variable expressions involved should be the same.

The idea behind coherence conditions is as follows: if for formal expressions
Λ(A1, . . . , An, C1, . . . , Cm) and Ξ(A1, . . ., An, C1, . . ., Cm) there are two morphisms

Λ(A1, . . . , An, C1, . . . , Cm)
f,g� Ξ(A1, . . . , An, C1, . . . , Cm)

which are obtained by composing the natural isomorphisms α, σ , λ, ρ and 1 both
with−⊗− and−◦−, then f = g – identities are indeed natural isomorphisms, for
the formal expressions Λ(A) = Ξ(A) = A. That Eqs. (3.22), (3.23), (3.24), (3.25),
(3.27) suffice for this purpose is in itself remarkable. This is a the consequence of

3 Categories for the Practising Physicist 211

MacLane’s highly non-trivial coherence theorem for symmetric monoidal categories
[50], which states that from this set of equations we can derive any other one.

If it wasn’t for this theorem, things could have been even worse, potentially
involving equations with an unbounded number of symbols.

Pfffffffffffffffffffffff . . .

. . . sometimes miracles do happen:

Theorem 1 (Strictification [50] p.257) Any monoidal category C is categorically
equivalent, via a pair of strong monoidal functors G : C −→ D and F : D −→ C,
to a strict monoidal category D.

The definitions of categorical equivalence and strong monoidal functor can be
found below in Sect. 3.6.3. In words, what this means is that for practical purposes,
arbitrary monoidal categories behave the same as strict monoidal categories. In par-
ticular, the connection between diagrammatic reasoning (incl. Dirac notation) and
axiomatic reasoning for strict monoidal categories extends to arbitrary monoidal
categories. The essence of the above theorem is that the unit and associativity iso-
morphims are so well-behaved that they don’t affect this correspondence. In the
graphical calculus, the associativity natural isomorphisms becomes implicit when
we write

f g h

The absence of any brackets means that we can interpret this picture either as

f g h or f g h

That is, it does not matter whether in first order we want to associate f with g, and
then in second order this pair as a whole with h, or whether in first order we want to
associate g with h, and then in second order this pair as a whole with f .

So things turn out not to be as bad as they looked at first sight!

Example 29 The category Set admits two important symmetric monoidal structures.
We discussed the Cartesian product in Example 28. The other one is the disjoint
union. Given two sets X and Y their disjoint union is the set

X + Y := {(x, 1) | x ∈ X} ∪ {(y, 2) | y ∈ Y }.

This set can be thought of as the set of all elements both of X and Y , but where the
elements of X are “coloured” with 1 while those of Y are “coloured” with 2. This
guarantees that, when the same element occurs both in X and Y , it is twice accounted

212 B. Coecke and É.O. Paquette

for in X +Y since the “colours” 1 and 2 recall whether the elements in X +Y either
originated in X or in Y . As a consequence, the intersection of {(x, 1) | x ∈ X} and
{(y, 2) | y ∈ Y } is empty, hence the name “disjoint” union.

For the disjoint union, we take the empty set ∅ as the monoidal unit and set

f + f ′ : X + X ′ → Y + Y ′ ::
{

(x, 1) �→ (f (x), 1)

(x, 2) �→ (f ′(x), 2)

for f : X → Y and f ′ : X ′ → Y ′. The natural isomorphisms of the symmetric
monoidal structure are

αX,Y,Z : X + (Y + Z) → (X + Y)+ Z ::
⎧
⎨

⎩

(x, 1) �→ ((x, 1), 1)

((x, 1), 2) �→ ((x, 2), 1)

((x, 2), 2) �→ (x, 2)

.

λX : X → ∅+ X :: x �→ (x, 2) ρX : X → X + ∅ :: x �→ (x, 1)

σX,Y : X + Y → Y + X :: (x, i) �→ (x, 3− i)

One again easily verifies that Diagrams (3.20), (3.21) and (3.9) all commute. Show-
ing that bifunctoriality holds is again somewhat more tedious.

Example 30 The category FdVectK also admits two symmetric monoidal structures,
provided respectively by the tensor product ⊗ and by the direct sum ⊕.

For the tensor product, the monoidal unit is the underlying field K, while the
natural isomorphisms of the monoidal structure are given by

αV1,V2,V3 : V1 ⊗ (V2 ⊗ V3) → (V1 ⊗ V2)⊗ V3 :: v′ ⊗ (v′′ ⊗ v′′′) �→ (v′ ⊗ v′′)⊗ v′′′

λV : V → K⊗ V :: v �→ 1⊗ v ρV : V → V ⊗K :: v �→ v ⊗ 1

σV1,V2 : V1 ⊗ V2 → V2 ⊗ V1 :: v′ ⊗ v′′ �→ v′′ ⊗ v′ .

Note that the inverse to λV is

λ−1
V : K⊗ V → V :: k ⊗ v �→ k · v .

The “scalars” are provided by the field K itself, since it is in bijective correspon-
dence with the linear maps from K to itself. We leave it to the reader to verify that
this defines a monoidal structure.

On the other hand, the monoidal unit for the direct sum is the 0-dimensional
vector space. Hence this monoidal structure only admits a single “scalar”. The fol-
lowing subsection discusses scalars in more detail.

Definition 12 A dagger monoidal category C is a monoidal category which comes
with an identity-on-objects contravariant involutive functor

† : Cop−→C

3 Categories for the Practising Physicist 213

satisfying Eq. (3.17), and for which all unit and associativity natural isomorphisms
are unitary. A dagger symmetric monoidal category C is both a dagger monoidal
category and a symmetric monoidal category, in which the symmetry natural iso-
morphism is also unitary.

Example 31 The category FdHilb admits two dagger symmetric monoidal struc-
tures, respectively provided by the tensor product and by the direct sum. In both
cases, the adjoint of Example 21 is the dagger functor.

Example 32 As we will see in great detail in Sects. 3.4.2 and 3.5.4, the category Rel
which has sets as objects and relations as morphisms also admits two symmetric
monoidal structures, just like Set: these are again the Cartesian product and the dis-
joint union. Moreover, Rel is dagger symmetric monoidal relative to both monoidal
structures with the relational converse as the dagger functor. This is a first very
important difference between Rel and Set, since the latter does not admit a dagger
functor for either of the monoidal structures we identified on it.

Example 33 The category 2Cob has 1-dimensional closed manifolds as objects, and
2-dimensional cobordisms between these as morphisms, it is dagger symmetric
monoidal with the disjoint union of manifolds as its monoidal product and with
the reversal of cobordisms as the dagger. This category will be discussed in great
detail in Sect. 3.4.3.

Of course, in FdHilb the tensor product⊗ and the direct sum⊕ are very different
monoidal structures as exemplified by the particular role each of these plays within
quantum theory. In particular, as pointed out by Schrödinger in the 1930s [60], the
tensor product description of compound quantum systems is what makes quantum
physics so different from classical physics. We will refer to monoidal structures
which are somewhat like ⊗ in FdHilb as quantum-like, and to those that are rather
like ⊕ in FdHilb as classical-like. As we will see below, the quantum-like tensors
allow for correlations between subsystems, so the joint state can in general not be
decomposed into states of the individual subsystems. In contrast, the classical-like
tensors can only describe “separated” systems, that is, the state of a joint system can
always be faithfully represented by states of the individual subsystems.

The tensors considered in this paper have the following nature:

Category Classical-like Quantum-like Other (see §3.4.3)

Set × +
Rel + ×
FdHilb ⊕ ⊗
nCob +

Observe the following remarkable facts:

• While × behaves “classical-like” in Set, it behaves “quantum-like” in Rel, and
this despite the fact that Rel contains Set as a subcategory with the same objects
as Rel, and which inherits its monoidal structures from Rel.

214 B. Coecke and É.O. Paquette

• There is a remarkable parallel between the role that the pair (⊕,⊗) plays for
FdHilb and the role that the pair (+,×) plays for Rel.

• In nCob the direct sum even becomes “quantum-like”—a point which has been
strongly emphasized for a while by John Baez [9].

All of this clearly indicates that being either quantum-like and classical-like is
something that involves not just the objects, but also the tensor and the morphism
structure.

Sections 3.4 and 3.5 provide a detailed discussion of these two very distinct kinds
of monoidal structures, which will shed more light on the above table.

To avoid confusion concerning which monoidal structure on a category we are
considering, we may specify it e.g., (FdHilb,⊗, C).

3.3.5 Scalar Valuation and Multiples

In any monoidal category C the hom-set SC := C(I, I) is always a monoid with
categorical composition as monoid multiplication. Therefore we call SC the scalar
monoid of the monoidal category C. Such a monoid equips any monoidal category
with explicit quantitative content. For instance, if C is dagger monoidal, scalars can
be produced in terms of the inner-product of Definition 10.

The following is a fascinating fact discovered by Kelly and Laplaza in [41]: even
for “non-symmetric” monoidal categories, the scalar monoid is always commuta-
tive. The proof is given by the following commutative diagram:

I
�

I⊗ I I⊗ I I⊗ I
�

I

I

t

�
I⊗ I

1I⊗t

I⊗ I

s⊗1I

�
I

s

I �

s

I⊗ I

s⊗1I

I⊗ I

s⊗t

I⊗ I �

1I⊗t

I

t

(3.28)

Equality of the two outer paths both going from the left-lower-corner to the right-
upper-corner boils down to equality between:

• the outer left/upper path which consists of t◦s, and the composite of isomorphism
I � I⊗ I with its inverse, so nothing but 1I, giving all together t ◦ s, and

• the outer lower/right path, giving all together s ◦ t .

Their equality relies on bifunctoriality (cf. middle two rectangles) and naturality of
the left- and right-unit isomorphisms (cf. the four squares).

3 Categories for the Practising Physicist 215

Diagrammatically commutativity is subsumed by the fact that scalars do not have
wires, and hence can ‘move freely around in the picture’:

s

t

=
s

t
=s t

This result has physical consequences. Above we argued that strict monoidal
categories model physical systems and processes thereon. We now discovered that
a strict monoidal category C always has a commutative endomorphism monoid SC.
So when varying quantum theory by changing the underlying field K of the vector
space, we need to restrict ourselves to commutative fields, hence excluding things
like “quaternionic quantum mechanics” [34].

Example 34 We already saw that the elements of S(FdHilb,⊗,C) are in bijective cor-
respondence with those of C, in short,

S(FdHilb,⊗,C) � C .

In Set however, since there is only one function of type {∗} → {∗}, namely the
identity, S(Set,×,{∗}) is a singleton, in short,

S(Set,×,{∗}) � {∗} .

Thus, the scalar structure on (Set,×, {∗}) is trivial. On the other hand, in Rel there
are two relations of type {∗} → {∗}, the identity and the empty relation, so

S(Rel,×,{∗}) � B ,

where B are the Booleans. Hence, the scalar structure on (Rel,×, {∗}) is non-trivial
as it is that of Boolean logic. Operationally, we can interpret these two scalars as
“possible” and “impossible” respectively. When rather considering ⊕ on FdHilb
instead of ⊗ we again have a trivial scalar structure, since there is only one linear
map from the 0-dimensional Hilbert space to itself. So

S(FdHilb,⊕,C) � {∗} .

So scalars and scalar multiples are more closely related to the “multiplicative” tensor
product structure than to the “additive” direct sum structure. We also have

S(nCob,+,∅) � N .

In general, it is the quantum-like monoidal structures which admit non-trivial scalar
structure. This might come as a surprise to the reader, given that for vector spaces
one typically associates these scalars with linear combinations of vectors, which are
very much “additive” in spirit.

216 B. Coecke and É.O. Paquette

The right half of commutative Diagram (3.28) states that

s ◦ t = I
� � I⊗ I

s⊗t� I⊗ I
� � I .

We generalize this by defining scalar multiples of a morphism A
f� B as

s • f := A
�� I⊗ A

s⊗ f� I⊗ B
�� B .

These scalars satisfy the usual properties, namely

(t • g) ◦ (s • f) = (t ◦ s) • (g ◦ f) (3.29)

and

(s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g) , (3.30)

cf. in matrix calculus we have

(

y

(
b11 b12
b21 b22

))(

x

(
a11 a12
a21 a22

))

= yx

((
b11 b12
b21 b22

)(
a11 a12
a21 a22

))

and

(

x

(
a11 a12
a21 a22

))

⊗
(

y

(
b11 b12
b21 b22

))

= xy

((
a11 a12
a21 a22

)

⊗
(

b11 b12
b21 b22

))

.

Diagrammatically these properties are again implicit and require ‘artificial’ brackets
to be made explicit, for example, Eq. (3.29) is hidden as:

=

ff

g gtt

s s

Of course, we could still prove these properties with commutative diagrams. For
Eq. (3.29) the left-hand-side and the right-hand-side are respectively the top and the
bottom path of the following diagram:

3 Categories for the Practising Physicist 217

I⊗ B
ρI⊗1B

1I⊗1B
I⊗ B

t⊗g

A � I⊗ A

s⊗ f

ρI⊗1A

(I⊗ I)⊗ B

λ−1
I ⊗1B

(1I⊗t)⊗g
I⊗ C � C

(I⊗ I)⊗ A

(s⊗1I)⊗ f

(s⊗t)⊗(g◦ f)
(I⊗ I)⊗ C

λ−1
I ⊗1C

where we use the fact that t ◦ s = λ−1
I ◦ (s ⊗ t) ◦ ρI. The diamond on the left

commutes by naturality of ρI. The top triangle commutes because both paths are
equal to 1I⊗B as λI = ρI. The bottom triangle commutes by Eq. (3.15). Finally, the
right diamond commutes by naturality of λI.

3.4 Quantum-Like Tensors

So what makes ⊗ so different from ⊕ in the category FdHilb, what makes × so
different in the categories Rel and Set, and what makes × so similar in the category
Rel to ⊗ in the category FdHilb?

3.4.1 Compact Categories

Definition 13 A compact (closed) category C is a symmetric monoidal category in
which every object A ∈ |C| comes with

1. another object A∗, the dual of A,
2. a pair of morphisms

I
ηA� A∗ ⊗ A and A ⊗ A∗ εA� I ,

respectively called unit and counit,

which are such that the following two diagrams commute:

A

1A

ρA
A ⊗ I

1A⊗ηA
A ⊗ (A∗ ⊗ A)

αA,A∗,A

A I⊗ A
λ−1

A

(A ⊗ A∗)⊗ A
εA⊗1A

(3.31)

218 B. Coecke and É.O. Paquette

A∗

1A∗

λA∗
I⊗ A∗

ηA⊗1A∗
(A∗ ⊗ A)⊗ A∗

α−1
A∗,A,A∗

A∗ A∗ ⊗ I
ρ−1

A∗
A∗ ⊗ (A ⊗ A∗)

1A∗⊗εA

(3.32)

In the case that C is strict the above diagrams simplify to

A

1A⊗ηA
1A

A∗
ηA⊗1A∗

1A∗

A∗ ⊗ A ⊗ A∗

1A∗⊗εA

A ⊗ A∗ ⊗ A
εA⊗1A

A A∗

(3.33)

Definition 13 can also be expressed diagrammatically, provided we introduce some
new graphical elements:

• As before A will be represented by an upward arrow:

A

On the other hand, we depict A∗, the dual object to A, either by an upward arrow
labelled by A∗, or by a downward arrow labelled A:

AA∗

or

• The unit ηA and counit εA are respectively depicted as

A
A

• Commutation of the two diagrams now boils down to:

3 Categories for the Practising Physicist 219

=

unit

counit

=

unit

counit

When expressed diagrammatically, these equational constraints admit the simple
interpretation of “yanking a wire”. While at first sight compactness of a category
as stated in Definition 13 seems to be a somewhat ad hoc notion, this graphical
interpretation establishes it as a very canonical one which extends the graphical
calculus for symmetric monoidal categories with cup- and cap-shaped wires. As
the following lemma shows, the equational constraints imply that we are allowed to
‘slide’ morphisms also along these cups and caps.

Lemma 1 Given a morphism f : A � B define its transpose to be

f ∗ := (1A∗ ⊗ εB) ◦ (1A∗ ⊗ f ⊗ 1B∗) ◦ (ηA ⊗ 1B∗) : B∗ � A∗ .

Diagrammatically, when depicting the morphism f as

f

then its transpose is depicted as

f

Anticipating what will follow, we abbreviate this notation for f ∗ to

f

With this graphical notation we have:

= =f ff f

that is, we can “slide” morphisms along cup- and cap-shaped wires.

220 B. Coecke and É.O. Paquette

The proof of the first equality simply is

f
=

def. transposed

f = f

The proof for the second equality proceeds analogously.

Example 35 The category FdVectK is compact. We take the usual linear algebraic
dual space V ∗ to be V ’s dual object and the unit to be

ηV : K → V ∗ ⊗ V :: 1 �→
n∑

i=1

fi ⊗ ei

where {ei }ni=1 is a basis of V and f j ∈ V ∗ is the linear functional such that f j (ei) =
δi, j for all 1 ≤ i, j ≤ n. Finally, we take the counit to be

εV : V ⊗ V ∗ → K :: ei ⊗ f j �→ f j (ei) .

We leave it to the reader to verify commutation of Diagrams 3.31 and 3.32. Two
important points need to be made here:

• The linear maps ηV and εV do not depend on the choice of the basis {ei }ni=1. It
suffices to verify that there is a canonical isomorphism

FdVectK(V, V)
�−→ FdVectK(K, V ∗ ⊗ V)

which does not depend on the choice of basis. The unit ηV is the image of 1V

under this isomorphism and since 1V is independent of the choice of basis it
follows that ηV does not depend on any choice of basis. The argument for εV

proceeds analogously.
• There are other possible choices for ηV and εV which turn FdVectK into a com-

pact category. For example, if f : V → V is invertible then

η′V := (1V ∗ ⊗ f) ◦ ηV and ε′V := εV ◦ (f −1 ⊗ 1V ∗)

make Diagrams (3.31) and (3.32) commute. Indeed, graphically we have:

= =

f

f−1
=

f

f−1
= and

3 Categories for the Practising Physicist 221

Example 36 The category Rel of sets and relations is also compact relative to the
Cartesian product as we shall see in detail in Sect. 3.4.2.

Example 37 The category QuantOpp is compact. We can pick Bell-states as the
units and the corresponding Bell-effects as counits. As shown in [2, 20], compact-
ness is exactly what enables modeling protocols such as quantum teleportation:

Alice

= = =

Alice Bob Bob

where the trapezoid is assumed to be unitary and hence, its adjoint coincides with
its inverse. The classical information flow is (implicitly) encoded in the fact that the
same trapezoid appears in the left-hand-side picture both at Alice’s and Bob’s side.

Given a morphism f : A � B in a compact category, its name

I
� f �� A∗ ⊗ B

and its coname

A ⊗ B∗ � f �� I

are defined by:

A∗ ⊗ A
1A∗⊗ f

A∗ ⊗ B

and

I

I

ηA � f �
A ⊗ B∗

� f �

f⊗1B∗
B ⊗ B∗

εB

Following [2] we can show that for f : A � B and g : B � C

λ−1
C ◦ (� f �⊗ 1C) ◦ (1A ⊗ �g�) ◦ ρA = g ◦ f

always holds. The graphical proof is again trivial:

222 B. Coecke and É.O. Paquette

=
f

g f

g

A A

BB∗

CC

In contrast a (non-strict) symbolic proof goes as follows:

A
g◦ f

f

ρA

C

Result

A ⊗ I
1A⊗�g�

f⊗1I

1A⊗ηB

A ⊗ B∗ ⊗ C
� f �⊗1C

f⊗1B∗⊗C

I⊗ C

λ−1
C

A ⊗ B∗ ⊗ B

1A⊗B∗⊗g

f⊗1B∗⊗B

B ⊗ B∗ ⊗ C

εB⊗1C

B ⊗ I
1B⊗ηB

B ⊗ B∗ ⊗ B

1B∗⊗B⊗g

εB⊗1B
I⊗ B

1I⊗g

λ−1
B

B
1B

CompactnessρB

B

g

Both paths on the outside are equal to g ◦ f . We want to show that the pentagon
labelled “Result” commutes. To do this we will “unfold” arrows using equations
which hold in compact categories in order to pass from the composite g ◦ f at the
left/bottom/right to λ−1

C ◦ (� f � ⊗ 1C) ◦ (1A ⊗ �g�) ◦ ρA. This will transform the
tautology g ◦ f = g ◦ f into commutation of the pentagon labelled “Result”. For
instance, we use compactness to go from the identity arrow at the bottom of the
diagram to the composite λ−1

B ◦ (εB ⊗ 1B) ◦ (1B ⊗ηB) ◦ρB . The outer left and right
trapezoids express naturality of ρ and λ. The remaining triangles/diamonds express
bifunctoriality and the definitions of name/coname.

The scalar εA ◦ σA∗,A ◦ ηA : K → K depicts as

A

A

and when setting

: = : =or

3 Categories for the Practising Physicist 223

it becomes an ‘A-labelled circle’

A

Example 38 In FdVectK the V -labelled circle stands for the dimension of the vector
space V . By the definitions of ηV and εV , the previous composite is equal to

∑

i j

f j (ei) =
∑

i j

δi, j =
∑

i

1 = dim(V) .

Definition 14 A dagger compact category C is both a compact category and a dag-
ger symmetric monoidal category, such that for all A ∈ |C|, εA = η

†
A ◦ σA,A∗ .

Example 39 The category FdHilb is dagger compact.

3.4.2 The Category of Relations

We now turn our attention to the category Rel of sets and relations, a category which
we briefly encountered in previous sections. Perhaps surprisingly, Rel possesses
more “quantum features” than the category Set of sets and functions. In particular,
just like FdHilb it is a dagger compact category.

A relation R : X → Y between two sets X and Y is a subset of the set of all their
ordered pairs, that is, R ⊆ X × Y . Thus, given an element (x, y) ∈ R, we say that
x ∈ X relates to y ∈ Y , which we denote as x Ry. The set

R := {(x, y) | x Ry}

is also referred to as the graph of the relation.

Example 40 For the relation “strictly less than” or “<” on the natural numbers, we
have that 2 relates to 5, which is denoted as 2 < 5 or (2, 5) ∈ < ⊆ N × N. For the
relation “is a divisor of” or “|” on the natural numbers, we have 6|36 or (6, 36) ∈
| ⊆ N× N. Other examples are general preorders or equivalence relations.

Definition 15 The monoidal category Rel is defined as follows:

• The objects are sets.
• The morphisms are all relations R : X → Y .
• For R1 : X → Y and R2 : Y → Z the composite R2 ◦ R1 ⊆ X × Z is

R2 ◦ R1 := {(x, z) | there exists a y ∈ Y such that x R1 y and y R2z} .

Composition is easily seen to be associative. For X ∈ |Rel| we have

1X := {(x, x) | x ∈ X} .

224 B. Coecke and É.O. Paquette

• The monoidal product of two sets is their Cartesian product, the unit for the
monoidal structure is any singleton, and for two relations R1 : X1 → Y1 and
R2 : X2 → Y2 the monoidal product R1 × R2 ⊆ X1 × X2 → Y1 × Y2 is

R1 × R2 := {((x, x ′), (y, y′)) | x R1 y and x ′R2 y′} ⊆ (X1 × X2)× (Y1 × Y2) .

We mentioned before that Set was contained in Rel as a “sub-monoidal cate-
gory”. In Rel, the left- and right-unit natural isomorphisms respectively are

λX := {(x, (∗, x)) | x ∈ X} and ρX := {(x, (x, ∗)) | x ∈ X} ,

and the associativity natural isomorphism is

αX,Y,Z := {((x, (y, z)), ((x, y), z)) | x ∈ X, y ∈ Y and z ∈ Z}.

These relations are all single-valued, so they are also functions, and they are the
same functions as the natural isomorphisms for the Cartesian product in Set. Let us
verify the coherence conditions for them:

(i) The pentagon

W × (X × (Y × Z))
α−

1×α−

(W × X)× (Y × Z)
α−

((W × X)× Y)× Z

W × ((X × Y)× Z)
α− (W × (X × Y))× Z

α−×1

indeed commutes. The top part

α− ◦ α− : W × (X × (Y × Z)) → ((W × X)× Y)× Z

is by definition a subset of

(W × (X × (Y × Z)))× (((W × X)× Y)× Z) .

Unfolding the definition of relational composition we obtain

α− ◦ α− =
{
((w, (x, (y, z))), (((w′′, x ′′), y′′), z′′))

∣
∣
∣ ∃((w′, x ′), (y′, z′)) s.t.

(w, (x, (y, z)))α((w′, x ′), (y′, z′)) and ((w′, x ′), (y′, z′))α(((w′′, x ′′), y′′), z′′)
}

,

which by the definition of α simplifies to

α− ◦ α− = {((w, (x, (y, z))), (((w, x), y), z)) | w ∈ W, x ∈ X, y ∈ Y, z ∈ Z} .

3 Categories for the Practising Physicist 225

The bottom path yields the same result, hence making the pentagon commute.
For the remaining diagrams we leave the details to the reader.

(ii) The triangle

X × Y
1A×λY

ρX×1Y

X × ({∗} × Y)

αX,{∗},Y

(X × {∗})× Y

commutes as both paths are now equal to

{((x, y), ((x, ∗), y)) | x ∈ X and y ∈ Y } .

As × is symmetric in Set we also expect Rel to be symmetric monoidal. For any X
and Y ∈ |Rel|, the natural isomorphism

σX,Y := {((x, y), (y, x)) | x ∈ X and y ∈ Y }

also obeys the coherence conditions:

(i) The two triangles

X × Y
σX,Y

Y × X

σY,X ,

X
λX

ρX

{∗} × X

σ{∗},X

X × Y X × {∗}

commute since both paths of the left triangle are equal to

{((x, y), (x, y)) | x ∈ X and y ∈ Y } ,

while the paths of the right triangle are equal to

{(x, (x, ∗)) | x ∈ X} .

(ii) The hexagon

X × (Y × Z)
α−

1X×σY,Z

(X × Y)× Z
σ(X×Y),Z

Z × (X × Y)

α−

X × (Z × Y)
α− (X × Z)× Y

σX,Y×1Z
(Z × X)× Y

226 B. Coecke and É.O. Paquette

commutes since both paths are equal to

{((x, (y, z)), ((z, x), y)) | x ∈ X, y ∈ Y and z ∈ Z} .

So Rel is indeed a symmetric monoidal category as expected. Rel shares many com-
mon characteristics with FdHilb, one of them being a †-compact structure. Firstly,
Rel is compact closed with self-dual objects that is, X∗ = X for any X ∈ |Rel|.
Moreover, for any X ∈ |Rel| let

ηX : {∗} → X × X := {(∗, (x, x)) | x ∈ X}

and

εX : X × X → {∗} := {((x, x), ∗) | x ∈ X} .

These morphisms make

X

1X

ρX
X × {∗} 1X×ηX

X × (X × X)

α−

X {∗} × X
λ−1

X

(X × X)× X
εX×1X

and its dual both commute. Indeed:

(a) The composite

(1X × ηX) ◦ ρX : X → X × (X × X)

is the set of tuples

{(x, (x ′, (x ′′, x ′′′)))} ⊆ X × (X × (X × X))

such that there exists an (x ′′′′, ∗) ∈ X × {∗} with

x ρX (x ′′′′, ∗) and (x ′′′′, ∗) (1X × ηX) (x ′, (x ′′, x ′′′)) .

By definition of ρ and 1X , and of the product of relations, this entails that x, x ′′′′
and x ′ are all equal. Moreover, by definition of ηX , and of the product of relations,
we have that x ′′ and x ′′′ are also equal. Thus,

(1X × ηX) ◦ ρX := {(x, (x, (x ′, x ′))) | x, x ′ ∈ X} .

3 Categories for the Practising Physicist 227

(b) Hence the composite

α ◦ ((1X × ηX) ◦ ρ) : X → (X × X)× X

is
α ◦ ((1X × ηX) ◦ ρ) = {(x, ((x, x ′), x ′) | x, x ′ ∈ X} .

(c) The composite

(εX × 1X) ◦ (α ◦ (1X × ηX) ◦ ρ) : X → {∗} × X

is a set of tuples

{(x, (∗, x ′))} ⊆ X × ({∗} × X)

such that there exists an ((x ′′, x ′′′), x ′′′′) ∈ (X × X)× X with

x (α ◦ (1X × ηX) ◦ ρ) ((x ′′, x ′′′), x ′′′′) and ((x ′′, x ′′′), x ′′′′) (εX × 1X) (∗, x ′) .

By the computation in (b) we have that x = x ′′ and x ′′′ = x ′′′′. By definition
of εX , 1X and the product of relations we have x ′′ = x ′′′ and x ′′′′ = x ′. All this
together yields x = x ′′ = x ′′′ = x ′′′′ = x ′ and hence

(εX ⊗ 1X) ◦ (α ◦ (1X ⊗ ηX) ◦ ρ) = {(x, (∗, x)) | x ∈ X} .

(d) Post-composing the previous composite with the natural isomorphism λ−1
X yields

a morphism of type X → X , namely

λ−1
X ◦ (εX ⊗ 1X) ◦ α ◦ (1X ⊗ ηX) ◦ ρ = {(x, x) | x ∈ X}

which is the identity relation as required.

Commutation of the dual diagram is done analogously. From this, we conclude that
Rel is compact closed. The obvious candidate for the dagger

† : Relop −→ Rel

is the relational converse. For relation R : X → Y its converse R∪ : Y → X is

R∪ := {(y, x) | x Ry} .

We define the contravariant identity-on-objects involutive functor

† : Rel −→ Rel :: R �→ R∪ .

228 B. Coecke and É.O. Paquette

Note that the adjoint and the transpose coincide, that is,

R∗ = (1X × εY) ◦ (1X × R × 1Y) ◦ (ηX × 1Y) = R†

which the reader may easily check. Finally, we verify that Rel is dagger compact:

• The category Rel is dagger monoidal:

(i) From the definition of the monoidal product of two relations

R1 := {(x, y) | x Ry} and R2 := {(x ′, y′) | x ′Ry′}

we have that

(R1 × R2)
† = {((y, y′), (x, x ′)) | x R1 y and x ′R2 y′} = R†

1 × R†
2.

(ii) The fact that α† = α−1, λ† = λ−1, ρ† = ρ−1 and σ † = σ−1 is trivial as the
inverse of all these morphisms is the relational converse.

• The diagram

{∗} ε
†
X

ηX

X × X

σX,X

X × X

commutes since from

εX := {((x, x), ∗) | x ∈ X}

follows

ε
†
X := {(∗, (x, x)) | x ∈ X}

and hence σ ◦ ε
†
X = ε

†
X = ηX .

So Rel is indeed a dagger compact category.

3.4.3 The Category of 2D Cobordisms

The category 2Cob can be informally described as a category whose morphisms, so-
called cobordisms, describe the “topological evolution” of manifolds of dimension
2− 1 = 1 through time. For instance, consider some snapshots of two circles which
merge into a single circle, with time going upwards:

3 Categories for the Practising Physicist 229

Passing to the continuum, the same process can be described by the cobordism

Thus, we take a cobordism to be a (compact) 2-dimensional manifold whose bound-
ary is partitioned in two. We take these closed one-dimensional manifolds to be the
domain and the codomain of the cobordism. Since we are only interested in the
topology of the manifolds, each (co)domain consists of a finite number of closed
strings.

Definition 16 The category 2Cob is defined as follows:

• Each object is a finite number of closed strings. Hence each object can be equiv-
alently represented by a natural number n ∈ N:

2

3

1

0

...

• Morphisms are cobordisms M : n → m taking n ∈ N (strings) to m ∈ N

(strings), which are defined up to homeomorphic equivalence. Hence, if a cobor-
dism can be continuously deformed into another cobordism, then these two
cobordisms correspond to the same morphisms.

• For each object n, the identity 1n : n → n which is given by n parallel cylinders:

...

230 B. Coecke and É.O. Paquette

• Composition is given by “gluing” manifolds together, e.g.

M

M

is a composite

M ′ ◦ M : 2 → 2

where the cobordism M ′ : 1 → 2 is glued to M : 2 → 1 along the object 1.
• The disjoint union of manifolds provides this category with a monoidal structure.

For example, if M : 1 → 0 and M ′ : 2 → 1 are cobordisms, then the cobordism
M + M ′ : 1+ 2 → 0+ 1 depicts as:

M M

• The empty manifold 0 is the identity for the disjoint union.
• The twist cobordism provides symmetry. For example, the twist

T1,1 : 1+ 1 → 1+ 1

is depicted as

The generalisation to

Tn,m : m + n → n + m

for any m, n ∈ N should be obvious.
• The unit and counit

η1 : 0 → 1+ 1 and ε1 : 1+ 1 → 0

of the compact structure on 1 are the cobordisms

3 Categories for the Practising Physicist 231

and

We recover the equations of compactness as

= =

which hold since all cobordisms involved are homeomorphically equivalent. The
generalisation of the units to arbitrary n is again obvious:

... ...

...

These together with corresponding counits are easily seen to always satisfy the
equations of compactness.

• The dagger consists in ‘flipping’ the cobordisms, e.g. if M : 2 → 1 is

then M† : 1 → 2 is

Clearly the dagger is compatible with the disjoint union which makes 2Cob a
dagger monoidal category. It is also dagger compact since σ1,1 ◦ ε

†
1 is

=

which is again easily seen to be true for arbitrary n.

Obviously, we have been very informal here. For a more elaborated discussion
and technical details we refer the reader to [9, 10, 42, 66]. The key thing to remember

232 B. Coecke and É.O. Paquette

is that there are important ‘concrete’ categories in which the morphisms are nothing
like maps from the domain to the codomain.

Note also that we can conceive—again somewhat informally—the diagrammatic
calculus of the previous sections as the result of contracting the diameter of the
strings in 2Cob to zero. These categories of cobordisms play a key role in topologi-
cal quantum field theory (TQFT). We discuss this topic in Sect. 3.6.5.

3.5 Classical-Like Tensors

The tensors to which we referred as classical-like are not compact. Instead they
do come with some other structure which, in all non-trivial cases, turns out to be
incompatible with compactness [1]. In fact, this incompatibility is the abstract incar-
nation of the No-Cloning theorem which plays a key role in quantum information
[30, 69].

3.5.1 Cartesian Categories

Consider the category Set with the Cartesian product as the monoidal tensor, as
defined in Example 28. Given sets A1, A2 ∈ |Set|, their Cartesian product A1 × A2
consists of all pairs (x1, x2) with x1 ∈ A1 and x2 ∈ A2. The fact that Cartesian
products consist of pairs is witnessed by the projection maps

π1 : A1×A2 → A1 :: (x1, x2) �→ x1 and π2 : A1×A2 → A2 :: (x1, x2) �→ x2 ,

which identify the respective components, together with the fact that, in turn, we
can pair x1 = π1(x1, x2) ∈ A1 and x2 = π2(x1, x2) ∈ A2 back together into
(x1, x2) ∈ A1 × A2, merely by putting brackets around them. We would like to
express this fact purely in category-theoretic terms. But both the projections and
the pairing operation are expressed in terms of their action on elements, while cat-
egorical structure only recognises hom-sets, and not the internal structure of the
underlying objects. Therefore, we consider the action of projections on hom-sets,
namely

π1 ◦ − : Set(C, A1 × A2) → Set(C, A1) :: f �→ π1 ◦ f

and

π2 ◦ − : Set(C, A1 × A2) → Set(C, A2) :: f �→ π2 ◦ f ,

which we can combine into a single operation ‘decompose’

decA1,A2
C : Set(C, A1 × A2) → Set(C, A1)× Set(C, A2) :: f �→ (π1 ◦ f, π2 ◦ f) ,

3 Categories for the Practising Physicist 233

together with an operation ‘recombine’

recA1,A2
C : Set(C, A1)× Set(C, A2) → Set(C, A1 × A2) :: (f1, f2) �→ 〈 f1, f2〉

where

〈 f1, f2〉 : C → A1 × A2 :: c �→ (f1(c), f2(c)) .

In this form we have

decA1,A2
C ◦ recA1,A2

C = 1Set(C,A1)×Set(C,A2)

and

recA1,A2
C ◦ decA1,A2

C = 1Set(C,A1×A2) ,

so decA1,A2
C and recA1,A2

C are now effectively each others inverses. In the light of
Example 4, setting C := {∗}, we obtain

Set({∗}, A1 × A2)

dec
A1,A2{∗}

Set({∗}, A1)× Set({∗}, A2) ,

rec
A1,A2{∗}

which corresponds to projecting and pairing elements exactly as in the discussion at
the beginning of this section. All of this extends in abstract generality.

Definition 17 A product of A1 and A2 ∈ |C| is a triple which consists of another
object A1 × A2 ∈ |C| together with two morphisms

π1 : A1 × A2 � A1 and π2 : A1 × A2 � A2 ,

and which is such that for all C ∈ |C| the mapping

(π1 ◦ −, π2 ◦ −) : C(C, A1 × A2) → C(C, A1)× C(C, A2) (3.34)

admits an inverse 〈−,−〉C,A1,A2 .

Below we omit the indices C, A1, A2 in 〈−,−〉C,A1,A2 .

Definition 18 (Cartesian category) A category C is Cartesian if any pair of objects
A, B ∈ |C| admits a (not necessarily unique) product.

Proposition 3 If a pair of objects admits two distinct products then the carrier
objects are isomorphic in the category-theoretic sense of Definition 2.

234 B. Coecke and É.O. Paquette

Indeed, suppose that A1 and A2 ∈ |C| have two products A1 × A2 and A1 � A2
with respective projections

πi : A1 × A2 � Ai and π ′j : A1 � A2 � A j .

Consider the pairs of morphisms

(π ′1, π ′2) ∈ C(A1 � A2, A1)× C(A1 � A2, A2)

and

(π1, π2) ∈ C(A1 × A2, A1)× C(A1 × A2, A2) .

By Definition 17 we can apply the respective inverses of

(π1 ◦ −, π2 ◦ −) and (π ′1 ◦ −, π ′2 ◦ −)

to these pairs, yielding morphisms in

C(A1 � A2, A1 × A2) and C(A1 × A2, A1 � A2) ,

say f and g respectively, for which we have

π ′1 = π1 ◦ f, π ′2 = π2 ◦ f, π1 = π ′1 ◦ g and π2 = π ′2 ◦ g.

Then, it follows that

(π ′1 ◦ 1A1�A2 , π
′
2 ◦ 1A1�A2) = (π1 ◦ f, π2 ◦ f) = (π ′1 ◦ g ◦ f, π ′2 ◦ g ◦ f) ,

and applying the inverse to (π ′1◦−, π ′2◦−) now gives 1A1�A2 = g◦ f . An analogue
argument gives f ◦ g = 1A1×A2 so f is an isomorphism between the two objects
A1 × A2 and A1 � A2 with g as its inverse.

The above definition of products in terms of “decomposing and recombining
compound objects” is not the one that one usually finds in the literature.

Definition 19 A product of two objects A1 and A2 in a category C is a triple con-
sisting of another object A1 × A2 ∈ |C| together with two morphisms

π1 : A1 × A2 � A1 and π2 : A1 × A2 � A2 ,

and which is such that for any object C ∈ |C|, and any pair of morphisms

C
f1� A1 and C

f2� A2 in C, there exists a unique morphism C
f� A1× A2

such that

f1 = π1 ◦ f and f2 = π2 ◦ f .

3 Categories for the Practising Physicist 235

We can concisely summarise this universal property by the commutative diagram

∀C

∀ f1 ∀ f2∃! f

A1 A1 × A2π1 π2
A2 .

It is easy to see that this definition is equivalent to the previous one: the inverse
〈−,−〉 to (π1 ◦ −, π2 ◦ −) provides for any pair (f1, f2) a unique morphism f :=
〈 f1, f2〉 which is such that (π1 ◦ f, π2 ◦ f) = (f1, f2). Conversely, uniqueness of

C
f� A1 × A2 guarantees (π1 ◦ −, π2 ◦ −) to have an inverse 〈−,−〉, which is

obtained by setting 〈 f1, f2〉 := f .
For more details on this definition, and the reason for its prominence in the liter-

ature, we refer to [4] and standard textbooks such as [5, 50].

Proposition 4 If a category C is Cartesian, then each choice of a product for each
pair of objects always defines a symmetric monoidal structure on C with A ⊗ B :=
A × B, and with the terminal object as the monoidal unit.

Proving this requires work. First, for f : A1 � B1 and g : A2 � B2 let

f × g : A1 × A2 � B1 × B2

be the unique morphism defined in terms of Definition 19 within

A1 × A2

f ◦π1 g◦π2
f×g

B1 B1 × B2
π ′1 π ′2

B2

Then it immediately follows that the diagrams

A1

f

A1 × A2

f×g

π2π1
A2

g

B1 B1 × B2
π ′2π ′1

B2

(3.35)

236 B. Coecke and É.O. Paquette

commute. From Definition 17 we know that for any h,

〈π1 ◦ h, π2 ◦ h〉 = h , (3.36)

and, in particular, this entails

〈π1, π2〉 = 〈π1 ◦ 1A1×A2 , π2 ◦ 1A1×A2〉 = 1A1×A2 . (3.37)

Using Eq. (3.36) for A
f� B, B

g� C and B
h� D we have

〈g, h〉 ◦ f = 〈π1 ◦ (〈g, h〉 ◦ f), π2 ◦ (〈g, h〉 ◦ f)〉
= 〈(π1 ◦ 〈g, h〉) ◦ f, (π2 ◦ 〈g, h〉) ◦ f 〉
= 〈g ◦ f, h ◦ f 〉 .

Using this, for A
f� B, A

g� C , B
h� D and C

k� E , we have

(h × k) ◦ 〈 f, g〉 = 〈h ◦ π1, k ◦ π2〉′ ◦ 〈 f, g〉
= 〈h ◦ π1 ◦ 〈 f, g〉, k ◦ π2 ◦ 〈 f, g〉〉′
= 〈h ◦ f, k ◦ g〉′ ,

where 〈−,−〉′ is the pairing operation relative to (π ′1 ◦ −, π ′2 ◦ −). In a similar
manner the reader can verify that −×− is bifunctorial.

To support the claim in Proposition 4 we will now also construct the required
natural isomorphisms, and leave verification of the coherence diagrams to the reader.
Let !A be the unique morphism of type A � �. Setting

λA := 〈!A, 1A〉 : A � �× A

we have

〈!B, 1B〉 ◦ f = 〈!B ◦ f, 1B ◦ f 〉 = 〈!A, f ◦ 1A〉 = (!� × f) ◦ 〈!A, 1A〉 ,

so we have established commutation of

A
λA

f

�× A

1�× f

B
λB

�× B

that is, λ is natural. The components are moreover isomorphisms with π2 as inverse.
The fact that π2 ◦ λA = 1A holds by definition, and from

3 Categories for the Practising Physicist 237

�

!�

� × A
π2π1

!�×1A

A

1A

� �× A
π ′1 π ′2

A

and the fact that by the terminality of � we have

!�×A =!� ◦ π1 =!A ◦ π2

it follows that

�× A

1A◦π2!A◦π2 〈!A◦π2,1A◦π2〉

� � × A
π ′2π ′1

A

commutes, so by uniqueness, it follows that 〈!A ◦π2, 1A ◦π2〉 =!� × 1A, and hence

〈!A, 1A〉 ◦ π2 = 〈!A ◦ π2, 1A ◦ π2〉 =!� × 1A = 1� × 1A = 1�×A .

Similarly the components ρA := 〈1A, !A〉 also define a natural isomorphism.
For associativity, let us fix some notation for the projections:

A �π1 A × (B × C)
π2� B × C and B �π ′1 B × C

π ′2� C .

We define a morphism of type A × (B × C) → A × B within

A × (B × C)

π1 π ′1◦π2〈π1,π
′
1◦π2〉

A A × B
π ′′1 π ′′2

B

and we define αA,B,C within

238 B. Coecke and É.O. Paquette

A × (B × C)

〈π1,π
′
1◦π2〉 π ′2◦π2〈〈π1,π

′
1◦π2〉,π ′2◦π2〉

A × B (A × B)× C
π ′′′1 π ′′′2

C

Naturality as well as the fact that the components are isomorphisms relies on unique-
ness of the morphisms as defined above and is left to the reader.

For symmetry, the components σA,B : A × B � B × A are defined within

A × B

π2 π1〈π2,π1〉

B B × A
π ′1 π ′2

A

where again we leave verifications to the reader.

3.5.2 Copy-Ability and Delete-Ability

So how does all this translate in term of morphisms as physical processes? By a
uniform copying operation or diagonal in a monoidal category C we mean a natural
transformation

∇=
{

A

∇

A� A ⊗ A
∣
∣ A ∈ |C|

}
.

The corresponding commutativity requirement

A

∇

A

f
B

∇

B

A ⊗ A
f⊗ f

B ⊗ B

expresses that “when performing operation f on a system A and then copying
it”, is the same as “copying system A and then performing operation f on each
copy”. For example, correcting typos on a sheet of written paper and then Xerox-
ing it is the same as first Xeroxing it and then correcting the typos on each of the
copies.

3 Categories for the Practising Physicist 239

The category Set has

{ ∇

X : X → X × X :: x �→ (x, x)
∣
∣ X ∈ |Set|}

as a uniform copying operation since we have commutation of

X
x �→ f (x) � Y

X × X

x �→(x,x)

�

(x,x) �→(f (x), f (x))
� Y × Y

f (x) �→(f (x), f (x))

�

Example 41 Is there a uniform copying operation in FdHilb? We cannot just set

∇

H : H→ H⊗H :: ψ �→ ψ ⊗ ψ

since this map is not even linear. On the other hand, when for each Hilbert space H
a basis {|i〉}i is specified, we can consider

{ ∇

H : H→ H⊗H :: |i〉 �→ |i〉 ⊗ |i〉 ∣∣ H ∈ |FdHilb|} .

But now the diagram

C
1 �→|0〉+|1〉 � C⊕ C

C � C⊗ C

1 �→1⊗1

�

1⊗1 �→(|0〉+|1〉)⊗(|0〉+|1〉)
� (C⊕ C)⊗ (C⊕ C)

|0〉 �→ |0〉 ⊗ |0〉
|1〉 �→ |1〉 ⊗ |1〉

�

fails to commute, since via one path we obtain the (unnormalized) Bell-state

1 �→ |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 ,

while via the other path we obtain an (unnormalized) disentangled state

1 �→ (|0〉 + |1〉)⊗ (|0〉 + |1〉) .

This inability to define a uniform copying operation reflects the fact that we cannot
copy (unknown) quantum states.

Example 42 Let us now turn our attention to Rel and, given that every function is
also a relation, consider the family of functions which provided a uniform copying
operation for Set. In more typical relational notation we have

240 B. Coecke and É.O. Paquette

∇

X := {(x, (x, x)) | x ∈ X} ⊆ X × (X × X) .

However, the diagram

{∗} {(∗,0),(∗,1)} � {0, 1}

{(∗, ∗)} = {∗} × {∗}

{(∗,(∗,∗))}

�

{(∗,0),(∗,1)}×{(∗,0),(∗,1)}
� {0, 1} × {0, 1}

{(0,(0,0)),(1,(1,1))}

�

fails to commute, since via one path we have

{(∗, (0, 0)), (∗, (1, 1))} = {∗} × {(0, 0), (1, 1)} ,

while the other path yields

{(∗, (0, 0)), (∗, (0, 1)), (∗, (1, 0)), (∗, (1, 1))} = {∗} × ({0, 1} × {0, 1}) .

Note here in particular the similarity with the counterexample that we provided for
the case of FdHilb, by identifying

|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 ∼←→ {(0, 0), (1, 1)}
(|0〉 + |1〉)⊗ (|0〉 + |1〉) ∼←→ {0, 1} × {0, 1} .

Example 43 Similarly, the cobordism

is not a component of a uniform copying relation

{ ∇

n : n → n + n | n ∈ N} ,

since in

0

∇

0

M

0+ 0

M+M

1 ∇

1
1+ 1

3 Categories for the Practising Physicist 241

where M : 0 → 1 is

the upper path gives

while the lower path gives

The category Set admits a uniform copying operation as a consequence of being
Cartesian. We indeed have the following general result.

Proposition 5 Each Cartesian category admits a uniform copying operation.

Indeed, let

∇

A := 〈1A, 1A〉

and let A
f� B be arbitrary. Then we have

〈1B, 1B〉 ◦ f = 〈1B ◦ f, 1B ◦ f 〉 = 〈 f ◦ 1A, f ◦ 1A〉 = (f × f) ◦ 〈1A, 1A〉 ,

so

∇

is a natural transformation, and hence a uniform copying operation.
In fact, one can define Cartesian categories in terms of the existence of a uniform

copying operation and a corresponding uniform deleting operation

E =
{

A
EA� I

∣
∣ A ∈ |C|

}
,

for which the naturality constraint now means that

A

EA

f
B

EB

I

commutes. There are some additional constraints such as “first copying and then
deleting results in the same as doing nothing”, and similar ones, which all together

242 B. Coecke and É.O. Paquette

formally boil down to saying that for each object A in the category the triple
(A,

∇

A, EA) has to be an internal commutative comonoid. We will define the con-
cept of internal commutative comonoid below in Sect. 3.5.7.

Example 44 The fact that the diagonal in Set fails to be a diagonal in Rel seems to
indicate that in Rel the Cartesian product does not provide a product in the sense of
Definition 17. Consider

{∗}

∅ 1{∗}∃! f

{∗} {∗} × {∗}
π1 π2

{∗}

where ∅ stands for the empty relation. Since {∗} × {∗} = {(∗, ∗)} is a singleton
there are only two possible choices for π1 and π2, namely the empty relation and
the singleton relation {((∗, ∗), ∗)} ⊆ {(∗, ∗)} × {∗}. Similarly there are also only
two candidate relations to play the role of f . So since π1 ◦ f = ∅ either π1 or f has
to be ∅ and since π2 ◦ f = 1{∗} neither π2 nor f can be ∅. Thus π1 has to be the
empty relation and π2 has to be the singleton relation. However, when considering

{∗}
1{∗} ∅∃! f

{∗} {∗} × {∗}
π1 π2

{∗}

π2 has to be the empty relation and π1 has to be the singleton relation, so we have
a contradiction. Key to all this is the fact that the empty relation is a relation, while
it is not a function, or more generally, that relations need not be total (total = each
argument is assigned to a value). On the other hand, when showing that the diagonal
in Set was not a diagonal in Rel we relied on the multi-valuedness of the relation
{(∗, 0), (∗, 1)} ⊆ {∗}× {0, 1}. Hence multi-valuedness of certain relations obstructs
the existence of a natural diagonal in Rel, while the lack of totality of certain rela-
tions obstructs the existence of faithful projections in Rel, causing a break-down of
the Cartesian structure of × in Rel as compared to the role it plays in Set.

3.5.3 Disjunction vs. Conjunction

As we saw in Sect. 3.5.1, the fact that in Set Cartesian products X × Y consist of
pairs (x, y) of elements x ∈ X and y ∈ Y can be expressed in terms of a bijective
correspondence

3 Categories for the Practising Physicist 243

Set(C, A1 × A2) � Set(C, A1)× Set(C, A2) .

One can then naturally ask whether we also have that

Set(A1 × A2, C)
?� Set(A1, C)× Set(A2, C) .

The answer is no. But we do have

Set(A1 + A2, C) � Set(A1, C)× Set(A2, C) .

where A1 + A2 is the disjoint union of two sets A1 and A2, that is, we repeat,

A1 + A2 := {(x1, 1) | x1 ∈ A1} ∪ {(x2, 2) | x2 ∈ A2} .

This isomorphism now involves injection maps

ι1 : A1 → A1 + A2 :: x1 �→ (x1, 1) and ι2 : A2 → A1 + A2 :: x2 �→ (x2, 2)

They embed the elements of A1 and A2 within A1+A2. Their action on hom-sets is

− ◦ ι1 : Set(A1 + A2, C) → Set(A1, C) :: f �→ f ◦ ι1

− ◦ ι2 : Set(A1 + A2, C) → Set(A2, C) :: f �→ f ◦ ι2 ,

which converts a function that takes values on all elements that either live in A1 or
A2, into two functions, one that takes values in A1, and one that takes values in A2.
We can again recombine these two operations in a single one

codecA1,A2
C : Set(A1 + A2, C) → Set(A1, C)× Set(A2, C) :: f �→ (f ◦ ι1, f ◦ ι2)

which has an inverse, namely

corecA1,A2
C : Set(A1, C)× Set(A2, C) → Set(A1 + A2, C) :: (f1, f2) �→ [f1, f2]

where

[f1, f2] : A1 + A2 → C ::
{

x �→ f1(x) iff x ∈ A1
x �→ f2(x) iff x ∈ A2

.

244 B. Coecke and É.O. Paquette

The binary operation [−,−] on functions now recombines two functions f1 and f2
into a single one. We have an isomorphism

Set(A1 + A2, C)

codec
A1,A2{∗}

Set(A1, C)× Set(A2, C) .

corec
A1,A2{∗}

Note that while [f1, f2] produces an image either for the function f1 or the function

f2, in contrast 〈 f1, f2〉 produces an image both for the function f1 and the function
f2. In operational terms, while the product allows to describe a pair of (classical)
systems, the disjoint union allows to describe a situation where we have either of
two systems. For example, it allows to describe the branching structure that arises
as a consequence of non-determinism.

Definition 20 A coproduct of two objects A1 and A2 in a category C is a triple
consisting of another object A1 + A2 ∈ |C| together with two morphisms

ι1 : A1 � A1 + A2 and ι2 : A2 � A1 + A2 ,

and which is such that for all C ∈ |C| the mapping

(− ◦ ι1,− ◦ ι2) : C(A1 + A2, C) → C(A1, C)× C(A2, C)

admits an inverse. A category C is co-Cartesian if any pair of objects A, B ∈ |C|
admits a (not necessarily unique) coproduct.

As in the case of products, we also have the following variant:

Definition 21 A coproduct of two objects A1 and A2 in a category C is a triple
consisting of another object A1 + A2 ∈ |C| together with two morphisms

ι1 : A1 � A1 + A2 and ι2 : A2 � A1 + A2 ,

and which is such that for any object C ∈ |C|, and any pair of morphisms

A1
f1� C and A2

f2� C in C, there exists a unique morphism A1+ A2
f� C

such that

f1 = f ◦ ι1 and f2 = f ◦ ι2 .

We can again represent this in a commutative diagram:

3 Categories for the Practising Physicist 245

∀C

A1

∀ f1

ι1
A1 + A2

∃! f

A2 .
ι2

∀ f2

As a counterpart to the diagonal which we have in Cartesian categories we now
have a codiagonal, with components

∇A := [1A, 1A] : A + A � A .

Example 45 As explained in Example 14, we can think of a partially ordered set P
as a category P. In such a category products turn out to be greatest lower bounds or
meets, and coproducts turn out to be least upper bounds or joins. The existence of
an isomorphism

P(a1 + a2, c)

codec
a1,a2
c

P(a1, c)× P(a2, c) ,

corec
a1,a2
c

given that P(a1 + a2, c), P(a1, c) and P(a2, c) and hence also P(a1, c) × P(a2, c)
are all either singletons or empty, means that P(a1+ a2, c) is non-empty if and only
if P(a1, c)× P(a2, c) is non-empty, that is, if and only if both P(a1, c) and P(a2, c)
are non-empty. Since non-emptiness of P(a, b) means that a ≤ b, we indeed have

a1 + a2 ≤ c ⇐⇒ a1 ≤ c & a2 ≤ c

so a1 + a2 is indeed the least upper bounds of a1 and a2. So Definition 21 provides
us with a complementary but equivalent definition of least upper bounds. In

∀c

a1

s.t. ≤

≤ a1 + a2

then �

a2 ,≥

s.t. ≥

we now have that the existence of ι1 and ι2 assert that a1 ≤ a1+a2 and a2 ≤ a1+a2,
so a1 + a2 is an upper bound for a1 and a2, and whenever there exists an element
c ∈ P which is such that both a1 ≤ c and a2 ≤ c hold, then we have that a1+a2 ≤ c,
so a1 + a2 is indeed the least upper bound for a1 and a2.

246 B. Coecke and É.O. Paquette

Dually to what we did in a category with products, in a category with coproducts
we can define sum morphisms f + g in terms of commutation of

A1

f

ι1
A1 + A2

f + g

A2
ι2

g

B1
ι′1

B1 + B2 B2
ι′2

and we have

h ◦ [f, g] = [h ◦ f, h ◦ g] and [f, g] ◦ (h + k) = [f ◦ h, g ◦ k] .

From this we can derive that coproducts provide a monoidal structure.
We already hinted at the fact that while a product can be interpreted as a con-

junction, the coproduct can be interpreted as a disjunction. The distributive law

A and (B or C) = (A and B) or (A and C)

of classical logic incarnates in categorical logic as the existence of a natural isomor-
phism wich effectively ‘distributes’, namely

{A × (B + C)
distA,B,C� (A × B)+ (A × C) | A, B, C ∈ |C|} .

Shorter, we can write

A × (B + C) � (A × B)+ (A × C) .

This of course requires the category to be both Cartesian and co-Cartesian.
Such an isomorphism does not always exist, as the following example illustrates.

Example 46 Let H be a Hilbert space and let L(H) be the set of all of its (closed,
in the infinite-dimensional case) subspaces, ordered by inclusion. Again this can be
thought of as a category L. It has an initial object, namely the zero-dimensional
subspace, and it has a terminal object, namely the whole Hilbert space itself. This
category is Cartesian with intersection as product, and it is also co-Cartesian for

V + W :=
⋂
{X ∈ L(H) | V, W ⊆ X} ,

that is, the (closed) linear span of V and W . However, as observed by Birkhoff
and von Neumann in [15], this lattice does not satisfy the distributive law. Take for
example two vectors ψ, φ ∈ H with φ ⊥ ψ . Then we have

3 Categories for the Practising Physicist 247

span(ψ +φ)∩ (span(ψ)+ span(φ)) = span(ψ +φ)∩ span(ψ, φ) = span(ψ +φ) ,

while since

(span(ψ + φ) ∩ span(ψ)) and (span(ψ + φ) ∩ span(φ))

only include the zero-vector 0, we have

(span(ψ + φ) ∩ span(ψ))+ (span(ψ + φ) ∩ span(φ)) = 0 ,

and as a consequence

span(ψ + φ) ∩ (span(ψ)+ span(φ))

∦

(span(ψ + φ) ∩ span(ψ))+ (span(ψ + φ) ∩ span(φ)) .

Recall that an isomorphism consists of a pair of morphisms that are mutually
inverse. So a natural isomorphism consists of a pair of natural transformations. In a
category which is both Cartesian and co-Cartesian one of the two components of the
distributivity natural isomorphism always exists, namely the natural transformation

{(A × B)+ (A × C)
θA,B,C� A × (B + C) | A, B, C ∈ |C|} ,

which we conveniently denote by

(A × B)+ (A × C) � A × (B + C) .

Indeed, by the assumption that the category is both Cartesian and co-Cartesian there
exist unique morphisms f and g such that

A

A × B

π1

ι1
(A × B)+ (A × C)

f

A × C
ι2

π1

and

B + C

A × B

ι1◦π2

ι1
(A × B)+ (A × C)

g

A × C
ι2

ι2◦π2

commute, namely f := [π1, π1] and g := [ι1 ◦ π2, ι2 ◦ π2], and hence there also
exists a unique morphism θA,B,C such that

248 B. Coecke and É.O. Paquette

(A × B)+ (A × C)

f g
θA,B,C

A A × (B + C)
π1 π2

B + C

commutes, namely

θA,B,C = 〈 f, g〉 = 〈[π1, π1], [ι1 ◦ π2, ι2 ◦ π2]〉 .

The collection

θ = {θA,B,C | A, B, C ∈ |C|}

is moreover a natural transformation since given

(f × g)+ (f × h) : (A × B)+ (A × C) � (A′ × B ′)+ (A′ × C ′) ,

using the various lemmas for products and coproducts, we have that

〈[π ′1, π ′1], [ι′1 ◦ π ′2, ι′2 ◦ π ′2]〉 ◦ ((f × g)+ (f × h))

= 〈[π ′1, π ′1] ◦ ((f × g)+ (f × h)), [ι′1 ◦ π ′2, ι′2 ◦ π ′2] ◦ ((f × g)+ (f × h))〉
= 〈[π ′1 ◦ (f × g), π ′1 ◦ (f × h)], [ι′1 ◦ π ′2 ◦ (f × g), ι′2 ◦ π ′2 ◦ (f × h)]〉
= 〈[f ◦ π1, f ◦ π1], [ι′1 ◦ g ◦ π2, ι

′
2 ◦ h ◦ π2]〉

= 〈 f ◦ [π1, π1], (g + h) ◦ [ι1 ◦ π2, ι2 ◦ π2]〉
= (f × (g + h)) ◦ 〈[π1, π1], [ι1 ◦ π2, ι2 ◦ π2]〉 ,

which results in commutation of

(A × B)+ (A × C)
(f×g)+(f×h)

θA,B,C

(A′ × B ′)+ (A′ × C ′)

θA′,B′,C ′

A × (B + C)
f×(g+h)

A′ × (B ′ + C ′)

If this natural transformation is an isomorphism we have a distributive category.

Example 47 From the above it follows that in any lattice we have

(a ∧ b)+ (a ∧ c) ≤ a ∧ (b + c) .

3 Categories for the Practising Physicist 249

Below we will see that also the so-called orthomodular law can be given a purely
category-theoretic form, so Birkhoff-von Neumann style quantum logic can be
entirely casted in purely category-theoretic terms.

3.5.4 Direct Sums

Example 48 The direct sum V ⊕V ′ of two vector spaces V and V ′ is both a product
and a coproduct in FdVectK. Indeed, consider matrices

π1 := (1W |0W,W ′) and π2 := (0W ′,W |1W ′) ,

where 1U denotes the identity on U and 0U,U ′ is a matrix of 0’s of dimension
dim(U) × dim(U ′). Let M : V → W and N : V → W ′ also be represented as
matrices. The unique matrix P which makes

V

M N
P

W W ⊕ W ′
π1 π2

W ′

commute is

(
M
N

)

.

Therefore ⊕ is a product. The dual is obtained by transposing the matrices in this
diagram. Setting ιi for the transpose of πi the diagram

W
ι1

M

W ⊕ W ′

(M|N)

W ′ι2

N

V

commutes. This shows that W ⊕W ′ is indeed also a coproduct. Moreover, the zero-
dimensional space is both initial and terminal.

Example 49 In the category Rel we can extend the disjoint union to morphisms. For
any two relations R1 : X → X ′ and R2 : Y → Y ′ we set

R1 + R2 := {((x, 1), (x ′, 1)) | x R1x ′} ∪ {((y, 2), (y′, 2)) | y R2 y′} .

250 B. Coecke and É.O. Paquette

We define injection relations ι1 : X → X + Y and ι2 : Y → X + Y to be

ι1 := {(x, (x, 1)) | x ∈ X} and ι2 := {(y, (y, 2)) | y ∈ Y }

and the copairing relation [R1, R2] : X + Y → Z to be

[R1, R2] := {((x, 1), z) | x R1z} ∪ {((y, 2), z) | y R2z} .

One easily verifies that all these data define a coproduct. We define projection rela-
tions as the relational converse of the injection relations, that is,

π1 := {((x, 1), x) | x ∈ X} and π2 := {((y, 2), y) | y ∈ Y }.

One easily verifies that this defines a product. So the diagrams expressing the prod-
uct properties are converted into the diagrams expressing the coproduct properties
by the relational converse. Since for any X ∈ |Rel| there is only one relation of type

∅ → X and X → ∅

it follows that the empty set is both initial and terminal. All of this makes the disjoint
union within Rel very similar to the direct sum in FdVectK.

Definition 22 A category C is enriched in commutative monoids if each hom-set
C(A, B) is a commutative monoid

(C(A, B) ,+ , 0A,B) ,

and if for all f ∈ C(A, B), all g1, g2 ∈ C(B, C) and all h ∈ C(C, D) we have

(g1 + g2) ◦ f = (g1 ◦ f)+ (g2 ◦ f) 0B,C ◦ f = 0A,C

h ◦ (g1 + g2) = (h ◦ g1)+ (h ◦ g2) h ◦ 0B,C = 0B,D .

Example 50 The category FdVectK is enriched in commutative monoids. The
monoid operation is addition of linear maps and the unit is the zero linear map.
Also the category Rel is enriched in commutative monoids. The monoid operation
is the union of relations and the unit is the empty relation.

Definition 23 The direct sum or biproduct of two objects A1, A2 ∈ |C| is a quintu-
ple consisting of another object A1 ⊕ A2 ∈ |C| together with four morphisms

A1

ι1

A1 ⊕ A2

π1 π2

A2

ι2

3 Categories for the Practising Physicist 251

satisfying

π1 ◦ ι1 = 1A1 π2 ◦ ι2 = 1A2 π2 ◦ ι1 = 0A1,A2 π1 ◦ ι2 = 0A2,A1 (3.38)

and

ι1 ◦ π1 + ι2 ◦ π2 = 1A1⊕A2 .

When setting

δi j :=
{

1Ai i = j
0A j ,Ai i �= j

then Eq. (3.38) can be rewritten as

πi ◦ ι j = δi j .

Note that Definition 3.38 does not explicitly require that A1⊕A2 is both a product
and a coproduct. In particular, it does not make any reference to other objects C as
the definitions of product and coproduct do.

Definition 24 A zero object is an object which is both initial and terminal.

If a category C has a zero object, then for each pair of objects A, B ∈ |C| we can
construct a canonical zero map by relying on the uniqueness of morphism from the
initial object to B and from A to the terminal object:

A

0A,B

∃! 0 ∃! B .

One can show that if a category with a zero object is enriched in commutative
monoids, that these unique morphisms must be the units for the monoids.

Definition 25 A biproduct category is a category with a zero object in which for any
two objects A1 and A2 a biproduct (A1 ⊕ A2, π1, π2, ι1, ι2) is specified.9

One can show that the above definition is equivalent to the following one, which
does make explicit reference to products and coproducts [37].

9 There is no particular reason why we ask for biproducts to be specified while in the case of Carte-
sian categories we only required existence. This is a matter of taste, whether one prefers “being
Cartesian” or “being a biproduct category” to be conceived as a “property a category possesses” or
“some extra structure it comes with”. There are different “schools” of category theory which have
strong arguments for either of these. Each of these have their virtues and therefore we decided to
give an example of both.

252 B. Coecke and É.O. Paquette

Definition 26 Let C be both Cartesian and co-Cartesian with specified products and
coproducts, and let ⊥ and � respectively denote an initial and a terminal object of
C. Then C is a biproduct category if:

1. the (unique) morphism ⊥ � � is an isomorphism ,
2. setting

A1

0A1,A2

1 � 0 A2

the morphism

[〈1A1 , 0A1,A2〉, 〈0A2,A1 , 1A2〉] : A1 + A2 � A1 × A2

is an isomorphism for all objects A1, A2 ∈ |C|.

In fact, any morphism

A1 + A2
f� B1 × B2

is fully characterised by four ‘component’ morphisms, namely

fi j := πi ◦ f ◦ ι j for i = 1, 2 ,

since

f = [〈 f1,1, f2,1〉, 〈 f1,2, f2,2〉] .

Indeed,

[〈 f1,1, f2,1〉, 〈 f1,2, f2,2〉]
= [〈π1 ◦ (f ◦ ι1), π2 ◦ (f ◦ ι1)〉, 〈π1 ◦ (f ◦ ι2), π2 ◦ (f ◦ ι2)〉]
= [f ◦ ι1, f ◦ ι2]
= f ◦ [ι1, ι2]
= f .

Therefore it makes sense to think of f as the matrix

f =
(

f1,1 f1,2
f2,1 f2,2

)

.

3 Categories for the Practising Physicist 253

Using this, condition 2 in Definition 26 can now be stated as the requirement that

(
1A1 0A2,A1

0A1,A2 1A2

)

is an isomorphism.

Example 51 In FdVectK the direct sum ⊕ is a biproduct. We have

π1 ◦ ι1 = π1 ◦ πT
1 = (1W |0W,W ′)

(
1W

0W ′,W

)

= 1W .

We also have

π1 ◦ ι2 = π1 ◦ πT
2 = (1W |0W,W ′)

(
0W,W ′
1W ′

)

= 0W ′,W .

The two remaining equations are obtained in the same manner.

Example 52 In Rel the disjoint union + is a biproduct. The morphism

π1 ◦ ι1 : X → X + Y → X

is a subset of X × X . The composite of

ι1 = {(x, (x, 1)) | x ∈ X} and π1 = {((x, 1), x) | x ∈ X}

is {(x, x) | x ∈ X} = 1X . The morphism

π1 ◦ ι2 : Y → X + Y → X

is a subset of X×Y , namely the set of pairs (x, y) such that there exists a (x, z) ∈ ι2
and (z, x) ∈ π1. But there are no such elements z since the elements of X are labeled
by 1 and those of Y by 2 within X + Y . Thus, we obtain the empty relation 0Y,X .

3.5.5 Categorical Matrix Calculus

By Definition 26 each biproduct category is Cartesian, hence by Proposition 4 it
carries monoidal structure. We show now that from Definition 26 it indeed follows
that each hom-set C(A, B) in a biproduct category C is a monoid, with

f + g := A
�A� A ⊕ A

f⊕g� B ⊕ B
∇B� B

and with 0A,B as the unit. Indeed, let f : A → B and consider

f + 0A,B = A
�A� A ⊕ A

f⊕0A,B� B ⊕ B
∇A� B .

254 B. Coecke and É.O. Paquette

The equality f + 0A,B = f can be shown via the commutation of

A

∇

A

〈1A,0A,0〉

1A

A ⊕ A
f⊕0A,B

1A⊕0A,0

B ⊕ B
∇B

B

A ⊕ 0

π1

f⊕00,0
B ⊕ 0

[1B ,00,B]
1B⊕00,B

A
f

B

ι′1

1B

(3.39)

In the above diagram, all subdiagrams correspond to definitions, except for the
square at the bottom. To show that it commutes, consider

A

f

A ⊕ 0
π1 π2

f⊕00,0

0

00,0

B B ⊕ 0
π ′1 π ′2

0

(3.40)

Since this is a product diagram, f ⊕00,0 is the unique morphism making it commute.
Moreover, the diagram

A

f

A ⊕ 0

0A⊕0,0

π1

π1 π2
0

00,0

A

f

B

ι′1

B B ⊕ 0
π ′1 π ′2

0

commutes, so it follows that ι′1 ◦ f ◦π1 also makes Diagram (3.40) commute. Thus,

f ⊕ 00,0 = ι′1 ◦ f ◦ π1

3 Categories for the Practising Physicist 255

by uniqueness, that is, the square at the bottom of Diagram (3.39) also commutes.
To establish 0A,B + f one proceeds similarly.

We also have to show that

(f + g)+ h = f + (g + h) .

This is established in terms of commutation of the diagram

A

∇

A

∇

A

A ⊕ A
1A⊕

∇

A
A ⊕ (A ⊕ A)

f⊕(g⊕h)

αA,A,A

B ⊕ (B ⊕ B)

αB,B,B

1B⊕∇B
B ⊕ B

∇B
B

A ⊕ A

∇

A⊕1A

B ⊕ B

∇B

(A ⊕ A)⊕ A
(f⊕g)⊕h

(B ⊕ B)⊕ B
∇B⊕1B

where αA,A,A is defined as in Proposition 4. The central square commutes by defi-
nition. We now show that the left triangle also commutes. We have

〈〈π1, π
′
1 ◦ π2〉, π ′2 ◦ π2〉 ◦ (1A ⊕ ∇

A) ◦ ∇

A

= 〈〈π1, π
′
1 ◦ π2〉, π ′2 ◦ π2〉 ◦ 〈1A, 〈1A, 1A〉〉

= 〈〈π1, π
′
1 ◦ π2〉 ◦ 〈1A, 〈1A, 1A〉〉, π ′2 ◦ π2 ◦ 〈1A, 〈1A, 1A〉〉〉

= 〈〈π1 ◦ 〈1A, 〈1A, 1A〉〉, π ′1 ◦ π2 ◦ 〈1A, 〈1A, 1A〉〉〉, π ′2 ◦ π2 ◦ 〈1A, 〈1A, 1A〉〉〉
= 〈〈1A, 1A〉, 1A〉
= (

∇

A ⊕ 1A) ◦ ∇

A .

The right triangle is also easily seen to commute.
This addition moreover satisfies a distributive law, namely

(f + g) ◦ h = (f ◦ h)+ (g ◦ h) and h ◦ (f + g) = (h ◦ f)+ (h ◦ g) . (3.41)

One usually refers to this additive structure on morphisms as enrichment in monoids.
We leave it up to the reader to verify these distributive laws. A physicist-friendly
introduction to enriched category theory suitable for the readers of this chapter is
[16]. An inspiring paper which introduced the concept is [46].

We now show that from Definition 26 it also follows that for

Qi := ιi ◦ πi : A1 ⊕ A2 � A1 ⊕ A2

256 B. Coecke and É.O. Paquette

with i = 1, 2 we have

∑

i=1,2

Qi = 1A1⊕A2 . (3.42)

Indeed, unfolding the definitions we have

∑

i=1,2

Qi = ∇A1⊕A2 ◦ ((ι1 ◦ π1)⊕ (ι2 ◦ π2)) ◦ ∇

A1⊕A2

= ∇A1⊕A2 ◦ ((ι1 ⊕ ι2) ◦ (π1 ⊕ π2)) ◦ ∇

A1⊕A2

= (∇A1⊕A2 ◦ (ι1 ⊕ ι2)) ◦ ((π1 ⊕ π2) ◦ ∇

A1⊕A2)

and using the fact that a biproduct of morphisms is at the same time a product of
morphisms we obtain

(π1 ⊕ π2) ◦ ∇

A = 〈π1 ◦ 1A1⊕A2 , π2 ◦ 1A1⊕A2〉 = 〈π1, π2〉 = 1A1⊕A2 .

Analogously, one obtains that

∇A ◦ (ι1 ⊕ ι2) = 1A1⊕A2 ,

and the composite of identities being again the identity, we proved the claim.

Definition 27 A dagger biproduct category is a category which is both a dagger
symmetric monoidal category and a biproduct category for which the monoidal ten-
sor and the biproduct coincide, and with ιi = π

†
i for all projections and injections.

These dagger biproduct categories were introduced in [2, 22, 62] in order to
enable one to talk about quantum spectra in purely category-theoretic language. Let

A1 ⊕ A2
U� B

be unitary in a dagger biproduct category. By the corresponding projector spectrum
we mean the family {Pi }i of projectors

PU
i := U ◦ Qi ◦U † : B � B .

Proposition 6 Binary projector spectra satisfy

∑

i=1,2

PU
i = 1B .

This result easily extends to more general biproducts A1 ⊕ . . . ⊕ An , which
can be defined in the obvious manner, and which allow us in addition to define

3 Categories for the Practising Physicist 257

n-ary projector spectra too. In FdHilb, this n-ary generalisation of Proposition 6
corresponds to the fact that

i=n∑

i=1

Pi = 1H where {Pi }i=n
i=1

is the projector spectrum of an arbitrary self-adjoint operator. More details on this
abstract view of quantum spectra are in [2, 22, 62].

Now, consider two biproducts A1 ⊕ . . .⊕ An and B1 ⊕ . . .⊕ Bm each with their
respective injections and projections. As already indicated in the previous section,
with each morphism

A1 ⊕ . . .⊕ An
f� B1 ⊕ . . .⊕ Bm

we can associate a matrix

⎛

⎜
⎝

π1 ◦ f ◦ ι1 . . . π1 ◦ f ◦ ιn
...

. . .
...

πm ◦ f ◦ ι1 . . . πm ◦ f ◦ ιn

⎞

⎟
⎠ .

Moreover, these matrices obey the usual matrix rules with respect to composition
and the above defined summation. Indeed, for composition, the composite g◦ f = h
also has an associated matrix with entries

hi j = πi ◦ (f ◦ g) ◦ ι j .

By Eq. (3.42) we have

hi j = πi ◦ (f ◦ g) ◦ ι j

= πi ◦ (f ◦ 1 ◦ g) ◦ ι j

= πi ◦
(

f ◦
(
∑

r

ι′r ◦ π ′r

)

◦ g

)

◦ ι j

=
∑

r

πi ◦ f ◦ ι′r ◦ π ′r ◦ g ◦ ι j

=
∑

r

(πi ◦ f ◦ ι′r) ◦ (π ′r ◦ g ◦ ι j)

=
∑

r

fir ◦ gr j

from which we recover matrix multiplication. For the sum, using the distributivity
of the composition over the sum, one finds that for individual entries in f + g we
have

258 B. Coecke and É.O. Paquette

πi ◦ (f + g) ◦ ι j = (πi ◦ f + πi ◦ g) ◦ ι j

= πi ◦ f ◦ ι j + πi ◦ g ◦ ι j

= fi j + gi j

which indeed is the sum of matrices.

Example 53 We illustrate the concepts of this section for the category Rel. Some-
what unfortunately, the disjoint union bifunctor and the monoidal enrichment oper-
ation share the same notation +. But since their type are essentially different, i.e.

tensor + : Rel(X, Y)× Rel(X ′, Y ′) → Rel(X + X ′, Y + Y ′)

and

monoid + : Rel(X, Y)× Rel(X, Y) → Rel(X, Y)

respectively, this should not confuse the reader.

• The sum R1 + R2 : X → Y of two relations is, by definition, the composite

X
�X−→ X + X

R1+R2−→ Y + Y
∇Y−→ Y .

The relation �X consists of all ordered pairs

{(x, (x, 1)) | x ∈ X} ∪ {(x, (x, 2)) | x ∈ X} .

Thus the composite (R1 + R2) ◦ ∇

X is then, by definition, the set

{(x, (y, 1)) | x R1 y} ∪ {(x ′, (y′, 2)) | x ′R2 y′} .

Using the definition of copairing ∇Y := [1Y , 1Y] we obtain

{(x, y) | x R1 y} ∪ {(x ′, y′) | x ′R2 y′} ,

that is,

R1 + R2 = {(x, y) | x R1 y or x R2 y} .

• Relations

Q X : X + Y → X → X + Y and QY : X + Y → Y → X + Y

are defined as ιX ◦ πX and ιY ◦ πY respectively, that is,

Q X = {((x, 1), (x, 1)) | x ∈ X} and QY = {((y, 2), (y, 2)) | y ∈ Y } .

3 Categories for the Practising Physicist 259

Using the definition of the sum we obtain

Q X + QY = {((x, 1), (x, 1)) | x ∈ X} ∪ {((y, 2), (y, 2)) | y ∈ Y }
= {((z, i), (z, i)) | (z, i) ∈ X + Y }
= 1X+Y

as required. It is easily seen that this generalises to an arbitrary number of terms
in the biproduct.

• The matrix calculus in Rel is done over the semiring (= rig = ring without
inverses) B of Booleans. Indeed, there are two relations between {∗} and itself,
namely the empty relation and the identity relation. These will respectively be
denoted by 0 and 1. The semiring operations arise from composing and adding
these relations, which amounts to the semiring multiplication and the semiring
addition respectively. By Eq. (3.41), we have distributivity, and we then easily
see that we indeed get the Boolean semiring:

0 · 0 = 0 0 · 1 = 0 1 · 1 = 1 0+ 0 = 0 0+ 1 = 1 1+ 1 = 1

— contra the two-element field where we have 1 + 1 = 0 — so the operations
− · − and −+− coincide with the Boolean logic operations:

· ∼ ∧ and + ∼ ∨ .

A relation R : {a, b} → {c, d} can now be represented by a 2× 2 matrix, e.g.

R =
(

1 1
1 0

)

when a Rc, bRc and a Rd (and not bRd). Similarly, R′ : {c, d} → {e, f, g} is

R′ =
⎛

⎝
1 0
1 1
0 1

⎞

⎠

when cRe, cR f , d R f and d Rg. Their composite

R′ ◦ R = {(a, e), (a, f), (b, e), (b, f), (a, g)}

can be computed by matrix multiplication:

⎛

⎝
1 0
1 1
0 1

⎞

⎠
(

1 1
1 0

)

=
⎛

⎝
1 1
1 1
1 0

⎞

⎠ .

260 B. Coecke and É.O. Paquette

For a relation R′′ : {a, b} → {c, d} represented by the matrix

(
0 1
0 1

)

,

that is, R′′ = {(b, c), (b, d)}, the sum R + R′′ is given by

{(a, c), (b, c), (a, d)} ∪ {(b, c), (b, d)} = {(a, b), (a, c), (b, c), (b, d)} ,

which indeed corresponds to the matrix sum

(
1 1
1 0

)

+
(

0 1
0 1

)

=
(

1 1
1 1

)

.

3.5.6 Quantum Tensors from Classical Tensors

Interesting categories such as FdHilb and Rel have both a classical-like and a
quantum-like tensor. Obviously these two structures interact. For example, due to
very general reasons we have distributivity natural isomorphisms

A ⊗ (B ⊕ C) � (A ⊗ B)⊕ (A ⊗ C) and A ⊗ 0 � 0

both in the case of FdHilb and Rel. We can rely on so-called closedness of the
⊗-structure to prove this, something for which we refer to other sources. Another
manner to establish this fact for the cases of FdHilb and Rel, is to observe that the
⊗-structure arises from the ⊕-structure.

Let C be a biproduct category and let X ∈ C be such that composition commutes
in C(X, X). Define a new category C|X as follows:

• The objects of C|X are those objects of C which are of the form X ⊕ . . . ⊕ X .
We denote such an object consisting of n terms by [n].

• For all n, m ∈ N we set C|X([n], [m]) := C([n], [m]).
Note that we can represent all morphisms in C([n], [m]) by matrices, and hence also
those in C|X([n], [m]). Now we define a monoidal structure:

• I := X
• [n] ⊗ [m] := [n × m]
• For all f ∈ C([n], [m]) and g ∈ C([n′], [m ′]) we define

f ⊗ g ∈ C|X([n] ⊗ [n′], [m] ⊗ [m′])

to be the morphism with matrix entries

(f ⊗ g)(i,i ′),(j, j ′) := fi, j ◦ gi ′, j ′ .

3 Categories for the Practising Physicist 261

We leave it to the reader to verify that this provides C|X with a symmetric monoidal
structure. Note that commutativity of C(X, X) is necessary, since otherwise we
would be in contradiction with the fact that the scalar monoid in a monoidal
category is always commutative — cf. Section 3.3.5. With these definitions
we have:

[n] ⊗ ([m] ⊕ [k]) � ([n] ⊗ [m])⊕ ([n] ⊗ [k]) and [n] ⊗ [0] � [0] .

Indeed, note first that since [n] = I⊕ · · · ⊕ I︸ ︷︷ ︸
n

we have

[n] ⊕ [m] � [n + m]

where [n + m] = I⊕ · · · ⊕ I︸ ︷︷ ︸
n+m

. Therefore,

[n] ⊗ ([m] ⊕ [k]) � [n] ⊗ [m + k]
� [n × (m + k)]
= [(n × m)+ (n × k)]
� [n × m] ⊕ [n × k]
� ([n] ⊗ [m])⊕ ([n] ⊗ [k]).

Moreover,

[n] ⊗ [0] � [n × 0]
= [0].

Example 54 In FdHilb there is one non-trivial object H such that FdHilb(H,H)

is commutative, namely C. The category FdHilb|C has Hilbert spaces of the form
C
⊕n with n ∈ N as objects, linear maps between these as morphisms, and the tensor

product as the monoidal structure. This category is said to be categorically equiva-
lent (a notion which we define later) to FdHilb. The only difference is that FdHilb
contains for each n ∈ N many isomorphic Hilbert spaces of dimension n, while in
FdHilb|C there is exactly one Hilbert space of dimension n.

Example 55 In Rel it is the non-trivial object {∗} for which Rel({∗}, {∗}) � B is
commutative. We obtain a category with objects of the form

{∗} + . . .+ {∗} ,

that is, a n-element set for each n ∈ N, with relations between these as morphisms,
and with the Cartesian product as the monoidal structure. Again we have that Rel|B
is categorically equivalent to Rel.

262 B. Coecke and É.O. Paquette

We can endow C|X with compact structure. Set:

• [n]∗ := [n]
• Let η[n] ∈ C|X(I, [n]∗ ⊗ [n]) be the morphism with matrix entries

(η[n])(i,i),1 := 1I and (η[n])(i, j �=i),1 := 0I,I .

• Let ε[n] ∈ C|X([n] ⊗ [n]∗, I) to be the morphism with matrix entries

(ε[n])1,(i,i) := 1I and (ε[n])1,(i, j �=i) := 0I,I .

To see that this indeed defines a compact structure, observe that the identity of [n] is

1[n] = δi, j :=
{

1I if i = j
0I,I otherwise

.

Using this, we find that

(1[n] ⊗ η[n])(i,(j,k)),(l,1) = δi,l ◦ η(j,k),1

and

(ε[n] ⊗ 1[n])(1,i),((j,k),l) = ε1,(j,k) ◦ δi,l .

We can now verify the equations of compactness by computing the composite—say
e—of the two preceding morphisms using matrix calculus, i.e.

e(m,n) =
∑

j,k,l

(ε[n] ⊗ 1[n])(1,m),((j,k),l)(1[n] ⊗ η[n])(j,(k,l)),(n,1) .

Note that the indexation over j , k and l has two different bracketings in the above
sum. By definition of the identity, unit and counit, the term e(m,n) will be 1I only
if j = k = l, which entails that e(m,n) = δi, j , the identity. Since the objects are
self-dual the other equation holds too.

Robin Houston proved a surprising result in [37] which to some extent is a
converse to the above. It states that when a compact category is Cartesian (or co-
Cartesian) then it also has direct sums.

3.5.7 Internal Classical Structures

In [2] unitary biproduct decompositions of the form

U : A � I⊕ . . .⊕ I︸ ︷︷ ︸
n

3 Categories for the Practising Physicist 263

were used to encode the flow of classical data in quantum informatic protocols.
In FdHilb such a map indeed singles out a basis. Explicitly, via the correspondence
between vectors in Hilbert space H and linear maps of type C → H, the linear maps

{U † ◦ ιi : C → H | i = 1, . . . , n}

define a basis for H, namely

{|i〉 := (U † ◦ ιi)(1) | i = 1, . . . , n} .

These basis vectors are then identified with outcomes of measurements.
But there is another way to encode bases as morphisms in a category, one for

which we only need to rely on the tensor structure, and hence we can stay in the
diagrammatic realm of Sect. 3.3.2. If we have a basis

B := {|i〉 | i = 1, . . . , n}

of a Hilbert space H then we can consider the linear maps

δ : H→ H⊗H :: |i〉 �→ |i i〉 and ε : H→ C :: |i〉 �→ 1 .

These two maps indeed faithfully encode the basis B since we can extract it back
from them. It suffices to solve the equation

δ(|ψ〉) = |ψ〉 ⊗ |ψ〉

in the unknown |ψ〉. Indeed, the only |ψ〉’s for which the right-hand-side is of the
form |φ〉 ⊗ |φ′〉 are the basis vectors. For any other ψ = ∑

i αi |i〉 we have that

δ(|ψ〉) =
∑

i

αi |i〉 ⊗ |i〉 ,

that is, we obtain a genuinely entangled state.
The pair of maps (δ, ε) satisfies several properties e.g.

(δ ⊗ 1H) ◦ δ = (1H ⊗ δ) ◦ δ : H→ H⊗H⊗H :: |i〉 �→ |i i i〉

and

(ε ⊗ 1H) ◦ δ = (1H ⊗ ε) ◦ δ = 1H :: |i〉 �→ |i〉

establishing it as an instance of the following concept in FdHilb:

Definition 28 Let (C,⊗, I) be a monoidal category. An internal comonoid is an
object C ∈ |C| together with a pair of morphims

C ⊗ C �δ
C

ε� I ,

264 B. Coecke and É.O. Paquette

where δ is the comultiplication and ε the comultiplicative unit, which are such that

C
δ

δ

C⊗C

1C⊗δ and

C

δ
��

C⊗C
δ⊗1C

C⊗C⊗C I⊗C C⊗C
ε⊗1C 1C⊗ε

C⊗I

commute.

Example 56 The relations

δ = {(x, (x, x)) | x ∈ X} ⊆ X × (X × X)

and

ε = {(x, ∗) | x ∈ X} ⊆ X × {∗}

define an internal comonoid on X in Rel as the reader may verify. We could refer to
these as the copying and deleting relations.

The notion of internal comonoid is dual to the notion of internal monoid.

Definition 29 Let (C,⊗, I) be a monoidal category. An internal monoid is an object
M ∈ |C| together with a pair of morphisms

M ⊗ M
μ� M �e

I ,

where μ is the multiplication and e the multiplicative unit, which are such that

M M ⊗ M
μ

and

M

M⊗M

μ

M⊗M⊗M
μ⊗1M

1M⊗μ

I⊗M

�

e⊗1C
M⊗M

μ

M⊗I

�

1M⊗e

commute.

The origin of this name is the fact that monoids can equivalently be defined as
internal monoids in Set. Since the notion of internal monoid applies to arbitrary
monoidal categories, it generalises the usual notion of a monoid.

Example 57 A strict monoidal category can also be defined as an internal monoid
in the category Cat, which has categories as objects, functors as morphisms

3 Categories for the Practising Physicist 265

and the product of categories as tensor—see Sect. 3.6.1 below. Proving this is
slightly beyond the scope of this chapter but we invite the interested reader
to do so.

We now show that internal monoids in Set are indeed ordinary monoids. Given
such an internal monoid (X, μ, e) in Set with functions

μ : X × X → X and e : {∗} → X,

we take the elements of the monoid to be those of X , the monoid operation to be

− • − : X × X → X :: (x, y) �→ μ(x, y) ,

and the unit of the monoid to be 1 := e(∗) ∈ X . The condition

X × X × X
1X×μ

μ×1X

X × X

μ

X × X
μ X

boils down to the fact that for all x, y, z ∈ X we have

x • (y • z) = (x • y) • z ,

that is, associativity of the monoid operation, and the condition

X

{∗} × X
e×1X

�

X × X

μ

X × {∗}
1X×e

�

boils down to the fact that for all x ∈ X we have

x • 1 = 1 • x = x ,

that is, the element 1 is the unit of the monoid.
An internal definition of a group requires a bit more work.

Definition 30 Let C be a category with finite products and let � be the terminal
object in C. An internal group is an internal monoid (G, μ, e) together with a mor-
phism inv : G � G such that we have commutation of

266 B. Coecke and É.O. Paquette

G
!

〈1G ,inv〉
�

e

G × G
μ

G

G

〈inv,1G 〉

! �
e

The additional operation inv : G � G assigns the inverses to the elements of
the group. We leave it to the reader to verify that internal groups in Set are indeed
ordinary groups. When we rather consider groups in other categories, in particular
those in categories of vector spaces, then one typically speaks about Hopf algebras,
of which quantum groups are a special case. An excellent textbook on this topic
is [65]. There are also lectures on this topic available on-line [19]. Also the notion
of group homomorphism can be “internalized” in a category. We define a group
homomorphism between two group objects (G, μ, e, inv) and (G ′, μ′, e′, inv′) to be
a morphism φ : G � G′ which commutes with all three structural morphisms,
that is, the diagrams

G × G
μ

φ×φ

G

φ ,

�

e′

e
G

φ and

G
inv

φ

G

φ

G ′ × G ′
μ′ G′ G′ G ′

inv′ G′

all commute. Again, these diagrams generalise what we know about group homo-
morphisms, namely that they preserve multiplication, unit and inverses. The notion
of (co)monoid homomorphism is defined analogously.

3.5.8 Diagrammatic Classicality

In a dagger monoidal category every internal comonoid

(
X , X

δ� X ⊗ X , X
ε� I

)

defines an internal monoid

(
X , X ⊗ X

δ†
� X , I

ε†
� X

)
.

3 Categories for the Practising Physicist 267

This merely involves reversal of the arrows. We can easily see this in diagrammatic
terms. We represent the comultiplication and its unit as follows:

δ :=:=

Then, the corresponding requirements are:

= = =

Now, if we flip all of these upside-down we obtain a monoid:

u :=:= e

with corresponding requirements:

= = =

A dagger (co)monoid is a (co)monoid satisfying all the preceding requirements.
The dagger comonoids in FdHilb and Rel which we have seen above both have

some additional properties. For example, they are commutative:

=

that is, symbolically,

σX,X ◦ δ = δ .

268 B. Coecke and É.O. Paquette

The comultiplication is isometric or special:

=

that is, symbolically,

δ† ◦ δ = 1X .

But by far, the most fascinating law which they obey are the Frobenius equations:

= =

that is, symbolically,

(1X ⊗ δ†) ◦ (δ ⊗ 1X) = δ ◦ δ† = (δ† ⊗ 1X) ◦ (1X ⊗ δ) .

For a commutative dagger comonoid these two equations are easily seen to be equiv-
alent. We verify that these equations hold for the dagger comonoids in FdHilb and
Rel discussed in the previous section.

In FdHilb, we have

δ† : H⊗H→ H :: |i j〉 �→ δi j · |i〉 and ε† : C → H :: 1 �→
∑

i

|i〉

so
|i j〉 δ⊗1X� |i i j〉 1X⊗δ†

� |i〉 ⊗ (δi j · |i〉) = δi j · |i i〉

and

|i j〉 δ†
� δi j · |i〉 δ� δi j · |i i〉 .

In Rel we have

δ† = {((x, x), x) | x ∈ X} ⊆ (X × X)× X

and
ε† = {(∗, x) | x ∈ X} ⊆ {∗} × X

3 Categories for the Practising Physicist 269

so we obtain

(1X ⊗ δ†) ◦ (δ ⊗ 1X) = δ ◦ δ† = {((x, x), (x, x)) | x ∈ X} .

One can show that the Frobenius equation together with isometry guarantees a
normal form for any connected picture made up of dagger Frobenius (co)monoids,
identities and symmetry, and which only depends on the number of input and
output wires [25, 43]. As a result we can represent any such network as a
“spider” e.g.,

=“more complicated
network”

Hence commutative dagger special Frobenius comonoids turn out to be structures
which come with a very simple graphical calculus, but at the same time they are of
key importance to quantum theory, as is exemplified by this theorem [28]:

Theorem 2 In FdHilb there is a bijective correspondence between dagger spe-
cial Frobenius comonoids and orthonormal bases. Explicitly, each dagger special
Frobenius comonoid in FdHilb is of the form

δ : H→ H⊗H :: |i〉 �→ |i i〉 and ε : H→ C :: |i〉 �→ 1

relative to some orthonormal basis {|i〉}i .
In the category 2Cob we also encounter the Frobenius equation:

=

but the (co)monoids involved are not special, since the two cobordisms

are not homeomorphic. Therefore a normal form in 2Cob is of the form [42]

270 B. Coecke and É.O. Paquette

The commutative diagram in Definition 30 becomes

= =

when setting

:= =

∇

!:=inv

One refers to this equation typically as the Hopf law—cf. the Hopf algebras men-
tioned above. What also holds for these operations are the bialgebra laws:

=

=

=

There’s lots more to say on the connections between algebraic structures and
these pictures. The reader may consult, for example, [42, 63, 65]. A great place to
find some very well-explained introductions to this is John Baez’ This Week’s Finds
in Mathematical Physics [8], for example, weeks 174, 224, 268.

3 Categories for the Practising Physicist 271

3.6 Monoidal Functoriality, Naturality and TQFTs

In this section we provide the remaining bits of theory required to state the definition
of a topological quantum field theory.

3.6.1 Bifunctors

The category Cat which has categories as objects and functors as morphisms also
comes with a monoidal structure:

Definition 31 The product of categories C and D is a category C× D:

1. objects are pairs (C, D) with C ∈ |C| and D ∈ |D| ,
2. morphisms are pairs (f, g) : (C, D) � (C ′, D′) where f : C � C ′ is a

morphism in C and g : D � D′ is a morphism in D ,
3. composition is componentwise, that is,

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g) ,

and the identities are pairs of identities.

This monoidal structure is Cartesian. The obvious projection functors

C
P1←− C× D

P2−→ D

provide the product structure:

E

∀Q ∀R∃!F

C C× D
P1 P2

D

This notion of product allows for a very concise definition of bifunctoriality. A
bifunctor is now nothing but an ordinary functor of type

F : C× D −→ E .

So, for instance, to say that a tensor is a bifunctor it now suffices to say that

−⊗− : C× C −→ C

is a functor. Indeed, this implies that we have

⊗(ϕ ◦ ξ) = ⊗(ϕ) ◦ ⊗(ξ) and ⊗ (1Ξ) = 1⊗(Ξ)

272 B. Coecke and É.O. Paquette

for all morphisms ϕ, ξ and all objects Ξ in C× C, that is,

(g ◦ f)⊗ (g′ ◦ f ′) = (g ⊗ g′) ◦ (f ⊗ f ′) and 1A ⊗ 1B = 1A⊗B .

We give another example of bifunctor which is contravariant in the first variable
and covariant in the second variable. This functor is key to the so-called Yoneda
Lemma, which constitutes the core of many categorical constructs, for which we
refer to the standard literature [50]. For all A ∈ |C| let

C(A,−) : C −→ Set

be the functor which maps

1. each object B ∈ |C| to the set C(A, B) ∈ |Set| , and
2. each morphism g : B � C to the function

C(A, g) : C(A, B) → C(A, C) :: f �→ g ◦ f .

For all C ∈ |C| let

C(−, C) : Cop −→ Set

be the functor which maps

1. each object A ∈ |C| to the set C(A, C) ∈ |Set| , and
2. each morphism f : A � B to the function

C(f, C) : C(B, C) → C(A, C) :: g �→ g ◦ f .

One verifies that given any pair f : A � B and h : C � D the diagram

C(B, C)
C(f,C)

C(B,h)

C(A, C)

C(A,h)

C(B, D)
C(f,D)

C(A, D)

commutes, sending a morphism g : B � C to the composite h ◦ g ◦ f :
A � D. The bifunctor—also called hom-functor – which unifies the above two
functors is

C(−,−) : Cop × C −→ Set

3 Categories for the Practising Physicist 273

which maps

1. each pair of objects (A, B) ∈ |C| to the set C(A, B) ∈ |Set| , and
2. each pair morphism (f : A � B, h : C � D) to the function

C(f, h) : C(B, C) → C(A, D) :: g �→ h ◦ g ◦ f .

We can now identify

C(A,−) := C(1A,−) and C(−, A) := C(−, 1A) .

These functors are called representable functors. They enable us to represent objects
and morphisms of any category as functors on the well-known category Set.

3.6.2 Naturality

We already encountered a fair number of examples of our restricted variant of natu-
ral isomorphisms, namely

I⊗ A � A � A ⊗ I , A ⊗ B � B ⊗ A , A ⊗ (B ⊗ C) � (A ⊗ B)⊗ C

and

A × (B + C) � (A × B)+ (A × C) ,

as well as some proper natural transformations, namely

A � A × A , A + A � A and (A × B)+ (A × C) � A × (B + C) .

What makes all of these special is that all of the above expressions only involve
objects of the category C without there being any reference to morphisms. This is
not the case anymore for the general notion of natural transformations, which are in
fact, structure preserving maps between functors.

Definition 32 Let F, G : C −→ D be functors. A natural transformation

τ : F ⇒ G

consists of a family of morphisms

{τA ∈ D(F A, G A) | A ∈ |C|}

274 B. Coecke and É.O. Paquette

which are such that the diagram

F A
τA

F f

G A

G f

F B τB
G B

commutes for any A, B ∈ |C| and any f ∈ C(A, B).

Example 58 Given vector spaces V and W , then two group representations

ρ1 : G → GL(V) and ρ2 : G → GL(W)

are equivalent if there exists an isomorphism τ : V → W so that for all g ∈ G,

τ ◦ ρ1(g) = ρ2(g) ◦ τ . (3.43)

This isomorphism is a natural transformation. Indeed, taking the functorial point of
view for the two representations above, we get two functors

G
Rρ1−→ FdVectK and G

Rρ2−→ FdVectK

where Rρ1 maps ∗ on some vector space Rρ1(∗) and Rρ2 maps ∗ on some vector
space Rρ2(∗). Naturality means that the diagram

Rρ1(∗) τ∗

Rρ1 g

Rρ2(∗)

Rρ2 g

Rρ1(∗) τ∗ Rρ2(∗)

commutes, which translates into Eq. (3.43).

Example 59 The family of canonical linear maps

{τV : V → V ∗∗ | V ∈ FdVectK}

from a vector space to its double dual is a natural transformation

τ : 1FdVectK ⇒ (−)∗∗

from the identity functor to the double dual functor. There is no natural transforma-
tion of type 1FdVectK ⇒ (−)∗. Indeed, while each finite dimensional vector space

3 Categories for the Practising Physicist 275

is isomorphic with its dual, there is no “natural choice” of an isomorphism, since
constructing one depends on a choice of basis.

The fact that for FdVectK naturality indeed means basis independence can imme-
diately be seen from the definition of naturality. In

FV
τV

F f

GV

G f

FV τV
GV

the linear map f : V → V can be interpreted as a change of basis, and then the
linear maps F f : FV → FV and G f : GV → GV apply this change of basis to
the expressions FV and GV respectively. Commutation of the above diagram then
means that it makes no difference whether we apply τV before the change of basis,
or whether we apply it after the change of basis. Hence it asserts that τV is a basis
independent construction.

3.6.3 Monoidal Functors and Monoidal Natural Transformations

A monoidal functor, unsurprisingly, is a functor between two monoidal categories
that preserves the monoidal structure “coherently”.

Definition 33 Let

(C,⊗, I, αC, λC, ρC) and (D,#, J, αD, λD, ρD)

be monoidal categories. Then a monoidal functor is a functor

F : C −→ D ,

together with a natural transformation

φ−,− : (F−)# (F−) ⇒ F(−⊗−)

with components

{φA,B : F A # F B � F(A ⊗ B) | A, B ∈ |C|} ,

and a morphism

φ : J � FI ,

276 B. Coecke and É.O. Paquette

which are such that for every A, B, C ∈ |C| the diagrams

(F A # F B)# FC
α−1

D

φA,B#1FC

F A # (F B # FC)

1F A#φB,C

F(A ⊗ B)# FC

φA⊗B,C

F A # F(B ⊗ C)

φA,B⊗C

F((A ⊗ B)⊗ C)
Fα−1

C

F(A ⊗ (B ⊗ C))

and

F A # J
1F A#φ

ρ−1
D

F A # FI

φA,I ,

J# F B

λ−1
D

φ#1F B
FI# F B

φI,B

F A F(A ⊗ I)
Fρ−1

C

F B F(I⊗ B)
Fλ−1

C

commute in D. Moreover, a monoidal functor between symmetric monoidal cate-
gories is symmetric if, in addition, for all A, B ∈ |C| the diagram

F A # F B
σF A,F B

φA,B

F B # F A

φB,A

F(A ⊗ B)
FσA,B

F(B ⊗ A)

commutes in D. A monoidal functor is strong if the components of the natural trans-
formation φ−,− as well as the morphism φ are isomorphisms, and it is strict if they
are identities. In this case the equational requirements simplify to

F(A ⊗ B) = F A # F B and FI = J ,

and

FαC = αD , FλC = λD , FρC = ρD and FσC = σD .

Hence a strict monoidal functor between strict monoidal categories just means that
the tensor is preserved by F .

Example 60 The functor † : Cop −→ C is a strict monoidal functor. In a compact
category C, the functor (−)∗ : Cop −→ C which maps any object A on A∗ and any
morphism f on its transpose f ∗ is a strong monoidal functor.

3 Categories for the Practising Physicist 277

Definition 34 A monoidal natural transformation

θ : (F, {φA,B | A, B ∈ |C|}, φ) ⇒ (
G, {ψA,B | A, B ∈|C|}, ψ)

between two monoidal functors is a natural transformation such that

F A # F B

φA,B

θA#θB
G A # G B

ψA,B and

J
ψφ

F(A ⊗ B)
θA⊗B

G(A ⊗ B) FI
θI

GI

commute. A monoidal natural transformation is symmetric if the two monoidal func-
tors which constitute its domain and codomain are both symmetric.

3.6.4 Equivalence of Categories

In Example 6 we defined the category Cat which has categories as objects and
functors as morphism. Definition 2 on isomorphic objects, when applied to this
special category Cat, tells us that two categories C and D are isomorphic if there
exists two functors F : C −→ D and G : D −→ C such that

G ◦ F = 1C and F ◦ G = 1D .

Thus, the functor F defines a bijection between the objects as well as between
the hom-sets of C and D. However, many categories that are—for most practical
purposes—equivalent are not isomorphic. For example,

• the category FSet which has all finite sets as objects, and functions between these
sets as morphisms, and,

• a category which has for each n ∈ N exactly one set of that size as objects, and
functions between these sets as morphisms.

Therefore, it is useful to define some properties for functors that are weaker than
being isomorphisms. For instance, the two following definitions describe functors
whose morphism assignments are injective and surjective respectively.

Definition 35 A functor F : C −→ D is faithful if for any A, B ∈ |C| and any
f, g : A � B we have that

F f = Fg : F A � F B implies f = g : A � B .

Definition 36 A functor F : C −→ D is full if for any A, B ∈ |C| and for any
g : F A → F B there exists an f : A � B such that F f = g.

278 B. Coecke and É.O. Paquette

A subcategory D of a category C is a collection of objects of C as well as a
collection of morphisms of C such that

• for every morphism f : A � B in D, both A and B ∈ |D| ,
• for every A ∈ |D|, 1A is in D , and
• for every pair of composable morphisms f and g in D, g ◦ f is in D.

These conditions entail that D is itself a category. Moreover, if D is a subcategory
of C, the inclusion functor F : D −→ C which maps every A ∈ |D| and f ∈ D to
itself in C is automatically faithful. If in addition F is full, then we say that D is a
full subcategory of C. A full and faithful functor is in general not an isomorphism,
as we shall see in Theorem 3 below.

Definition 37 Two categories C and D are equivalent if there is a pair of functors
F : C −→ D and G : D −→ C and natural isomorphisms

G ◦ F ∼⇒ 1C and F ◦ G ∼⇒ 1D .

An equivalence of categories is weaker than the notion of isomorphism of cate-
gories. It captures the essence of what we can do with categories without using con-
crete descriptions of objects: if two categories C and D are equivalent then any result
following from the categorical structure in C remains true in D, and vice-versa.

Theorem 3 [50, p. 93] A functor F : C −→ D is an equivalence of categories if
and only if it is both full and faithful, and if each object B ∈ |D| is isomorphic to an
object F A for some A ∈ |C|.

Example 61 A skeleton D of a category C is any full subcategory of C such that
each A ∈ |C| is isomorphic in C to exactly one B ∈ |D|. An equivalence between a
category C and one of its skeleton D is defined as follows:

1. As D is a full subcategory of C, there is an inclusion functor F : D −→ C.
2. By the definition of a skeleton, every A ∈ |C| is isomorphic to an A′ ∈ |D|, so

we can set G A := A′ and pick an isomorphism τA : A � G A.
3. From the preceding point, there is a unique way to define a functor G : C −→ D

such that we have FG
∼⇒ 1C and G F

∼⇒ 1D.

Particular instances of this are:

• The two categories with sets as objects and functions as morphisms discussed at
the beginning of this section.

• FdHilb is equivalent to the category with C
0, C

1, C
2, · · · , C

n, · · · as objects
and linear maps between these as morphisms. This category is isomorphic to the
category MatC of matrices with entries in C of Example 18.

3 Categories for the Practising Physicist 279

3.6.5 Topological Quantum Field Theories

TQFTs are primarily used in condensed matter physics to describe, for instance, the
fractional quantum Hall effect. Perhaps more accurately, TQFTs are quantum field
theories that compute topological invariants. In the context of this paper, TQFTs are
our main example of monoidal functors. Defining a TQFT as a monoidal functor is
very elegant, however, the seemingly short definition that we will provide is packed
with subtleties. In order to appreciate it to its full extent, we will first give the non-
categorical axiomatics of a generic n-dimensional TQFTs as given in [66]. We then
derive the categorical definition from it. The bulk of this section is taken from [42]
to which the reader is referred for a more detailed discussion on the subject.

An n-dimensional TQFT is a rule T which associates to each closed oriented
(n − 1)-dimensional manifold Σ a vector space T (Σ) over the field K, and to each
oriented cobordism M : Σ0 → Σ1 a linear map T (M) : T (Σ0) → T (Σ1), subject
to the following conditions:

1. if M � M ′ then T (M) = T (M ′) ;
2. each cylinder Σ × [0, 1] is sent to the identity map of T (Σ) ;
3. If M = M ′ ◦ M ′′ then

T (M) = T (M ′) ◦ T (M ′′) ;

4. the disjoint union Σ = Σ ′ +Σ ′′ is mapped to

T (Σ) = T (Σ ′)⊗ T (Σ ′′),

and the disjoint union M = M ′ + M ′′ is mapped to

T (M) = T (M ′)⊗ T (M ′′) ;

5. the empty manifold Σ = ∅ is mapped to the ground field K and the empty
cobordism is sent to the identity map on K .

All of this can be written down in one line.

Definition 38 An n-dimensional TQFT is a symmetric monoidal functor

T : (nCob,+,∅, T) → (FdVectK,⊗, K, σ)

where T are the “twist” cobordisms e.g.

The rule that maps manifolds to vector spaces and cobordisms to linear maps
gives the domain and the codomain of the functor. Condition 1 says that we consider
homeomorphism classes of cobordisms. Conditions 2 and 3 spell out that the TQFT
is a functor. Conditions 4 and 5 say that it is a monoidal functor.

280 B. Coecke and É.O. Paquette

We now construct such a functor. In the case of 2-dimensional quantum field the-
ories, it turns out that this question can be answered with the material we introduced
in the preceding sections.

We have the following result [42]:

Proposition 7 The monoidal category 2Cob is generated by

and

That means, any cobordism in 2Cob can be written in terms of these generators
when using composition and tensor.

Following the discussion of Sect. 3.5.7, it is easily seen that these generators sat-
isfy the axioms of a Frobenius comonoid. Moreover, since T is a monoidal functor,
it is sufficient to give the image of the generators of 2Cob in order to specify it
completely. Hence we can map this Frobenius comonoid in 2Cob on a Frobenius
comonoid in FdVectK:

The converse is also true, that is, given a Frobenius comonoid on V , then we can
define a TQFT with the preceding prescription, so there is a one-to-one correspon-
dence between commutative Frobenius comonoids and 2-dimensional TQFTs. This
is interesting in itself but we can go a step further.

We can now define the category 2TQFTK of 2-dimensional TQFTs and sym-
metric monoidal natural transformations between them. Given two TQFTs T , T ′ ∈
|2TQFTK|, then the components of the natural transformation θ must be—by the
definition above—of the form

3 Categories for the Practising Physicist 281

θn : V ⊗ V ⊗ . . .⊗ V︸ ︷︷ ︸
n times

→ W ⊗ W ⊗ . . .⊗ W︸ ︷︷ ︸
n times

.

Since this natural transformation is monoidal, it is completely specified by the map
θ1 : V → W . The morphism θK is the identity mapping from the trivial Frobenius
comonoid on K to itself. Finally, naturality of θ means that the components must
commute with the morphisms of 2Cob. Since the latter can be decomposed into the
generators listed in Proposition 7, we just have to consider these cobordisms. e.g.

V ⊗ V
θ2

μV

W ⊗ W

μW

V
θ1

W

We can now define the category CFCK of commutative Frobenius comonoids
and morphisms of Frobenius comonoids, that is, linear maps that are both comonoid
homomorphisms and monoid homomorphisms.

Theorem 4 [42] The category 2TQFTK is equivalent to the category CFCK.

3.7 Further Reading

This concludes our tutorial of (a small fraction of) category theory. We particularly
focussed on monoidal categories, given that we expect their role to grow within
physics. We indicated how the monoidal structure encodes the nature of physical
systems, e.g. classical versus quantum. Admittedly, the distinction as presented here
requires substantial qualification, and by no means characterizes what quantum the-
ory is truly about. A recent more elaborated categorical comparison of classical
vs. quantum theories is in [24]. All of this is part of a novel vastly growing research
area, and we hope that this chapter may help the interested reader to take a bite of it.

We end this chapter by pointing in the direction of other important categorical
concepts, for which we refer the reader to other sources. A good place to start are
the YouTube postings by the Catsters [18].

Adjoint functors are, at least from a mathematical perspective, the greatest
achievement of category theory thus far: it essentially unifies all known mathe-
matical constructs of a variety of areas of mathematics such as algebra, geometry,
topology, analysis and combinatorics within a single mathematical concept.

The restriction of adjoint functors to posetal categories, that is, those discussed
in Examples 14, 15, 45 and 46, is the concept of Galois adjoints. These play an
important role in computer science when reasoning about computational processes.
Let P be a partial order which represents the properties one wishes to attribute to the
input data of a process, with “a ≤ b” if and only if “whenever a holds, then b must
hold too”, and let Q be the partial order which represents the properties one wishes

282 B. Coecke and É.O. Paquette

to attribute to the output data of that process. So the process is an order preserving
map f : P → Q. The order preserving map g : Q → P , which maps a property
b of the output to the “weakest” property (i.e. highest in the partial ordering) which
the input data needs to satisfy in order to guarantee that the output satisfies b, is
then the left Galois adjoint to f . One refers to g(b) as the weakest precondition.
Formally f is left Galois adjoint to g if and only if for all a ∈ P and all b ∈ Q we
have

f (a) ≤ b ⇐⇒ a ≤ g(b) .

The orthomodular law of quantum logic [57], that is, in the light of Example 46,
a weakening of the distributive law which L(H) does satisfy, is an example of such
an adjunction of processes, namely

Pc(a) ≤ b ⇐⇒ a ≤ [c →](b)

where:

• Pc is an order-theoretic generalization of the linear algebraic notion of an “orthog-
onal projector on subspace c”, formally defined to be

Pc : L → L :: a �→ c ∧ (a ∨ c⊥) ,

where (−)⊥ stands for the orthocomplement ;
• [− →](−) is referred to as Sasaki hook, or unfortunately, also sometimes referred

to as “quantum implication”, and is formally defined within

[c →] : L → L :: a �→ c⊥ ∨ (a ∧ c) .

Heyting algebras, that is, the order-theoretic incarnation of intuitionistic logic, and
which play an important role in the recent work by Doering and Isham [32] are, by
definition, Galois adjoints now defined within

[c∧](a) ≤ b ⇐⇒ a ≤ [c ⇒](b) .

So these Galois adjoints relate logical conjunction to logical implication.
The general notion of adjoint functors involves, instead of an “if and only if”

between statements f (a) ≤ b and a ≤ g(b), a “natural equivalence” between hom-
sets D(F A, B) and C(A, G B), where F : C −→ D and G : D −→ C are now
functors. We refer to [4, 12] in these volumes for an account on adjoint functors and
the role they play in logic. We also recommend [44] on this topic.

The composite G◦F : C −→ C of a pair of adjoint functors is a monad, and each
monad arises in this manner. The posetal counterpart to this is a closure operator,
of which the linear span in a vector space is an example.

3 Categories for the Practising Physicist 283

The composite F ◦ G : D −→ D of a pair of adjoint functors is a comonad.
Comonads are an instance of the research area of coalgebra, of which comonoids
are also an instance. The study of coalgebraic structures has become increasingly
important both in computer science and physics. These structures are very different
from algebraic structures: while algebraic structures typically would take two pieces
of data a and b as input, and produce the composite a • b, coalgebraic structures
would do the opposite, that is, take one piece of data as input and produce two
pieces of data as output, cf. a copying operation. Another example of a coalgebraic
concept is quantum measurement. Quantum measurements take a quantum state as
input and produces another quantum state together with classical data [27].

There also is the area of higher-dimensional category theory, after which the n-
category cafe is named [11]. Monoidal categories are a special case of bicategories,
since we can compose the objects with the tensor, as well as the processes between
these objects. There is currently much activity on the study of n-categories, that
is, categories in which the hom-sets are themselves categories, and the hom-sets of
these categories are again categories etc. Why would we be interested in that? If one
is interested in processes then one should also be in modifying processes, and that
is exactly what these higher dimensional categorical structures enable to model. An
excellent book on higher-dimensional category theory is [48].

We end by recommending the other chapters in these volumes entitled New
Structures for Physics, which, among many other things, contain complementary
tutorials on category theory and its graphical calculus [4, 12, 63].

Acknowledgments We very much appreciated the feedback from the n-category cafe on a pre-
vious draft of this paper, by John Baez, Hendrik Boom, Dave Clarke, David Corfield and Aaron
Lauda. We in particular thank Frank Valckenborgh for proofreading the final version.

References

1. Abramsky, S.: No-Cloning in categorical quantum mechanics. In: Mackie, I., Gay, S. (eds.)
Semantic Techniques for Quantum Computation. Cambridge University Press, Cambridge
(2008) 232

2. Abramsky, S., Coecke, B.: A Categorical semantics of quantum protocols. In: Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS’04), IEEE Com-
puter Science Press, 2004. arXiv:quant-ph/0402130 An updated & improved version appeared
under the title Categorical quantum mechanics. In: Handbook of quantum logic and quantum
structures, Elsevier. arXiv:0808.1023 188, 203, 221, 256, 257, 262

3. Abramsky, S., Coecke, B.: Abstract physical traces. Theor. Appl. Categories 14, 111–124
(2006). http://www.tac.mta.ca/tac/volumes/14/6/14–06abs.html

4. Abramsky, S., Tzevelekos, N.: Introduction to categories and categorical logic. In: Coecke, B.
(ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009) 187, 235, 282, 283

5. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories – The Joy of Cats.
Wiley, New York (1990). Freely available from http://katmat.math.uni-bremen.de/acc/acc.pdf 178, 183, 235

6. Asperti, A., Longo, G.: Categories, types, and Structures. An Introduction to Category theory
for the Working Computer Scientist. MIT Press, New York (1991)

7. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed
states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996). arXiv:quant-ph/9511010 188

284 B. Coecke and É.O. Paquette

8. Baez, J.C.: This Week’s Finds in Mathematical Physics, 1993–2008. http://
math.ucr.edu/home/baez/TWF.html 270

9. Baez, J.C.: Quantum quandaries: A category-theoretic perspective. In French, S. et al.
(eds.) Structural Foundations of Quantum Gravity. Oxford University Press, Oxford (2004).
arXiv:quant-ph/0404040 214, 231

10. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J.
Math. Phys. 36, 60736105 (1995). arXiv:q-alg/9503002 231

11. Baez, J.C., Corfield, D., Schreiber, U.: The n-category cafe. Group blog. http://
golem.ph.utexas.edu/category/ 283

12. Baez, J.C., Stay, M.: Physics, topology, logic and computation: A Rosetta Stone. In: Coecke,
B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York (2009).
arXiv: 0903.0340 282, 283

13. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, New York (1985). Repub-
lished in Reprints in Theory and Applications of Categories, No. 12, 1–287, 2005. http://
www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html

14. Bénabou, J.: Categories avec multiplication. Comptes Rendus des Séances de l’Académie des
Sciences Paris 256, 1887–1890 (1963)

15. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843
(1936) 246

16. Borceux, F., Stubbe, I.: Short introduction to enriched categories. In: Coecke, B., Moore,
D.J., Wilce, A. (eds.) Current Research in Operational Quantum Logic: Algebras, Categories
and Languages, pp. 167–194. Fundamental Theories of Physics vol. 111. Springer, New York
(2000) 255

17. Brown, R.: Topology: A Geometric Account of General Topology, Homotopy Types, and the
Fundamental Groupoid. Halsted Press, New York (1988) 184

18. Cheng, E., Willerton, S.: The Catsters. YouTube videos. www.youtube.com/user/TheCatsters 281
19. Catsters: Group objects and Hopf algebras. See [18] 266
20. Coecke, B.: Kindergarten quantum mechanics. In: Khrennikov, A. (ed.) Quantum Theory:

Reconsiderations of the Foundations III, pp. 81–98. AIP Press, New York (2005). arXiv:quant-
ph/0510032v1 177, 221

21. Coecke, B.: Introducing categories to the practicing physicist. In: What is Category Theory?
pp. 45–74. Advanced Studies in Mathematics and Logic 30, Polimetrica Publishing, Italy
(2006). arXiv:0808.1032 177, 195

22. Coecke, B.: De-linearizing linearity: Projective quantum axiomatics from strong compact clo-
sure. Elect. Notes Theor. Comput. Sci. 170, 47–72 (2007). arXiv:quant-ph/0506134 200, 256, 257

23. Coecke, B., Duncan, R.: Interacting quantum observables. In: Proceedings of the 35th Inter-
national Colloquium on Automata, Languages and Programming, pp. 298–310, Lecture Notes
in Computer Science, vol. 5126, Springer, New York (2008). An extended version is available
under the title Interacting Quantum Observables: Categorical Algebra and Diagrammatics at
arXiv:0906.4725 198

24. Coecke, B., Edwards, B., Spekkens, R.W.: The group-theoretic origin of non-locality for
qubits. Oxford University Computing Laboratory Research Report PRG-RR-09–04 (2009)
http://web.comlab.ox.ac.uk/publications/publication3026-abstract.html 188, 281

25. Coecke, B., Paquette, E.O.: POVMs and Nairmarks theorem without sums, Electronic Notes
in Theoretical Computer Science (to appear) (2008). arXiv:quant-ph/0608072 198, 269

26. Coecke, B., Paquette, E.O., Pavlovic, D.: Classical and quantum structuralism. In: Mackie, I.,
Gay, S. (eds.) Semantic Techniques for Quantum Computation. To appear, Cambridge Univer-
sity Press, Cambridge (2008). arXiv:0904.1997 188, 198

27. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman,
L., Lamonaco, S. (eds.) Mathematics of Quantum Computing and Technology, pp. 567–604.
Taylor and Francis, Abington (2008). arXiv:quant-ph/0608035 188, 283

28. Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases. Preprint (2008).
arXiv:0810.0812 269

3 Categories for the Practising Physicist 285

29. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift Volume II, Progress in
Mathematics 87, pp. 111–196. Birkhäuser, Boston (1990)

30. Dieks, D.G.B.J.: Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982) 232
31. Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Oxford University Press,

Oxford (1947) 204
32. Doering, A., Isham, C.: ‘What is a thing?’: Topos theory in the foundations of physics. In:

Coecke, B. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, New York
(2009). arXiv:0803.0417 282

33. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Am. Math. Soc.
58, 231–294 (1945) 178, 206

34. Finkelstein, D.R., Jauch, J.M., Schiminovich, D., Speiser, D.: Foundations of quaternion quan-
tum mechanics. J. Math. Phys. 3, 207–220 (1962) 215

35. Freyd, P., Yetter, D.: Braided compact closed categories with applications to lowdimensional
topology. Adv. Math. 77, 156–182 (1989) 198

36. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987) 187
37. Houston, R.: Finite products are biproducts in a compact closed category. J. Pure Appl. Alge-

bra 212, 394–400 (2008). arXiv:math/0604542 251, 262
38. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112 (1991) 198
39. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Proc. Cambridge Philoso. Soc.

119, 447–468 (1996) 198
40. Kauffman, L.H.: Teleportation topology. Optics Spectroscopy 99, 227–232 (2005).

arXiv:quant-ph/0407224
41. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra

19, 193–213 (1980) 214
42. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathe-

matical Society, in Student Texts 59 (2004) 231, 269, 270, 279, 280, 281
43. Lack, S.: Composing PROPs. Theory Appl. Categories 13, 147–163 (2004) 269
44. Lambek, J., Scott, P.J.: Higher Order Categorical Logic. Cambridge University Press, Cam-

bridge (1986) 282
45. Lauda, A.D., Pfeiffer, H.: State sum construction of two-dimensional open-closed Topological

Quantum Field Theories. J. Knot Theory Ramifications 16, 1121–1163 (2007) 198
46. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del Semi-

nario Matematico e Fisico di Milano 43, 135–166 (1974) 255
47. Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics. Cambridge University Press, Cam-

bridge (1997)
48. Leinster, T.: Higher Operads, Higher Categories, London Mathematical Society Lecture Note

Series 298, Cambridge University Press, Cambridge (2004) 283
49. Martin, K., Panangaden, P.: Domain theory and general relativity. In: Coecke, B. (ed.) New

Structures for Physics. Springer Lecture Notes in Physics, New York (2009) 188
50. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (2000) 211, 235, 272, 2
51. Muirhead, R.F.: Some methods applicable to identities and inequalities of symmetric algebraic

functions of n letters. Proc. Edinburgh Math. Soc. 21, 144157 (1903) 188
52. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83,

436–439 (1999) 188
53. Morrison, S.E.: A diagrammatic category for the representation theory of Uq(sln). PhD thesis,

University of California at Berkeley, Berkeley (2007) 176
54. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404,

164–165 (2000). arXiv:quant-ph/9911090 188
55. Penrose, R.: Applications of negative dimensional tensors. In: Combinatorial Mathematics and

Its Applications, pp. 221–244, Academic Press, New York (1971)
56. Penrose, R.: Techniques of differential topology in relativity, Society for Industrial and

Applied Mathematics (1972) 187
57. Piron, C.: Foundations of Quantum Physics. W. A. Benjamin, Reading (1976) 282

286 B. Coecke and É.O. Paquette

58. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41
(1965) 175

59. Rosen, R.: Anticipatory Systems: Philosophical, Mathematical and Methodological Founda-
tions. Pergamon Press, New York (1985) 183

60. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Cam-
bridge Philosophical Soc. 31, 555–563 (1935); 32, 446–451 (1936) 213

61. Seely, R.A.G.: Linear logic, ∗-autonomous categories and cofree algebras. Contemporary
Math. 92, 371–382 (1998) 187

62. Selinger, P.: Dagger compact closed categories and completely positive maps. Electro. Notes
Theor. Comput. Sci. 170, 139–163 (2007) 198, 256, 257

63. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.)
New Structures for Physics. Springer Lecture Notes in Physics, New York (2009) 197, 198, 200, 204, 270, 283

64. Sorkin, R.: Spacetime and causal sets, In: J. D’Olivo (ed.) Relativity and Gravitation: Classical
and Quantum. World Scientific, Singapore (1991) 187

65. Street, R.: Quantum Groups: A Path to Current Algebra. Cambridge University Press, Cam-
bridge (2007) 198, 266, 270

66. Turaev, V.G.: Axioms for topological quantum field theories. In: Annales de la faculté des
sciences de Toulouse 6e série 3, 135–152 (1994) 231, 279

67. Vicary, J.: A categorical framework for the quantum harmonic oscillator. Int. J. Theor. Phys.
(to appear) (2008). arXiv: quant-ph/0706.0711 198

68. Yetter, D.N.: Functorial Knot Theory. Categories of Tangles, Coherence, Categorical Defor-
mations, and Topological Invariants, World Scientific, Singapore (2001) 198

69. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982) 188, 232

Part II Manifestations
of Linearity

Chapter 4
A Survey of Graphical Languages
for Monoidal Categories

P. Selinger

Abstract This article is intended as a reference guide to various notions of
monoidal categories and their associated string diagrams. It is hoped that this will
be useful not just to mathematicians, but also to physicists, computer scientists, and
others who use diagrammatic reasoning. We have opted for a somewhat informal
treatment of topological notions, and have omitted most proofs. Nevertheless, the
exposition is sufficiently detailed to make it clear what is presently known, and
to serve as a starting place for more in-depth study. Where possible, we provide
pointers to more rigorous treatments in the literature. Where we include results that
have only been proved in special cases, we indicate this in the form of caveats.

4.1 Introduction

There are many kinds of monoidal categories with additional structure—braided,
rigid, pivotal, balanced, tortile, ribbon, autonomous, sovereign, spherical, traced,
compact closed, ∗-autonomous, to name a few. Many of them have an associated
graphical language of “string diagrams”. The proliferation of different notions is
often confusing to non-experts, and occasionally to experts as well. To add to the
confusion, one concept often appears in the literature under multiple names (for
example, “rigid” is the same as “autonomous”, “sovereign” is the same as “pivotal”,
and “ribbon” is the same as “tortile”).

In this survey, I attempt to give a systematic overview of the main notions and
their associated graphical languages. My initial intention was to summarize, without
proof, only the main definitions and coherence results that appear in the literature.
However, it quickly became apparent that, in the interest of being systematic, I had
to include some additional notions. This led to the sections on spacial categories,
and planar and braided traced categories.

P. Selinger (B)
Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
e-mail: selinger@mathstat.dal.ca

Selinger, P.: A Survey of Graphical Languages for Monoidal Categories. Lect. Notes Phys. 813,
289–355 (2011)
DOI 10.1007/978-3-642-12821-9_4 c© Springer-Verlag Berlin Heidelberg 2011

290 P. Selinger

Historically, the terminology was often fixed for special cases before more gen-
eral cases were considered. As a result, some concepts have a common name
(such as “compact closed category”) where another name would have been more
systematic (e.g. “symmetric autonomous category”). I have resisted the temptation
to make major changes to the established terminology. However, I propose some
minor tweaks that will hopefully not be disruptive. For example, I prefer “traced
category”, which can be combined with various qualifying adjectives, to the longer
and less flexible “traced monoidal category”.

Many of the coherence results are widely known, or at least presumed to be true,
but some of them are not explicitly found in the literature. For those that can be
attributed, I have attempted to do so, sometimes with a caveat if only special cases
have been proved in the literature. For some easy results, I have provided proof
sketches. Some unproven results have been included as conjectures.

While the results surveyed here are mathematically rigorous, I have shied away
from giving the full technical details of the definitions of the graphical languages and
their respective notions of equivalence of diagrams. Instead, I present the graphical
languages somewhat informally, but in a way that will be sufficient for most appli-
cations. Where appropriate, full mathematical details can be found in the references.

Readers who want a quick overview of the different notions are encouraged to
first consult the summary chart at the end of this article.

An updated version of this article will be maintained on the ArXiv, so I encourage
readers to contact me with corrections, literature references, and updates.

Graphical Languages: An Evolution of Notation

The use of graphical notations for operator diagrams in physics goes back to Pen-
rose [30]. Initially, such notations applied to multiplications and tensor products of
linear operators, but it became gradually understood that they are applicable in more
general situations.

To see how graphical languages arise from matrix multiplication, consider the
following example. Let M : A → B, N : B ⊗ C → D, and P : D → E be linear
maps between finite dimensional vector spaces A, B, C, D, E . These maps can be
combined in an obvious way to obtain a linear map F : A ⊗ C → E . In functional
notation, the map F can be written

F = P ◦ N ◦ (M ⊗ idC). (4.1)

The same can be expressed as a summation over matrix indices, relative to some
chosen basis of each space. In mathematical notation, suppose M = (m j,i), N =
(nl, jk), P = (pm,l), and F = (fm,ik), where i, j, k, l, m range over basis vectors of
the respective spaces. Then

fm,ik =
∑

j

∑

l

pm,lnl, jkm j,i . (4.2)

4 A Survey of Graphical Languages 291

In physics, it is more common to write column indices as superscripts and row
indices as subscripts. Moreover, one can drop the summation symbols by using
Einstein’s summation convention.

Fik
m = Pl

m N jk
l Mi

j . (4.3)

In (4.2) and (4.3), the order of the factors in the multiplication is not relevant, as
all the information is contained in the indices. Also note that, while the notation
mentions the chosen bases, the result is of course basis independent. This is because
indices occur in pairs of opposite variance (if on the same side of the equation) or
equal variance (if on opposite sides of the equation). It was Penrose [30] who first
pointed out that the notation is valid in many situations where the indices are purely
formal symbols, and the maps may not even be between vector spaces.

Since the only non-trivial information in (4.3) is in the pairing of indices, it is nat-
ural to represent these pairings graphically by drawing a line between paired indices.
Penrose [30] proposed to represent the maps M, N , P as boxes, each superscript as
an incoming wire, and each subscript as an outgoing wire. Wires corresponding to
the same index are connected. Thus, we obtain the graphical notation:

k

F
m

i =

k

N
l

P
m

i
M

j

(4.4)

Finally, since the indices no longer serve any purpose, one may omit them from the
notation. Instead, it is more useful to label each wire with the name of the corre-
sponding space.

C

F
E

A =

C

N
D

P
E

A
M

B

(4.5)

In the notation of monoidal categories, (4.5) can be expressed as a commutative
diagram

A ⊗ C
F

M⊗idC

E

B ⊗ C
N

D,

P

(4.6)

or simply:

F = P ◦ N ◦ (M ⊗ idC). (4.7)

292 P. Selinger

Thus, we have completed a full circle and arrived back at the notation (4.1) that we
started with.

Organization of the Paper

In each of the remaining sections of this paper, we will consider a particular class of
categories and its associated graphical language.

Acknowledgments

I would like to thank Gheorghe Ştefănescu and Ross Street for their help in locating
hard-to-obtain references, and for providing some background information. Thanks
to Fabio Gadducci, Chris Heunen, and Micah McCurdy for useful comments on an
earlier draft.

4.2 Categories

We only give the most basic definitions of categories, functors, and natural
transformations. For a gentler introduction, with more details and examples, see
e.g. Mac Lane [29].

Definition 1 A category C consists of:

• a class |C| of objects, denoted A, B, C , . . . ;
• for each pair of objects A, B, a set homC(A, B) of morphisms, which are denoted

f : A → B;
• identity morphisms idA : A → A and the operation of composition: if f : A → B

and g : B → C , then

g ◦ f : A → C,

subject to the three equations

idB ◦ f = f, f ◦ idA = f, (h ◦ g) ◦ f = h ◦ (g ◦ f)

for all f : A → B, g : B → C , and h : C → D.

The terms “map” or “arrow” are often used interchangeably with “morphism”.

Examples 2 Some examples of categories are: the category Set of sets (with func-
tions as the morphisms); the category Rel of sets (with relations as the morphisms);
the category Vect of vector spaces (with linear maps); the category Hilb of Hilbert
spaces (with bounded linear maps); the category UHilb of Hilbert spaces (with uni-
tary maps); the category Top of topological spaces (with continuous maps); the cat-
egory Cob of n-dimensional oriented manifolds (with oriented cobordisms). Note
that in each case, we need to specify not only the objects, but also the morphisms

4 A Survey of Graphical Languages 293

(and technically the composition and identities, although they are often clear from
the context).

Categories also arise in other sciences, for example in logic (where the objects are
propositions and the morphisms are proofs), and in computing (where the objects
are data types and the morphisms are programs).

Many concepts associated with sets and functions, such as inverse, monomor-
phism (injective map), idempotent, cartesian product, etc., are definable in an arbi-
trary category.

Graphical Language

In the graphical language of categories, objects are represented as wires (also called
edges) and morphisms are represented as boxes (also called nodes). An identity
morphisms is represented as a continuing wire, and composition is represented by
connecting the outgoing wire of one diagram to the incoming wire of another. This
is shown in Table 4.1.

Table 4.1 The graphical language of categories

Object A
A

Morphism f : A → B
A

f
B

Identity idA
: A → A

A

Composition t ◦ s
A

s
B

t
C

Coherence

Note that the three defining axioms of categories (e.g., idB ◦ f = f) are automati-
cally satisfied “up isomorphism” in the graphical language. This property is known
as soundness. A converse of this statement is also true: every equation that holds
in the graphical language is a consequence of the axioms. This property is called
completeness. We refer to a soundness and completeness theorem as a coherence
theorem.

Theorem 1 (Coherence for categories) A well-formed equation between two mor-
phism terms in the language of categories follows from the axioms of categories if
and only if it holds in the graphical language up to isomorphism of diagrams.

Hopefully it is obvious what is meant by isomorphism of diagrams: two diagrams
are isomorphic if the boxes and wires of the first are in bijective correspondence with

294 P. Selinger

the boxes and wires of the second, preserving the connections between boxes and
wires.

Admittedly, the above coherence theorem for categories is a triviality, and is not
usually stated in this way. However, we have included it for sake of uniformity, and
for comparison with the less trivial coherence theorems for monoidal categories in
the following sections. The proof is straightforward, since by the associativity and
unit axioms, each morphism term is uniquely equivalent to a term of the form

((fn ◦ . . .) ◦ f2) ◦ f1

for n ≥ 0, with corresponding diagram

f1 f2 ··· fn
.

Remark 1 We have equipped wires with a left-to-right arrow, and boxes with a mark-
ing in the upper left corner. These markings are of no use at the moment, but will
become important as we extend the language in the following sections.

4.2.1 Technicalities

Signatures, Variables, Terms, and Equations

So far, we have not been very precise about what the wires and boxes of a diagram
are labeled with. We have also glossed over what was meant by “a well-formed
equation between morphism terms in the language of categories”. We now briefly
explain these notions, without giving all the formal details. For a more precise math-
ematical treatment, see e.g. Joyal and Street [22].

The wires of a diagram are labeled with object variables, and the boxes are
labeled with morphism variables. To understand what this means, consider the
familiar language of arithmetic expressions. This language deals with terms, such as
(x+y+2)(x+3), which are built up from variables, such as x and y, constants, such
as 2 and 3, by means of operations, such as addition and multiplication. Variables
can be viewed in three different ways: first, they can be viewed as symbols that
can be compared (e.g. the variable x occurs twice in the given term, and is different
from the variable y). They can also be viewed as placeholders for arbitrary numbers,
for example x = 5 and y = 15. Here x and y are allowed to represent different
numbers or the same number; however, the two occurrences of x must denote the
same number. Finally, variables can be viewed as placeholders for arbitrary terms,
such as x = a + b and y = z2.

The formal language of category theory is similar, except that we require two sets
of variables: object variables (for labeling wires) and morphism variables (for label-
ing boxes). We must also equip each morphism variable with a specified domain
and codomain. The following definition makes this more precise.

4 A Survey of Graphical Languages 295

Definition 3 A simple (categorical) signature Σ consists of a set Σ0 of object vari-
ables, a set Σ1 of morphism variables, and a pair of functions dom, cod : Σ1 → Σ0.
Object variables are usually written A, B, C, . . ., morphism variables are usually
written f, g, h, . . ., and we write f : A → B if dom(f) = A and cod(f) = B.

Given a simple signature, we can then build morphism terms, such as f ◦(g◦idA),
which are built from morphism variables (such as f and g) and morphism constants
(such as idA), via operations (i.e., composition). Each term is recursively equipped
with a domain and a codomain, and we must require compositions to respect the
domain and codomain information. A term that obeys these rules is called well-
formed. Finally, an equation between terms is called a well-formed equation if the
left-hand side and right-hand side are well-formed terms that moreover have equal
domains and equal codomains.

The graphical language is also relative to a given signature. The wires and boxes
are labeled, respectively, with object variables and morphism variables from the
signature, and the labeling must respect the domain and codomain information. This
means that the wire entering (respectively, exiting) a box labeled f must be labeled
by the domain (respectively, codomain) of f .

The above remark about the different roles of variables in arithmetic also holds
for the diagrammatic language of categories. On the one hand, the labels can be
viewed as formal symbols. This is the view used in the coherence theorem, where
the formal labels are part of the definition of equivalence (in this case, isomorphism)
of diagrams.

The labels can also be viewed as placeholders for specific objects and morphisms
in an actual category. Such an assignment of objects and morphisms is called an
interpretation of the given signature. More precisely, an interpretation i of a signa-
ture Σ in a category C consists of a function i0 : Σ0 → |C|, and for any f ∈ Σ1 a
morphism i1(f) : i0(dom f) → i0(cod f). By a slight abuse of notation, we write
i : Σ → C for such an interpretation.

Finally, a morphism variable can be viewed as a placeholder for an arbitrary
(possibly composite) diagram. We occasionally use this latter view in schematic
drawings, such as the schematic representation of t ◦ s in Table 4.1. We then label a
box with a morphism term, rather than a formal variable, and understand the box as
a short-hand notation for a possibly composite diagram corresponding to that term.

Functors and Natural Transformations

Definition 4 Let C and D be categories. A functor F : C → D consists of a
function F : |C| → |D|, and for each pair of objects A, B ∈ |C|, a function
F : homC(A, B) → homD(F A, F B), satisfying F(g ◦ f) = F(g) ◦ F(f) and
F(idA) = idF A.

Definition 5 Let C and D be categories, and let F, G :C→D be functors. A natural
transformation τ : F → G consists of a family of morphisms τA : F A → G A,
one for each object A ∈ |C|, such that the following diagram commutes for all
f : A → B:

296 P. Selinger

F A
τA

F f

G A

G f

F B
τB

G B.

Coherence and Free Categories

Most coherence theorems are proved by characterizing the free categories of a cer-
tain kind.

Definition 6 We say that a category C is free over a signature Σ if it is equipped
with an interpretation i : Σ → C, such that for any category D and interpretation
j : Σ → D, there exists a unique functor F : C → D such that j = F ◦ i .

Theorem 2 The graphical language of categories over a signature Σ , with identi-
ties and composition as defined in Table 4.1, and up to isomorphism of diagrams,
forms the free category over Σ .

Theorem 1 is indeed a consequence of this theorem: by definition of freeness, an
equation holds in all categories if and only if it holds in the free category. By the
characterization of the free category, an equation holds in the free category if and
only if it holds in the graphical language.

4.3 Monoidal Categories

In this section, we consider various notions of monoidal categories. We some-
times refer to these notions as “progressive”, which means they have graphical
languages where all arrows point left-to-right. This serves to distinguish them from
“autonomous” notions, which will be discussed in Sect. 4.4, and “traced” notions,
which will be discussed in Sect. 4.5.

4.3.1 (Planar) Monoidal Categories

A monoidal category (also sometimes called tensor category) is a category with an
associative unital tensor product. More specifically:

Definition 7 [29, 23] A monoidal category is a category with the following addi-
tional structure:

• a new operation A ⊗ B on objects and a new object constant I ;
• a new operation on morphisms: if f : A → C and g : B → D, then

f ⊗ g : A ⊗ B → C ⊗ D;

4 A Survey of Graphical Languages 297

• and isomorphisms

αA,B,C : (A ⊗ B) ⊗ C
∼=−→ A ⊗ (B ⊗ C),

λA : I ⊗ A
∼=−→ A,

ρA : A ⊗ I
∼=−→ A,

subject to a number of equations:

• ⊗ is a bifunctor, which means idA ⊗ idB = idA⊗B and (k ⊗ h) ◦ (g ⊗ f) =
(k ◦ g) ⊗ (h ◦ f);

• α, λ, and ρ are natural transformations, i.e., (f ⊗ (g ⊗ h)) ◦αA,B,C = αA′,B ′,C ′ ◦
((f ⊗ g) ⊗ h), f ◦ λA = λA′ ◦ (idI ⊗ f), and f ◦ ρA = ρA′ ◦ (f ⊗ idI);

• plus the following two coherence axioms, called the “pentagon axiom” and the
“triangle axiom”:

(A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D

A ⊗ ((B ⊗ C) ⊗ D)
A⊗αB,C,D

((A ⊗ B) ⊗ C) ⊗ D

αA,B,C ⊗D

αA⊗B,C,D

A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ B) ⊗ (C ⊗ D)
αA,B,C⊗D

(A ⊗ I) ⊗ B

ρA⊗idB

αA,I,B
A ⊗ (I ⊗ B)

idA⊗λB
A ⊗ B

When we specifically want to emphasize that a monoidal category is not assumed
to be braided, symmetric, etc., we sometimes also refer to it as a planar monoidal
category.

Examples 8 Examples of monoidal categories include: the category Set (of sets and
functions), together with the cartesian product ×; the category Set together with
the disjoint union operation +; the category Rel with either × or +; the category
Vect (of vectors spaces and linear functions) with either ⊕ or ⊗; the category Hilb
of Hilbert spaces with either ⊕ or ⊗; the categories Top and Cob with disjoint
union +. Note that in each case, we need to specify a category and a tensor product
(in general there are multiple choices). Technically, we should also specify associa-
tivity maps etc., but they are usually clear from the context.

Graphical Language

We extend the graphical language of categories as follows. A tensor product of
objects is represented by writing the corresponding wires in parallel. The unit object

298 P. Selinger

Table 4.2 The graphical language of monoidal categories

Tensor product S ⊗ T
T

S

Unit object I (empty)

Morphism f : A1 ⊗⊗An → B1 ⊗ ⊗Bm

An Bm

A1
... f B1

...

Tensor product s ⊗ t

C
t

D

A
s

B

is represented by zero wires. A morphism variable f : A1 ⊗ . . .⊗ An → B1 ⊗ . . .⊗
Bm is represented as a box with n input wires and m output wires. A tensor product
of morphisms is represented by stacking the corresponding diagrams. This is shown
in Table 4.2.

Note that it is our convention to write tensor products in the bottom-to-top order.
Similar conventions apply to objects as to morphisms: thus, a single wire is labeled
by an object variable such as A, while a more general object such as A ⊗ B or I
is represented by zero or more wires. For more details, see “Monoidal signatures”
below.

Coherence

It is easy to check that the graphical language for monoidal categories is sound, up
to deformation of diagrams in the plane. As an example, consider the following law,
which is a consequence of bifunctoriality:

(idC ⊗ g) ◦ (f ⊗ idB) = (f ⊗ idD) ◦ (idA ⊗ g).

Translated into the graphical language, this becomes

B
g

D

A
f

C
=

B
g

D

A
f

C,

which obviously holds up to deformation of diagrams. We have the following coher-
ence theorem:

4 A Survey of Graphical Languages 299

Theorem 3 (Coherence for planar monoidal categories [21, Theorem. 1.5], [22,
Theorem. 1.2]) A well-formed equation between morphism terms in the language of
monoidal categories follows from the axioms of monoidal categories if and only if it
holds, up to planar isotopy, in the graphical language.

Here, by “planar isotopy”, we mean that two diagrams, drawn in a rectangle in the
plane with incoming and outgoing wires attached to the boundaries of the rectangle,
are equivalent if it is possible to transform one to the other by continuously moving
around boxes in the rectangle, without allowing boxes or wires to cross each other or
to be detached from the boundary of the rectangle during the moving. To make these
notions mathematically precise, it is usually easier to represent morphism as points,
rather than boxes. For precise definitions and a proof of the coherence theorem, see
Joyal and Street [21, 22].

Caveat 9 Technically, Joyal and Street’s proof in [21, 22] only applies to planar
isotopies where each intermediate diagram during the deformation remains progres-
sive, i.e., with all arrows oriented left-to-right. Joyal and Street call such an isotopy
“recumbent”. We conjecture that the result remains true if one allows arbitrary pla-
nar deformations. Similar caveats also apply to the coherence theorems for braided
and balanced monoidal categories below.

The following is an example of two diagrams that are not isomorphic in the planar
embedded sense:

B

f h g

A

=

B

f A g

h
(4.1)

where f : I → A ⊗ B, g : A ⊗ B → I , and h : I → I . And indeed, the
corresponding equation g ◦ ((ρA ◦ (idA ⊗ h) ◦ ρ−1

A) ⊗ idB) ◦ f = g ◦ ((λA ◦ (h ⊗
idA)◦λ−1

A)⊗ idB)◦ f does not follow from the axioms of monoidal categories. This
is an easy consequence of soundness.

Note that because of the coherence theorem, it is not actually necessary to mem-
orize the axioms of monoidal categories: indeed, one could use the coherence the-
orem as the definition of monoidal category! For practical purposes, reasoning in
the graphical language is almost always easier than reasoning from the axioms. On
the other hand, the graphical definition is not very useful when one has to check
whether a given category is monoidal; in this case, checking finitely many axioms
is easier.

Relationship to Traditional Coherence Theorems

Many category theorists are familiar with coherence theorems of the form “all dia-
grams of a certain type commute”. Mac Lane’s traditional coherence theorem for

300 P. Selinger

monoidal categories [28] is of this form. It states that all diagrams built from only
α, λ, ρ, id, ◦, and ⊗ commute.

The coherence results in this paper are of a more general form (cf. Kelly [26,
p. 107]). Here, the object is to characterize all formal equations that follow from
a given set of axioms. We note that the traditional coherence theorem is an easy
consequence of the general coherence result of Theorem 3: namely, if a given well-
formed equation is built only from α, λ, ρ, id, ◦, and ⊗, then both the left-hand
side and right-hand side denote identity diagrams in the graphical language. There-
fore, by Theorem 3, the equation follows from the axioms of monoidal categories.
Analogous remarks hold for all the coherence theorems of this article.

4.3.1.1 Technicalities

Monoidal Signatures

To be precise about the labels on diagrams of monoidal categories, and about the
meaning of “well-formed equation” in the coherence theorem, we introduce the
concept of a monoidal signature. This generalizes the simple signatures introduced
in Sect. 4.2. Monoidal signatures were introduced under the name tensor schemes
by Joyal and Street [21, 22]. We give a non-strict version of the definition.

Definition 10 ([22, Def. 1.4], [21, Def. 1.6]) Given a set Σ0 of object variables,
let Mon(Σ0) denote the free (⊗, I)-algebra generated by Σ0, i.e., the set of object
terms built from object variables and I via the operation ⊗. For example, if A, B ∈
Σ0, then the term (A ⊗ B) ⊗ (I ⊗ A) is an element of Mon(Σ0).

A monoidal signature consists of a set Σ0 of object variables, a set Σ1 of mor-
phism variables, and a pair of functions dom, cod : Σ1 → Mon(Σ0).

The concept of well-formed morphism terms and equations (in the language
of monoidal categories) is defined relative to a given monoidal signature. In the
graphical language, wires and boxes are labeled by object variables and morphism
variables as before. An object term expands to zero or more parallel wires, by the
rules of Table 4.2. As before, the labellings must respect the domain and codomain
information, which now involves possibly multiple wires connected to a box. Just
as we sometimes label a box by a morphism term in schematic drawings to denote
a possibly composite diagram, we sometimes label a wire by an object term, such
as S and T in Table 4.2. In this case, it is a short-hand notation for zero or more
parallel wires.

Given a monoidal signature Σ and a monoidal category C, an interpretation
i : Σ → C consists of an object function i0 : Σ0 → |C|, which then extends in
a unique way to î0 : Mon(Σ0) → |C| such that î0(A ⊗ B) = î0(A) ⊗ î0(B) and
î0(I) = I , and for any f ∈ Σ1 a morphism i1(f) : i0(dom f) → i0(cod f).

The remaining graphical languages in this Section 4.3 are all given relative to a
monoidal signature.

4 A Survey of Graphical Languages 301

Monoidal Functors and Natural Transformations

Definition 11 A strong monoidal functor (also sometimes called a tensor functor)
between monoidal categories C and D is a functor F : C → D, together with
natural isomorphisms φ2 : F A ⊗ F B → F(A ⊗ B) and φ0 : I → F I , such that
the following diagrams commute:

(F A ⊗ F B) ⊗ FC
φ2⊗id

α

F(A ⊗ B) ⊗ FC
φ2

F((A ⊗ B) ⊗ C)

F(α)

F A ⊗ (F B ⊗ FC)
id⊗φ2

F A ⊗ F(B ⊗ C)
φ2

F(A ⊗ (B ⊗ C))

F A ⊗ I
ρ

id⊗φ0

F A

F(ρ)

F A ⊗ F I
φ2

F(A ⊗ I)

I ⊗ F A
λ

φ0⊗id

F A

F(λ)

F I ⊗ F A
φ2

F(I ⊗ A)

Definition 12 Let C and D be monoidal categories, and let F, G : C → D be strong
monoidal functors. A natural transformation τ : F → G is called monoidal (or a
tensor transformation) if the following two diagrams commute for all A, B:

F A ⊗ F B
φ2

τA⊗τB

F(A ⊗ B)

τA⊗B

G A ⊗ G B
φ2

G(A ⊗ B)

Coherence and Free Monoidal Categories

Similarly to what we stated for categories, the coherence theorem for monoidal cat-
egories is a consequence of a characterization of the free monoidal category. How-
ever, due to the extra coherence conditions in the definition of a strong monoidal
functor, the definition of freeness is slightly more complicated.

Definition 13 A monoidal category C is a free monoidal category over a monoidal
signature Σ if it is equipped with an interpretation i : Σ → C such that for any
monoidal category D and interpretation j : Σ → D, there exists a strong monoidal
functor F : C → D such that j = F ◦ i , and F is unique up to a unique monoidal
natural isomorphism.

As before, the coherence theorem can be re-formulated as a freeness theorem.

Theorem 4 The graphical language of monoidal categories over a monoidal sig-
nature Σ , with identities, composition, and tensor as defined in Tables 4.1 and 4.2,
and up to planar isotopy of diagrams, forms a free monoidal category over Σ .

302 P. Selinger

Most of the coherence theorems (and conjectures) of this article can be similarly
formulated in terms of freeness. An exception to this are the traced categories with-
out braidings in Sects. 4.5.1, 4.5.2, 4.5.3, 4.5.4 and 4.7.5, as explained in Remark 15.
From now on, we will only mention freeness when it is not entirely automatic, such
as in Sect. 4.4.1.

4.3.2 Spacial Monoidal Categories

Definition 14 A monoidal category is spacial if it satisfies the additional axiom

ρA ◦ (idA ⊗ h) ◦ ρ−1
A = λA ◦ (h ⊗ idA) ◦ λ−1

A , (4.2)

for all h : I → I .

In the graphical language, this means that

h

A

=

A

h
,

so in particular, it implies that the two terms in (4.1) are equal. The author does not
know whether the concept of a spacial monoidal category appears in the literature,
or if it does, under what name.

Graphical Language

The graphical language for spacial monoidal categories is the same as that for
monoidal categories, except that planarity is dropped from the notion of diagram
equivalence, i.e., diagrams are considered up to isomorphism. Obviously the axioms
are sound; we conjecture that they are also complete.

Conjecture 1 (Coherence for spacial monoidal categories) A well-formed equation
between morphism terms in the language of spacial monoidal categories follows
from the axioms of spacial monoidal categories if and only if it holds, up to isomor-
phism of diagrams, in the graphical language.

Note that, in the case of planar diagrams, the notion of isomorphism of diagrams
coincides with ambient isotopy in 3 dimensions. This explains the term “spacial”.

4.3.3 Braided Monoidal Categories

Definition 15 [23] A braiding on a monoidal category is a natural family of isomor-
phisms cA,B : A ⊗ B → B ⊗ A, satisfying the following two “hexagon axioms”:

4 A Survey of Graphical Languages 303

(B ⊗ A) ⊗ C
αB,A,C

B ⊗ (A ⊗ C)
idB⊗cA,C

(A ⊗ B) ⊗ C

cA,B⊗idC

αA,B,C

B ⊗ (C ⊗ A).

A ⊗ (B ⊗ C)
cA,B⊗C

(B ⊗ C) ⊗ A
αB,C,A

(B ⊗ A) ⊗ C
αB,A,C

B ⊗ (A ⊗ C)
idB⊗c−1

C,A

(A ⊗ B) ⊗ C

c−1
B,A⊗idC

αA,B,C

B ⊗ (C ⊗ A).

A ⊗ (B ⊗ C)
c−1

B⊗C,A
(B ⊗ C) ⊗ A

αB,C,A

Note that every braided monoidal category is spacial; this follows from the natu-
rality (in I) of cA,I : A ⊗ I → I ⊗ A.

A braided monoidal functor between braided monoidal categories is a monoidal
functor that is compatible with the braiding in the following sense:

F A ⊗ F B
φ2

cF A,F B

F(A ⊗ B)

FcA,B

F B ⊗ F A
φ2

F(B ⊗ A).

Graphical Language

One extends the graphical language of monoidal categories with the braiding:

Braiding cA,B

B A

A B

In general, if A and B are composite object terms, the braiding cA,B is repre-
sented as the appropriate number of wires crossing each other.

Note that the braiding satisfies cA,B◦c−1
A,B = idA⊗B , but not cA,B◦cB,A = idA⊗B .

Graphically:

B A B

A B A

= idA⊗B,

304 P. Selinger

B A B

A B A

≠ idA⊗B.

Example 1 The hexagon axiom translates into the following in the graphical lan-
guage:

(idB ⊗ cA,C) ◦ αB,A,C ◦ (cA,B ⊗ idC) = αB,C,A ◦ (cB,C⊗A) ◦ αA,B,C

C C A

B A C

A B B

=

C A

B C

A B

Example 2 The Yang-Baxter equation is the following equation, which is a conse-
quence of the hexagon axiom and naturality:

(cB,C ⊗idA)◦(idB ⊗cA,C)◦(cA,B ⊗idC) = (idC ⊗cA,B)◦(cA,C ⊗idB)◦(idA⊗cB,C).

In the graphical language, it becomes:

C C A A

B A C B

A B B C

=

C B B A

B C A B

A A C C

Theorem 5 (Coherence for braided monoidal categories [22, Theorem. 3.7])
A well-formed equation between morphisms in the language of braided monoidal
categories follows from the axioms of braided monoidal categories if and only if it
holds in the graphical language up to isotopy in 3 dimensions.

Here, by “isotopy in 3 dimensions”, we mean that two diagrams, drawn in a
3-dimensional box with incoming and outgoing wires attached to the boundaries
of the box, are isotopic if it is possible to transform one to the other by moving
around nodes in the box, without allowing nodes or edges to cross each other or
to be detached from the boundary during the moving. Also, the linear order of the
edges entering and exiting each node must be respected. This is made more precise
in Joyal and Street [22].

Caveat 16 The proof by Joyal and Street [22] is subject to some minor technical
assumptions: graphs are assumed to be smooth, and the isotopies are progressive,
with continuously changing tangent vectors.

4 A Survey of Graphical Languages 305

4.3.4 Balanced Monoidal Categories

Definition 17 [23] A twist on a braided monoidal category is a natural family of
isomorphisms θA : A → A, satisfying θI = idI and such that the following diagram
commutes for all A, B:

A ⊗ B

θA⊗B

cA,B
B ⊗ A

θB⊗θA

A ⊗ B B ⊗ A.cB,A

(4.3)

A balanced monoidal category is a braided monoidal category with twist.

A balanced monoidal functor between balanced monoidal categories is a braided
monoidal functor that is also compatible with the twist, i.e., such that F(θA) = θF A
for all A.

Graphical Language

The graphical language of balanced monoidal categories is similar to that of braided
monoidal categories, except that morphisms are represented by flat ribbons, rather
than 1-dimensional wires. A ribbon can be thought of as a pair of parallel wires that
are infinitesimally close to each other, or as a wire that is equipped with a framing
[22]. For example, the braiding looks like this:

cA,B = .

The twist map θA is represented as a 360-degree twist in a ribbon, or in several
ribbons together, if A is a composite object term. This is easiest seen in the following
illustration.

θA⊗B
θA

.= , =

The meaning of (4.3) should then be obvious.

Theorem 6 (Coherence for Balanced Monoidal Categories [22, Theorem. 4.5])
A well-formed equation between morphisms in the language of balanced monoidal
categories follows from the axioms of balanced monoidal categories if and only if it
holds in the graphical language up to framed isotopy in 3 dimensions.

306 P. Selinger

4.3.5 Symmetric Monoidal Categories

Definition 18 A symmetric monoidal category is a braided monoidal category
where the braiding is self-inverse, i.e.:

cA,B = c−1
B,A

In this case, the braiding is called a symmetry.

Remark 2 Because of Eq. (4.3), a symmetric monoidal category can be equivalently
defined as a balanced monoidal category in which θA = idA for all A.

Remark 3 The previous remark notwithstanding, there exist symmetric monoidal
categories that possess a non-trivial twist (in addition to the trivial twist θA = idA).
Thus, in a balanced monoidal category, the symmetry condition cA,B = c−1

B,A does
not in general imply θA = idA. In other words, a balanced monoidal category that
is symmetric as a braided monoidal category is not necessarily symmetric as a bal-
anced monoidal category. An example is the category of finite dimensional vector
spaces and linear bijections, with θA(x) = nx , where n = dim(A).

Examples 19 On the monoidal category (Set,×) of sets with cartesian product, a
symmetry is given by c(x, y) = (y, x). On the category (Vect,⊗) of vector spaces
with tensor product, a symmetry is given by c(x ⊗ y) = y ⊗ x .

Graphical Language

The symmetry is graphically represented by a crossing:

Symmetry cA,B

B A

A B

Theorem 7 (Coherence for symmetric monoidal categories [22, Theorem. 2.3])
A well-formed equation between morphisms in the language of symmetric monoidal
categories follows from the axioms of symmetric monoidal categories if and only if
it holds, up to isomorphism of diagrams, in the graphical language.

Note that the graphical language for symmetric monoidal categories is up to
isomorphism of diagrams, without any reference to 2- or 3-dimensional structure.
However, isomorphism of diagrams is equivalent to ambient isotopy in 4 dimen-
sions, so we can still regard it as a geometric notion.

4 A Survey of Graphical Languages 307

4.4 Autonomous Categories

Autonomous categories are monoidal categories in which the objects have duals. In
terms of graphical language, this means that some wires are allowed to run from
right to left.

4.4.1 (Planar) Autonomous Categories

Definition 20 [23] In a (without loss of generality strict) monoidal category, an
exact pairing between two objects A and B is given by a pair of morphisms
η : I → B ⊗ A and ε : A ⊗ B → I , such that the following two adjunction
triangles commute:

A
idA⊗η

idA

A ⊗ B ⊗ A

ε⊗idA

A,

B
η⊗idB

idB

B ⊗ A ⊗ B

idB⊗ε

B.

(4.1)

In such an exact pairing, B is called the right dual of A and A is called the left dual
of B.

Remark 4 The maps η and ε determine each other uniquely, and they are respec-
tively called the unit and the counit of the adjunction. Moreover, the triple (B, η, ε),
if it exists, is uniquely determined by A up to isomorphism. The existence of duals
is therefore a property of a monoidal category, rather than an additional structure on
it. Moreover, every strong monoidal functor automatically preserves existing duals.

Definition 21 [20, 21, 23] A monoidal category is right autonomous if every object
A has a right dual, which we then denote A∗. It is left autonomous if every object A
has a left dual, which we then denote ∗A. Finally, the category is autonomous if it is
both right and left autonomous.

Remark 5 (Terminology) A [right, left, –] autonomous category is also called [right,
left, –] rigid, see e.g. [32, p. 78]. Also, the term “autonomous” is sometimes used
in the weaker sense of “monoidal closed”. Although this latter usage is no longer
common, it still lives on in the terminology “*-autonomous category” (Barr [4], see
also Sect. 4.9).

If we wish to emphasize that an autonomous category is not necessarily symmet-
ric or braided, we sometimes call it a planar autonomous category.

Graphical Language

If A is an object variable, the objects A∗ and ∗A are both represented in the same
way: by a wire labeled A running from right to left. The unit and counit are repre-
sented as half turns:

308 P. Selinger

Dual A ∗, ∗A
A

Unit ηΑ : I → A ∗⊗ A

A

A
ηΑ : I → A ⊗ ∗A

A

′

′

A

Counit Α : A ⊗ A ∗ → I

A

A
Α : ∗A ⊗ A → I

A

A

More generally, if A is a composite object represented by a number of wires, then
A∗ and ∗A are represented by the same set of wires running backward (rotated by
180 degrees), and the units and counits are represented as multiple wires turning.

Example 3 The two diagrams in (4.1), where B = A∗, translate into the graphical
language as follows:

A

A

A

=
A

,

A

A

A

=
A

.

Example 4 For any morphism f : A → B, it is possible to define morphisms
f ∗ : B∗ → A∗ and ∗ f : ∗B → ∗A, called the adjoint mates of f , as follows:

f =

B

A
f

B

A

f =

A

A
f

B

f
∗ =

B

A
f

B

A

∗
f =

A

A
f

B

B

With these definitions, (−)∗ and ∗(−) become contravariant functors.

Theorem 8 (Coherence for planar autonomous categories [21, Theorem. 2.7])
A well-formed equation between morphisms in the language of autonomous cate-
gories follows from the axioms of autonomous categories if and only if it holds in
the graphical language up to planar isotopy.

Here, the notion of planar isotopy is the same as before, except that the wires are
of course no longer restricted to being oriented left-to-right during the deformation.
However, the ability to turn wires upside down does not extend to boxes: the notion
of isotopy for this theorem does not include the ability to rotate boxes. See Joyal
and Street [21] for a more precise statement.

4 A Survey of Graphical Languages 309

Caveat 22 The proof by Joyal and Street [21] assumes that the diagrams are piece-
wise linear.

Note that the same theorem applies to left autonomous, right autonomous, or
autonomous categories. Indeed, each individual term in the language of autonomous
categories involves only finitely many duals, and thus may be translated into a term
of (say) left autonomous categories by replacing each object variable A by A∗∗∗...∗,
for a sufficiently large, even number of ∗’s. The resulting term maps to the same
diagram.

The same coherence theorem also holds for categories that are only right (or left)
autonomous. This is a consequence of the following proposition.

Proposition 1 Each right (or left) autonomous category can be fully embedded in
an autonomous category.

Proof Let C be a right autonomous category, and consider the strong monoidal
functor F : C → C given by F(A) = A∗∗. This functor is full and faithful, and
every object in the image of F has a left dual. Now let Ĉ be the colimit (in the
large category of right autonomous categories and strong monoidal functors) of the
sequence

C
F−→ C

F−→ C
F−→ . . .

Then Ĉ is autonomous, and C is fully and faithfully embedded in Ĉ. The proof for
left autonomous categories is analogous. �

Corollary 1 (Coherence for right (left) autonomous categories) A well-formed
equation between morphisms in the language of right (left) autonomous categories
follows from the axioms of right (left) autonomous categories if and only if it holds
in the graphical language up to planar isotopy.

Proof It suffices to show that an equation (in the language of right autonomous
categories) holds in all right autonomous categories if and only if it holds in all
autonomous categories. The “only if” direction is trivial, since every autonomous
category is right autonomous. For the opposite direction, suppose some equation
holds in all autonomous categories, and let C be a right autonomous category. Then
C can be faithfully embedded in an autonomous category Ĉ. By assumption, the
equation holds in Ĉ, and therefore also in C, since the embedding is faithful. �

4.4.1.1 Technicalities

Autonomous Signatures

The diagrams of autonomous categories, and the concept of well-formed equation
in the coherence theorem, are defined relative to the notion of an autonomous sig-
nature. These were called autonomous tensor schemes by Joyal and Street [21]. We
give a non-strict version of the definition.

310 P. Selinger

Definition 23 [21, Def. 2.5] Given a set Σ0 of object variables, let Aut(Σ0) denote
the free (⊗, I, ∗(−), (−)∗)-algebra generated by Σ0, i.e., the set of object terms built
from object variables and I via the operations ⊗, ∗(−), and (−)∗). For example, if
A, B ∈ Σ0, then the term B∗ ⊗ (∗∗ I ⊗ A)∗ is an element of Aut(Σ0).

An autonomous signature consists of a set Σ0 of object variables, a set Σ1 of
morphism variables, and a pair of functions dom, cod : Σ1 → Aut(Σ0).

The concept of a right autonomous signature and left autonomous signature are
defined analogously. The remaining graphical languages in this Section 4.4 are all
given relative to an autonomous signature.

Functors and Natural Transformations of Autonomous Categories

Any strong monoidal functor preserves exact pairings: if η : I → B ⊗ A and
ε : A ⊗ B → I define an exact pairing, then so do

F̂η : I
φ0

−→ F I
Fη−→ F(B ⊗ A)

(φ2)−1

−−−−→ F B ⊗ F A

and

F̂ε : F A ⊗ F B
φ2

−→ F(A ⊗ B)
Fε−→ F I

(φ0)−1

−−−−→ I.

In particular, if C and D are autonomous categories and F : C → D is a monoidal
functor, by uniqueness of duals, there will be a unique induced natural isomorphism
F(A∗) ∼= (F A)∗ such that

I

ηFA εFA

FεAFηA
F (A∗)⊗FA

∼=⊗ id

∧ ∧

∼=⊗id

(FA)∗ ⊗ FA

and

FA ⊗ F (A∗) I,

FA ⊗ (FA)∗

and similarly for F(∗A) ∼= ∗(F A).
For natural transformations, we have the following lemma:

Lemma 1 (Saavedra Rivano [32, Prop. 5.2.3], see also [23, Prop. 7.1]) Suppose
τ : F → G is a monoidal natural transformation between strong monoidal functors
F, G : C → D. If A has a right dual A∗ in C, then τA∗ and (τA)∗ are mutually
inverse in D (up to the above canonical isomorphism), or more precisely:

F(A∗)
τA∗

∼=

G(A∗)
∼=

(F A)∗ (G A)∗
(τA)∗

4 A Survey of Graphical Languages 311

In particular, if C is autonomous, then any such monoidal natural transformation is
invertible.

Coherence and Free Autonomous Categories

The graphical language, as we have defined it above for autonomous categories,
is sufficient for the purposes of Theorem 8. However, it does not characterize the
free autonomous category over an autonomous signature as stated. For example,
consider a signature with a single morphism variable f : A → A. The problem is
that there are clearly some diagrams, such as

A
f

A

(4.2)

which are not translations of any well-formed term of autonomous categories.
Indeed, for this diagram to correspond to a well-formed term, we would have to
have e.g. f : A∗∗ → A or f : A → ∗∗ A.

Joyal and Street [21] characterize the free autonomous category by equipping
each edge with a winding number. Effectively, the horizontal segments of edges are
labeled with pairs (A, n), where A is an object variables and n is an integer winding
number. Left-to-right segments have even winding numbers, right-to-left segments
have odd winding numbers, and winding numbers increase by one on counterclock-
wise turns, and decrease by one on clockwise turns. The winding numbers on the
input and output of each box, and on the global inputs and outputs, are restricted
to be consistent with the domain and codomain information, where e.g. A∗∗ cor-
responds to (A, 2), and ∗∗∗ B to (B,−3). See [21] for precise details. Here is an
example of a well-formed diagram of type I → B∗∗ ⊗ A, where g : I → A ⊗ B:

(B,1)

(B,0)

(B,2)

(A,0)g

Theorem 9 The graphical language (with winding numbers) of autonomous cate-
gories over an autonomous signature Σ , up to planar isotopy of diagrams, forms a
free autonomous category over Σ .

We remark that if a diagram of planar autonomous categories can be labeled
with winding numbers, then this labeling is necessarily unique. In particular, for the
purposes of Theorem 8, there is no harm in dropping the winding numbers, because
by hypothesis, the theorem only considers diagrams that are the translation of well-
formed terms, whose winding numbers can therefore uniquely reconstructed.

312 P. Selinger

4.4.2 (Planar) Pivotal Categories

A pivotal category is an autonomous category with a suitable isomorphism
A ∼= A∗∗.

Definition 24 [15, 16, 19] A pivotal category is a right autonomous category
equipped with a monoidal natural isomorphism iA : A → A∗∗.

Note that any pivotal category is immediately left autonomous, therefore
autonomous. The requirement that iA is a monoidal natural transformation here
means that i I is the canonical isomorphism I ∼= I ∗∗, and that the following diagram
commutes, where the horizontal arrow is the canonical isomorphism derived from
the autonomous structure:

A ⊗ B
iA⊗iB iA⊗B

A∗∗ ⊗ B∗∗ ∼= (A ⊗ B)∗∗.
(4.3)

The following property, which is sometimes taken as part of the definition of
pivotal categories [19, Def. 3.1.1], is a direct consequence of Saavedra Rivano’s
Lemma (Lemma 1).

Lemma 2 In any pivotal category, the following diagram commutes:

A∗ i A∗

idA∗

A∗∗∗

i∗A

A∗.

Remark 6 One can equivalently define a pivotal category as an autonomous cat-
egory equipped with a monoidal natural isomorphism (of contravariant monoidal

functors) φ : A∗ ∼=−→ ∗A. This was done by Freyd and Yetter [16]. Condition (S) of
[16, Def. 4.1] is also a consequence of Saavedra Rivano’s Lemma, and is therefore
redundant.

Remark 7 (Terminology) Freyd and Yetter [16] also introduced the term sovereign
category for a pivotal category.

A pivotal functor between pivotal categories is a monoidal functor that also
satisfies

F A
F(iA)

iF A

F(A∗∗)
∼=

(F A)∗∗.

4 A Survey of Graphical Languages 313

Graphical Language

The graphical language for pivotal categories is the same as that for autonomous
categories, where the isomorphism i A : A → A∗∗ is represented like an iden-
tity map. Of course, there are now additional diagrams that are the translation of
well-formed terms. For example, when f : A → A, then (4.2) is a well-formed
diagram of pivotal categories, but not of autonomous categories. Indeed, in the case
of pivotal categories, the problem of winding numbers (discussed before Theorem 9)
disappears, as winding numbers are taken modulo 2, and hence add nothing beyond
orientation.

Theorem 10 (Coherence for pivotal categories) A well-formed equation between
morphisms in the language of pivotal categories follows from the axioms of pivotal
categories if and only if it holds in the graphical language up to planar isotopy,
including rotation of boxes.

Caveat 25 Only special cases of this theorem have been proved in the literature.
Freyd and Yetter [16, Thm. 4.4] considered the case of the free pivotal category
generated by a category. In our terminology, this means that they only considered
diagrams for pivotal categories over simple signatures, rather than over autonomous
signatures. In other words, they only considered boxes of the form

A
f

B
,

with exactly one input and one output. Joyal and Street’s draft report [19] claims the
general result but contains no proof.

The notion of planar isotopy for pivotal categories includes the ability to rotate
boxes in the plane of the diagram. For example, the following two diagrams are
isotopic in this sense:

f = f

(4.4)

This also explains why we have marked a corner of each box. With the ability to
rotate boxes, we need to keep track of their “natural” orientation, so that the dia-
grams from (4.4) can also be represented like this:

f

314 P. Selinger

More generally, the adjoint mate of f : A → B can be represented by a rotated box:

f ∗ =

B

A
f

B

A

=
B

f
A

(4.5)

Also note that is f is a composite diagram, then the whole diagram may be rotated
to obtain f ∗.

4.4.3 Spherical Pivotal Categories

Definition 26 (Barrett and Westbury [5]) A pivotal category is spherical if for all
objects A and morphisms f : A → A,

A
f

A =
A

f
A

(4.6)

The intuition behind the “spherical” axioms is that diagrams should be embedded
in a 2-sphere, rather than the plane. It is then obvious that the left-hand side of (4.6)
can be continuously transformed into the right-hand side, namely by moving the
loop across the back of the 2-sphere.

Failure of Coherence

The spherical axiom is not sound for the graphical language of diagrams embed-
ded in the 2-sphere. The problem is that the notion of “diagram embedded in the
2-sphere” is not compatible with composition or tensor. The following is a conse-
quence of the spherical axiom, but does not hold up to isotopy in the 2-sphere.

g

A
f

A

=

g

A
f

A =

g

A
f

A

Note that this counterexample is similar to the spacial axiom (4.2), but does not
quite imply it. If one adds the spacial axiom, as we are about to do, then any notion
of isotopy is lost and equivalence of diagrams collapses to isomorphism.

4 A Survey of Graphical Languages 315

4.4.4 Spacial Pivotal Categories

Definition 27 A pivotal category is spacial if it satisfies the spacial axiom (4.2) and
the spherical axiom (4.6).

Graphical Language and Coherence

The graphical language for spacial pivotal categories is the same as that for planar
pivotal categories, except that equivalence of diagrams is now taken up to isomor-
phism. Clearly, the axioms are sound for the graphical language. We conjecture that
they are also complete.

Conjecture 2 (Coherence for spacial pivotal categories) A well-formed equation
between morphisms in the language of spacial pivotal categories follows from the
axioms of spacial pivotal categories if and only if it holds in the graphical language
up to isomorphism.

4.4.5 Braided Autonomous Categories

An braided autonomous category is an autonomous category that is also braided (as
a monoidal category). The notion of braided autonomous categories is not extremely
natural, as the graphical language is only sound for a restricted form of isotopy
called regular isotopy. Nevertheless, it is useful to collect some facts about braided
autonomous categories.

Lemma 3 [23, Prop. 7.2] A braided monoidal category is autonomous if and only if
it is right autonomous.

Proof If η : I → B ⊗ A and ε : A ⊗ B → I form an exact pairing, then so do
c−1

A,B ◦ η : I → A ⊗ B and ε ◦ cB,A : B ⊗ A → I . Therefore any right dual of A is
also a left dual of A. �

In any braided autonomous category C, we can define a natural isomorphism
bA : A∗∗ → A. This follows from the proof of Lemma 3, using the fact that both A
and A∗∗ are right duals of A∗. More concretely, bA and its inverse are defined by:

bA = A∗∗ ηA⊗id−−−→ A∗ ⊗ A ⊗ A∗∗ id⊗cA,A∗∗−−−−−−→ A∗ ⊗ A∗∗ ⊗ A
εA∗⊗id−−−−→ A,

b−1
A = A

id⊗ηA∗−−−−→ A ⊗ A∗∗ ⊗ A∗ c−1
A∗∗,A⊗id−−−−−−→ A∗∗ ⊗ A ⊗ A∗ id⊗εA−−−→ A∗∗.

Here we have written, without loss of generality, as if C were strict monoidal.
Graphically, bA and its inverse look like this:

316 P. Selinger

bA =

A∗∗ A

A∗
b

−1
A =

A∗

A A∗∗

We must note that although bA is a natural isomorphism, it is not canonical. In
general, there exist infinitely many natural isomorphisms A ∼= A∗∗. Also, b is not
a monoidal natural transformation, and therefore does not define a pivotal structure
on C. A general braided autonomous category is not pivotal.

Graphical Language and Coherence

The graphical language braided autonomous categories is obtained simply by adding
braids to the graphical language of autonomous categories. However, the correct
notion of equivalence of diagrams is neither planar isotopy (like for autonomous
categories), nor 3-dimensional isotopy (like for braided monoidal categories), but
an in-between notion called regular isotopy [25].

Table 4.3 Reidemeister moves and Λ-moves

(R1) = =

(R2) =

(R3) =

(Λ1) =
... ...

... ...

(Λ2) =
... ...

... ...

It is well-known that 3-dimensional isotopy of links and tangles is equivalent
to planar isotopy of their (non-degenerate) projections onto a 2-dimensional plane,
plus the three Reidemeister moves [31] shown as (R1)–(R3) in Table 4.3. To extend
this to diagrams with nodes, one also has to add the moves (Λ1) and (Λ2).

Regular isotopy is defined to be the equivalence obtained by dropping Reide-
meister move (R1). Note that regular isotopy is an equivalence on 2-dimensional
representation of 3-dimensional diagrams (and not of 3-dimensional diagrams them-
selves).

Theorem 11 (Coherence for braided autonomous categories) A well-formed
equation between morphisms in the language of braided autonomous categories
follows from the axioms of braided autonomous categories if and only if it holds in
the graphical language up to regular isotopy.

Caveat 28 Only special cases of this theorem have been proved in the literature.
Freyd and Yetter [16, Thm. 3.8] proved this only for diagrams over a simple
signature.

4 A Survey of Graphical Languages 317

4.4.6 Braided Pivotal Categories

Lemma 4 (Deligne, see [43, Prop. 2.11]) Let C be a braided autonomous category.
Then giving a twist θA : A → A on C (making C into a balanced category) is
equivalent to giving a pivotal structure i A : A → A∗∗ (making C into a pivotal
category).

The lemma is remarkable because the concept of a braided autonomous category
does not include any assumption relating the braided structure to the autonomous
structure. Moreover, the axioms for a twist depend only on the braided structure,
whereas the axioms for a pivotal structure depend only on the autonomous structure.
Yet, they are equivalent if C is braided autonomous.

Proof of Lemma 4 Recall the natural isomorphism bA : A∗∗ → A that was defined
in Sect. 4.4.5 for any braided autonomous category. Given a twist θA : A → A, we
define a pivotal structure by

iA = A
θA−→ A

b−1
A−−→ A∗∗. (4.7)

Conversely, given a pivotal structure iA : A → A∗∗, we define a twist by

θA = A
i A−→ A∗∗ bA−→ A. (4.8)

The two constructions are clearly each other’s inverse. To verify their properties, it
is obvious that iA is a natural isomorphism if and only if θA is a natural isomor-
phism. Moreover, θI = id iff i I = b−1

I , and b−1
I is the canonical isomorphism

I ∼= I ∗∗. What remains to be shown is that θ satisfies Eq. (4.3) if and only if i
satisfies Eq. (4.3). However, this is a direct consequence of the following fact about
b, which is easily verified:

A∗∗ ⊗ B∗∗
∼=

cA,B
B∗∗ ⊗ A∗∗

bB⊗bA(A ⊗ B)∗∗
bA⊗B

A ⊗ B B ⊗ A.cB,A

�

Corollary 2 A braided pivotal category is the same thing as a balanced autonomous
category. �

Remark 8 While Lemma 4 establishes a one-to-one correspondence between twists
and pivotal structures, the correspondence is not canonical. Indeed, instead of (4.7)
and (4.8), we could have equally well used

318 P. Selinger

i A = A
θ−1

A−−→ A
b′

A−→ A∗∗ (4.9)

and

θA = A
b′

A−→ A∗∗ i−1
A−−→ A, (4.10)

where

bA = A A**.′

In fact, there are a countable number of such similar one-to-one correspondences,
all induced by the existence of a monoidal natural transformation b′

A
−1◦i A◦bA◦iA :

A → A. They all coincide if and only if the category is tortile, as discussed in the
next section.

Graphical Language and Coherence

The graphical language for braided pivotal categories is the same as the graphical
language for pivotal categories, with the addition of braids. Equivalence of diagrams
is up to regular isotopy, just as for braided autonomous categories (see Sect. 4.4.5).

Theorem 12 (Coherence for braided pivotal categories) A well-formed equation
between morphisms in the language of braided pivotal categories follows from the
axioms of braided pivotal categories if and only if it holds in the graphical language
up to regular isotopy.

Caveat 29 Only special cases of this theorem have been proved in the literature.
Freyd and Yetter [16, Thm. 4.4] proved this only for diagrams over a simple signa-
ture.

Remark 9 The equation

=

holds up to regular isotopy, as it can be proved using only the Reidemeister moves
(R2) and (R3). It is therefore valid in braided pivotal categories (or even braided
autonomous categories). On the other hand, the equation

=

holds up to isotopy, but not up to regular isotopy (because regular isotopy preserves
total curvature, as pointed out by Freyd and Yetter [15, p. 169]). It is therefore not

4 A Survey of Graphical Languages 319

valid in braided pivotal categories. The use of regular isotopy does not seem natural,
and this is precisely the reason why Joyal and Street introduced tortile categories,
which we discuss in the next section.

Remark 10 A braided pivotal category is not in general spherical (and therefore also
not spacial). Indeed, instead of the spherical axiom (4.6), only the following holds
up to regular isotopy:

 f
 f=

Along with Remark 8, this is further evidence that braided pivotal categories (and
braided autonomous categories) are not “natural” notions.

4.4.7 Tortile Categories

Lemma 5 Consider a braided pivotal category, which is equivalently balanced
autonomous via (4.7) and (4.8). For any object A the following are equivalent:

(a) (εA∗ ⊗ idA) ◦ (idA∗ ⊗ c−1
A∗∗,A) ◦ (ηA ⊗ idA∗∗) ◦ i A ◦ (εA∗ ⊗ idA) ◦

(idA∗ ⊗ cA,A∗∗) ◦ (ηA ⊗ idA∗∗) ◦ iA = idA, or graphically:

=
AA AA

(b) θA∗ = (θA)∗.

Proof The proof is a straightforward calculation, but it is best explained by the fact
that the following hold in the graphical language:

θA θA∗(θA) (θA*)= A A
∗ = *A *A = *A *A

−1 = *A *A .

Therefore, the equation (b) is equivalent to

*A *A *A
*A=

,

which is the adjoint mate of (a). �

Remark 11 The condition in Lemma 5(a) holds if and only if the two definitions of
θA from (4.8) and (4.10) coincide.

320 P. Selinger

Definition 30 [23] A tortile category is a braided pivotal category satisfying the
condition of Lemma 5(a). Equivalently, a tortile category is a balanced autonomous
category satisfying the condition of Lemma 5(b).

Remark 12 (Terminology) A tortile category is also sometimes called a ribbon cate-
gory, see e.g. [42].

Graphical Language and Coherence

The graphical language for tortile categories is like the graphical language for
braided pivotal categories, except that morphisms are represented by ribbons, rather
than wires. These ribbons are just like the ones for balanced categories from
Sect. 4.3.4. Units and counits are represented in the obvious way, for example

ηA εA= = .

The twist map θA : A → A can be represented in several equivalent ways:

θA = = = .

Note that these diagrams are equivalent up to framed 3-dimensional isotopy, and
define the same morphism in a tortile category. (On the other hand, in a mere braided
pivotal category, the latter two diagrams are not equal). Also note that the map bA

from Sect. 4.4.5 is also represented in the graphical language as

bA = ,

but this is of type bA : A∗∗ → A, whereas θA : A → A. They differ, of course, only
by an invisible pivotal map iA : A → A∗∗.

Theorem 13 (Coherence for tortile categories) A well-formed equation between
morphisms in the language of tortile categories follows from the axioms of tor-
tile categories if and only if it holds in the graphical language up to framed
3-dimensional isotopy.

Caveat 31 Only special cases of this theorem have been proved in the literature.
Shum [34, Thm. 6.1] proved it for the case of the free tortile category generated by
a category, i.e., for diagrams over a simple signature only.

4 A Survey of Graphical Languages 321

4.4.8 Compact Closed Categories

A compact closed category is a tortile category that is symmetric (as a balanced
monoidal category) in the sense of Sect. 4.3.5. Equivalently, because of Remark 2,
a compact closed category is a tortile category in which θA = idA for all A.

The definition can be simplified. Notice that a right autonomous symmetric
monoidal category is automatically autonomous (by Lemma 3), balanced (with
θA = idA) and therefore pivotal (by Lemma 4). Moreover, it is tortile (because
θA∗ = (θA)∗ = idA∗). We can therefore define:

Definition 32 A compact closed category is a right autonomous symmetric
monoidal category.

Remark 13 By analogy with Remark 3, it is possible for a compact closed category
to possess a non-trivial twist (with the associated non-trivial pivotal structure), in
addition to the trivial twist θA = idA, making it into a tortile category. In other
words, for a given tortile category, the symmetry condition cA,B = c−1

B,A does not

in general imply θA = idA. However, it does imply θ2
A = idA, as the following

argument shows:

θA
2 = = = idA .

To construct an example where θ �= id, consider the category C of finite-
dimensional real vector spaces and linear functions. Define an equivalence relation
on objects by A ∼ B iff dim(A ⊗ B) is a square. Then define a subcategory C∼ by

homC∼(A, B) =
{

homC(A, B) if A ∼ B,
∅ else.

Then C∼ is compact closed. Let N
+ = {1, 2, 3, . . .} be the positive integers, and

consider some multiplicative homomorphism φ : N
+ → {−1, 1}. Any such homo-

morphism is determined by a sequence a1, a2, . . . ∈ {−1, 1} via

φ(pn1
1 pn2

2 · · · pnk
k) = an1

1 an2
2 · · · ank

k ,

where pi is the i th prime number. Finally, define the twist map θA as multiplication
by the scalar φ(dim(A)), or as idA if A is 0-dimensional. With this twist, C∼ is
tortile. In fact, this shows that there exists a continuum of possible twists on C∼.

Examples 33 The monoidal category (Rel,×) is compact closed with A∗ = A. The
category (FdVect,⊗) of finite dimensional vectors spaces is compact closed with
A∗ the dual space of A, and similarly for the category of finite dimensional Hilbert
spaces (FdHilb,⊗). The corresponding categories of possibly infinite dimensional

322 P. Selinger

spaces are not autonomous. (Cob,+) is compact closed with A∗ equal to A with
reversed orientation.

Graphical Language and Coherence

The graphical language for compact closed categories is like that of tortile cate-
gories, except that we remove the framing and twist maps, and use symmetries
instead of braidings.

Theorem 14 (Coherence for compact closed categories) A well-formed equation
between morphisms in the language of compact closed categories follows from the
axioms of compact closed categories if and only if it holds, up to isomorphism of
diagrams, in the graphical language.

Caveat 34 The special case of diagrams over a simple signature was proven by
Kelly and Laplaza [27, Thm. 8.2]. The general case does not appear in the literature.

4.5 Traced Categories

The graphical languages considered in Sect. 4.3 were progressive, which means
that all wires were oriented left-to-right. By contrast, the graphical languages of
autonomous categories in Sect. 4.4 allow wires to be oriented left-to-right or right-
to-left. We now turn out attention to an intermediate notion, namely traced cate-
gories.

Like autonomous graphical languages, traced graphical languages permit loops,
but with a restriction: all wires must be directed left-to-right at their endpoints. In
other words, traced diagrams are like autonomous diagrams, but are taken relative
to a monoidal signature (see Sect. 4.3.1), rather than an autonomous signature (see
Sect. 4.4.1). Table 4.4 shows a typical example of a traced diagram, and a typical
example of an autonomous diagram that is not a traced diagram.

Table 4.4 (a) A traced diagram. (b) An autonomous diagram that is not traced

(a)

f

(b)

f

Logically, we should have considered traced categories before pivotal categories,
because traced categories have less structure than pivotal categories (i.e., every
pivotal category is traced, and not the other way around). However, many of the
coherence theorems of this section are consequences of the corresponding theorems
for pivotal categories, and therefore it made sense to present the pivotal notions
first.

4 A Survey of Graphical Languages 323

Symmetric traced categories and their graphical language (in the strict monoidal
case, and with one additional axiom) were first introduced in the 1980s by Ştefă-
nescu and Căzănescu under the name “biflow” [38, 10, 11]. Joyal, Street, and Verity
later rediscovered this notion independently, generalized it to balanced monoidal
categories, and proved the fundamental embedding theorem relating balanced traced
categories to tortile categories [24].

Remark 14 Joyal, Street, and Verity use the term traced monoidal category. How-
ever, I prefer traced category, usually prefixed by an adjective such as planar,
spacial, balanced, symmetric. The word “monoidal” is redundant, because one
cannot have a traced structure without a monoidal structure. Also, by putting
the adjective before the word “traced”, rather than after it, we make it clear
that the traced structure, and not just the underlying monoidal structure, if being
modified.

4.5.1 Right Traced Categories

Definition 35 A right trace on a monoidal category is a family of operations

TrX
R : hom(A ⊗ X, B ⊗ X) → hom(A, B),

satisfying the following four axioms. For notational convenience, we assume with-
out loss of generality that the monoidal structure is strict.

(a) Tightening (naturality in A, B): TrX
R ((g⊗idX)◦ f ◦(h⊗idX)) = g◦(TrX

R f)◦h;
(b) Sliding (dinaturality in X): TrY

R(f ◦ (idA ⊗ g)) = TrX
R ((idB ⊗ g) ◦ f), where

f : A ⊗ X → B ⊗ Y and g : Y → X ;
(c) Vanishing: TrI

R f = f and TrX⊗Y
R f = TrX

R (TrY
R(f));

(d) Strength. TrX
R (g ⊗ f) = g ⊗ TrX

R f .

A (planar) right traced category is a monoidal category equipped with a right trace.

These axioms are similar to those of Joyal, Street, and Verity [24], except
that we have omitted the yanking axioms which does not apply in the planar
case, and we have replaced the non-planar “superposing” axiom by the planar
“strength” axiom. I do not know whether this set of planar axioms appears in the
literature.

Graphical Language and Coherence

The right trace of a diagram f : A ⊗ X → B ⊗ X is graphically represented by
drawing a loop from the output X to the input X , as follows:

324 P. Selinger

TrR
X

f =
X X

A f B

(4.1)

Note that in the graphical language of right traced categories, parts of wires can
be oriented right-to-left, but each wire must be oriented left-to-right near the end-
points. The four axioms of right traced categories are illustrated in the graphical
language in Table 4.5. The axioms of right traced categories are obviously sound
for the graphical language, up to planar isotopy. We conjecture that they are also
complete.

Table 4.5 The axioms of right traced categories

Conjecture 3 (Coherence for right traced categories) A well-formed equation
between morphism terms in the language of right traced categories follows from
the axioms of right traced categories if and only if it holds in the graphical language
up planar isotopy.

This is a weak conjecture, in the sense that there is not much empirical evidence
to support it, nor is there an obvious strategy for a proof. If this conjecture turns
out to be false, the axioms for right traced categories should be amended until it
becomes true.

The concept of a left trace is defined similarly as a family of operations

TrX
L : hom(X ⊗ A, X ⊗ B) → hom(A, B),

satisfying symmetric axioms. A left trace is graphically depicted as follows:

4 A Survey of Graphical Languages 325

TrL
X

g =

A B

X
g

X

(4.2)

We say that a monoidal functor F preserves right traces if F(TrX
R f) =

TrF X
R ((φ2)−1 ◦ F f ◦ φ2), and similarly for left traces.

4.5.2 Planar Traced Categories

Definition 36 A planar traced category is a monoidal category equipped with
a right trace and a left trace, such that the two traces satisfy three additional
axioms:

(a) Interchange: TrX
R (TrY

L f) = TrY
L(TrX

R f), for all f : Y ⊗ A ⊗ X → Y ⊗ B ⊗ X ;
(b) Left pivoting: TrB

R (idB ⊗ f) = TrA
L (f ⊗ idA), for all f : I → A ⊗ B;

(c) Right pivoting: TrB
R (idB ⊗ f) = TrA

L (f ⊗ idA), for all f : A ⊗ B → I .

Graphical Language and Coherence

The graphical language of planar traced categories consists of diagrams using the
left and right trace together, modulo planar isotopy. The axioms of interchange,
left pivoting, and right pivoting are shown graphically in Table 4.6. Compare also
equation (4.4) on page 4.4. The axioms are clearly sound; we conjecture that they
are also complete:

Table 4.6 Axioms relating left and right trace

= = =

(a) interchange (b) left pivoting (c) right pivoting

Conjecture 4 (Coherence for planar traced categories) A well-formed equation
between morphism terms in the language of planar traced categories follows from
the axioms of planar traced categories if and only if it holds in the graphical language
up planar isotopy.

As for right traced categories, this conjecture is weak. If it turns out to be false,
then one should amend the axioms of planar traced categories accordingly.

Remark 15 Even if the conjecture is true, the graphical language does not in itself
give an easy description of the free planar traced category. This is because there are

326 P. Selinger

diagrams, such as the following, that “look” planar traced, but are not actually the
diagram of any planar traced term (not even up to planar isotopy).

It is not obvious how to characterize the “planar traced” diagrams intrinsically, or
how to extend the notion of planar traced categories to encompass all such diagrams.

Remark 16 An autonomous category is not necessarily traced. However, every piv-
otal category is planar traced with the obvious definitions of left and right trace:

TrX
R f = (idB ⊗ εX) ◦

(
(f ◦ (idA ⊗ i−1

X)) ⊗ idX∗
)

◦ (idA ⊗ ηX∗) ,

TrX
L f = (εX∗ ⊗ idB) ◦ (idX∗ ⊗ ((iX ⊗ idB) ◦ f)) ◦ (ηX ⊗ idA).

In the graphical language, this looks just like the Diagrams (4.1) and (4.2). As a
consequence, each diagram of planar traced categories can be regarded as a diagram
of planar pivotal categories, but not the other way around.

4.5.3 Spherical Traced Categories

The concept of a spherical traced category is analogous to that of spherical pivotal
categories from Sect. 4.4.3.

Definition 37 A planar traced category satisfies the spherical axiom if for all f :
A → A,

TrA
L f = TrA

R f, (4.3)

or equivalently, in the graphical language:

A
f

A

= A
f

A

A spherical traced category is a planar traced category satisfying the spherical
axiom.

Every spherical pivotal category is spherical traced.

4 A Survey of Graphical Languages 327

Failure of Coherence

Just like for spherical pivotal categories, the graphical language of spherical traced
categories is not coherent for any geometrically useful notion of equivalence of
diagrams.

4.5.4 Spacial Traced Categories

Definition 38 A spacial traced category is a planar traced category if it satisfies the
spacial axiom (4.2) and the spherical axiom (4.3)

Graphical Language and Coherence

The graphical language for spacial traced categories is the same as that for planar
traced categories, except that equivalence of diagrams is now taken up to isomor-
phism.

Conjecture 5 (Coherence for spacial traced categories) A well-formed equation
between morphism terms in the language of spacial traced categories follows from
the axioms of spacial traced categories if and only if it holds, up to isomorphism of
diagrams, in the graphical language.

Remark 17 Every spacial pivotal category is clearly spacial traced. I do not know
whether conversely every spacial traced category can be faithfully embedded in a
spacial pivotal category. If this is true, then Conjecture 5 follows from Conjecture 2.

4.5.5 Braided Traced Categories

Braided traced categories, like braided pivotal categories, are a somewhat unnatural
notion, because coherence is only satisfied up to regular isotopy. (If one consid-
ers full isotopy, one obtains the more natural notion of balanced traced categories,
which we will consider in the next section). Nevertheless, we include this section
on braided traced categories, not least because it is the first traced notion for which
we can actually prove a coherence theorem (modulo Caveat 29).

Definition 39 A braided traced category is a planar traced category with a braiding
(as a monoidal category), such that

(TrA
L cA,A) ◦ (TrA

R c−1
A,A) = idA, (4.4)

or graphically:

=

.

328 P. Selinger

Lemma 6 (a)The axiom (4.4) does not follow from the remaining axioms.
(b)In the presence of the remaining axioms, (4.4) is equivalent to

(TrA
L c−1

A,A) ◦ (TrA
R cA,A) = idA, (4.5)

or graphically:

=
.

(c)In the presence of the remaining axioms of braided traced categories, the left
and right pivoting axioms are redundant.

Proof (a) To see this, consider morphism terms in the language of braided traced
categories with one object generator and no morphism generators. Define the
degree of a term to the be tensor product of all traced-out objects, i.e., deg(id) =
I , deg(f ◦ g) = deg(f) ⊗ deg(g), deg(TrX

R f) = X ⊗ deg(f), etc. This is
well-defined up to isomorphism. All the axioms of planar traced categories and
braided categories respect degree; the only axioms where the left-hand side and
right-hand side could potentially have different degree are sliding in Table 4.5
and pivoting in Table 4.6. However, in the absence of morphism generators,
it is easy to show that all morphism terms are of the form f : A → B
where A ∼= B. Therefore, neither sliding nor pivoting change the degree (the
latter because it is vacuous). Therefore degree is an invariant. On the other
hand, (4.4) is not degree-preserving; therefore it cannot follow from the other
axioms.

(b) The following graphical proof sketch can be turned into an algebraic proof:

= =

=

=

==

= =

4 A Survey of Graphical Languages 329

(c) Here is a proof sketch for the left pivoting axiom. Notably, the second to last
step uses dinaturality (sliding).

= =

===

Remark 18 Each braided traced category possesses a balanced structure (as a
braided monoidal category) given by θA = TrA

L c−1
A,A, with inverse θ−1

A = TrA
R cA,A

(cf. (4.4)). However, this twist is not canonical; for example, another twist can be
defined by θ ′

A = TrA
R cA,A with inverse θ ′

A
−1 = TrA

L c−1
A,A (cf. (4.5)). In fact, there

are countably many other possible twists. This is entirely analogous to Remark 8.
The various twists coincide if and only if the yanking equation (4.6) holds, yielding
a balanced traced category as discussed in Sect. 4.5.6 below.

We note that every braided pivotal category is braided traced, with the traced
structure as given in Remark 16. Moreover, there is an embedding theorem giving a
partial converse:

Theorem 15 (Representation of braided traced categories) Every braided traced
category C can by fully and faithfully embedded into a braided pivotal category
Int(C), via a braided traced functor.

Proof The proof exactly mimics the Int-construction of Joyal, Street, and Verity
[24], except that we must replace the twist by , and be careful only to use the
braided traced axioms. We omit the details, which are both lengthy and tedious. �
Remark 19 A braided traced category is not necessarily spherical (and therefore not
spacial). This is analogous to Remark 10.

Graphical Language and Coherence

The graphical language for braided traced categories is obtained by adding braids to
the graphical language of planar traced categories. Equivalence of diagrams is up to
regular isotopy (see Sect. 4.4.5).

Theorem 16 (Coherence for braided traced categories) A well-formed equation
between morphisms in the language of braided traced categories follows from the
axioms of braided traced categories if and only if it holds in the graphical language
up to regular isotopy.

Proof Soundness is easy to check by inspection of the axioms. Completeness is a
consequence of Theorems 12 and 15. Namely, consider an equation in the language

330 P. Selinger

of braided traced categories that holds in the graphical language up to regular iso-
topy. The diagrams corresponding to the left-hand side and right-hand side of the
equation can also be regarded as diagrams of braided pivotal categories, and since
they are regularly isotopic, the equation holds in all braided pivotal categories by
Theorem 12. Since any braided traced category C can be faithfully embedded in
a braided pivotal category Int(C) by Theorem 15, an equation that holds in Int(C)

must also hold in C. It follows that the equation in question holds in all braided
traced categories C, and therefore, it is a consequence of the axioms. �
Caveat 40 Because of the dependence on Theorem 12, Caveat 29 also applies here.

4.5.6 Balanced Traced Categories

Definition 41 ([24]) A balanced traced category is a balanced monoidal category
equipped with a right trace Tr, and satisfying the following yanking axioms:

TrX (cX,X) = θX and TrX (c−1
X,X) = θ−1

X (4.6)

Graphical Language and Coherence

The graphical language of balanced traced categories combines the ribbons and
twists of balanced categories with the loops of traced categories. The trace is repre-
sented as expected:

TrX f = .

Note that there is no need to postulate a left trace, because a left trace is definable
from the right trace and braidings as follows:

Tr L
X

f = :=

Remark 20 The defined left trace automatically satisfies interchange and the pivot-
ing axioms (Table 4.6), as well as the spherical axiom (4.3) and the braided traced
axiom (4.4). The spacial axiom (4.2) is satisfied by any braided monoidal category.
Therefore, any balanced traced category is spacial traced and braided traced.

The graphical validity of the yanking axiom is easily verified using a shoe string:

= , = .

4 A Survey of Graphical Languages 331

Every tortile category is balanced traced, with the traced structure as given in
Remark 16. Moreover, there is an embedding theorem:

Theorem 17 (Representation of balanced traced categories [24, Prop. 5.1])
Every balanced traced category can be fully and faithfully embedded into a tortile
category, via a balanced traced functor.

Theorem 18 (Coherence for balanced traced categories) A well-formed equation
between morphisms in the language of balanced traced categories follows from the
axioms of balanced traced categories if and only if it holds in the graphical language
up to framed isotopy in 3 dimensions.

Proof This follows from Theorems 13 and 17, by the exact same argument that was
used in the proof of Theorem 16. �

Caveat 42 Because of the dependence on Theorem 13, Caveat 31 also applies here.

Remark 21 In any braided monoidal category with a right trace, the twist and its
inverse are definable by Eq. (4.6). These maps are automatically natural and sat-
isfy θI = idI and (4.3). However, they are not automatically inverse to each other.
Therefore, a balanced traced category could be equivalently defined as a braided
monoidal category with a right trace, satisfying

TrX (c−1
X,X) = TrX (cX,X)−1.

4.5.7 Symmetric Traced Categories

Definition 43 [11, 10, 24] A symmetric traced category is a symmetric monoidal
category with a right trace Tr, satisfying the symmetric yanking axiom:

TrX (cX,X) = idX .

Remark 22 Because of Remark 2, a symmetric traced category can be equivalently
defined as a balanced traced category in which θA = idA for all A.

Obviously every compact closed category is symmetric traced with the structure
from Remark 16. Here, too, we have an embedding theorem:

Theorem 19 (Representation of symmetric traced categories [24]) Every sym-
metric traced category can be fully and faithfully embedded into a compact closed
category, via a symmetric traced functor.

Example 5 [24] Consider the category Rel of sets and relations, with biproducts
given by disjoint union A+ B. Given a relation R : A+ X → B + X , define its trace
TrX (R) : A → B by (a, b) ∈ TrX (R) iff there exists n ≥ 0 and x1, . . . , xn ∈ X such
that a R x1 R x2 R . . . R xn R b. This defines a symmetric traced category which is
not compact closed.

332 P. Selinger

Graphical Language and Coherence

The graphical language is like that of planar traced categories, combined with the
symmetry. A typical diagram looks like this:

.

The notion of equivalence of diagrams is isomorphism.

Theorem 20 (Coherence for symmetric traced categories) A well-formed equa-
tion between morphisms in the language of symmetric traced categories follows
from the axioms of symmetric traced categories if and only if it holds in the graphical
language up to isomorphism of diagrams.

Proof A consequence of Theorems 14 and 19, as in Theorems 16 and 18.

Caveat 44 Because of the dependence on Theorem 14, Caveat 34 also applies here.

Remark 23 Strict symmetric traced categories, with the additional axiom

TrX (idA⊗X) = idA, (4.7)

first appear in the work of Ştefănescu under the name “biflow”. A precursor of the
definition appears in [38], and the axioms were given their modern form by Căză-
nescu and Ştefănescu [10, 11]. The paper [38] also contains a detailed proof sketch
of coherence, namely, that the graphical language, modulo isomorphism and the
equation (4.7), forms the free biflow over a monoidal signature. This proof sketch
remains valid with respect to the modern definition, provided that one assumes
coherence for symmetric monoidal categories.

4.6 Products, Coproducts, and Biproducts

In this section, we consider graphical languages for monoidal categories where the
monoidal structure is given by a categorical product, coproduct, or biproduct. The
main difference with the graphical languages of “purely” monoidal categories from
Sects. 4.3, 4.4 and 4.5 is that equivalence of diagrams must now be defined up to
diagrammatic equations.

4.6.1 Products

Definition 45 In a category, a product of objects A and B is given by an object
A × B, together with morphisms π1 : A × B → A and π2 : A × B → B, such that
for all objects C and pairs of morphisms f : C → A and g : C → B, there exists a
unique morphism h : C → A ⊗ B such that the following diagram commutes:

4 A Survey of Graphical Languages 333

C
f g

h

A A ⊗ B
π1 π2

B.

The unique morphism h is often written as h = 〈 f, g〉. An object I is terminal if for
all objects C , there exists a unique morphism h : C → I . A finite product category
(or cartesian category) is a category with a chosen terminal object, and a chosen
product for each pair of objects.

Equivalently, a finite product category can be described as a symmetric monoidal
category, together with natural families of copy and erase maps

ΔA : A → A ⊗ A, ♦A : A → I

subject to a number of axioms, shown in Table 4.7.

Table 4.7 The axioms for products

Naturality axioms:
ΔB ◦ f = (f ⊗ f) ◦ ΔA : A → B ⊗ B
♦B ◦ f = ♦A : A → I

Commutative comonoid axioms:
(idA ⊗ ΔA) ◦ ΔA = (ΔA ⊗ idA) ◦ ΔA : A → A ⊗ A ⊗ A
(idA ⊗ ♦A) ◦ ΔA = ρ−1

A : A → A ⊗ I
(♦A ⊗ idA) ◦ ΔA = λ−1

A : A → I ⊗ A
cA,A ◦ ΔA = ΔA : A → A ⊗ A

Coherence axioms:
ΔI = λ−1

I : I → I ⊗ I
(idA ⊗ cB,A ⊗ idB) ◦ ΔA⊗B = ΔA ⊗ ΔB : A ⊗ A → B ⊗ B ⊗ A ⊗ B
♦I = idI : I → I
♦A⊗B = λI ◦ (♦A ⊗ ♦B) : A ⊗ B → I

Graphical Language

We extend the graphical language of symmetric monoidal categories by adding the
following representations of the copy and erase maps.

Copy Δ A : A → A ⊗ A
A

•
A

A

Erase A : A → I A
•

334 P. Selinger

As usual, if A is a composite object term, a wire labeled A should be replaced by
multiple parallel wires. Table 4.8 contains graphical representations of some of the
axioms for finite product categories.

Table 4.8 Graphical representation of some product axioms

=

=

=

=

 f

 f

... ...

... ...

 f

 f

...

...

...

...

=

=

Commutative comonoid axioms Naturality

Note that the projections π1 : A × B → A and π2 : A × B → B, and the pairing
h : C → A ⊗ B of f : C → A and g : C → B, are represented graphically as
follows:

 g

 f2
π

π
1 =

=h

=

Coherence

As the equivalences in Table 4.8 demonstrate, coherence in the graphical language
of finite product categories does not hold up to isomorphism or isotopy of diagrams.
Rather, is holds up to manipulations of diagrams. So unlike the graphical languages
considered in Sects. 4.2, 4.3, 4.4 and 4.5, we now have to consider axioms on
diagrams.

Theorem 21 (Coherence for finite product categories) A well-formed equation
between morphism terms in the language of finite product categories follows from
the axioms of finite product categories if and only if it holds in the graphical lan-
guage, up to isomorphism of diagrams and the diagrammatic manipulations shown
in Table 4.8.

This theorem is a simple consequence of coherence for symmetric monoidal
categories (Theorem 7), together with the fact that all the axioms of finite prod-
uct categories, except those shown in Table 4.8, hold up to isomorphism of
diagrams.

4 A Survey of Graphical Languages 335

4.6.2 Coproducts

The definition of coproducts and initial objects is dual to that of products and termi-
nal objects, i.e., it is obtained by reversing all the arrows in Sect. 4.6.1. Explicitly,
an object 0 is initial if for all objects C , there exists a unique morphism h : 0 → C .
A coproduct of objects A, B is given by an object A + B, together with morphisms
ι1 : A → A + B and ι2 : B → A + B, such that for all objects C and pairs
of morphisms f : A → C and g : B → C , there exists a unique morphism
h : A + B → C such that h ◦ ι1 = f and h ◦ ι2 = g. One often writes h = [f, g].
A category with finite coproducts is also called a co-cartesian category.

Dualizing the presentation of Sect. 4.6.1, one can equivalently define a finite
coproduct category as a symmetric monoidal category with natural families of merge
and initial maps

∇A : A ⊗ A → A, �A : I → A,

satisfying the duals of the axioms in Table 4.7.

Graphical Language

The graphical language of finite coproduct categories is obtained by dualizing that
of finite product categories, with the duals of the axioms from Table 4.8.

Merge ∇ : AA

A

⊗ A → A

A

•
A

A

Initial : I → A • A

4.6.3 Biproducts

Definition 46 An object is called a zero object if it is initial and terminal. If 0 is
a zero object, then there is a distinguished map A → 0 → B between any two
objects, denoted 0A,B . A biproduct of objects A1 and A2 is given by an object
A1 ⊕ A2, together with morphisms ιi : Ai → A1 ⊕ A2 and πi : A1 ⊕ A2 → Ai , for
i = 1, 2, such that A ⊕ B is a product with π1, π2, a coproduct with ι1, ι2 and such
that πi ◦ ι j = δi j . Here δi i = idAi and δi j = 0A j ,Ai when i �= j . We say that C is
a biproduct category if it has a chosen zero object 0 and a chosen biproduct for any
pair of objects.

Remark 24 The axiom πi ◦ ι j = δi j is equivalent to the assertion that the symmet-
ric monoidal structure defined by ⊕ “as a product” coincides with the symmetric
monoidal structure defined by ⊕ “as a coproduct”. Therefore, a biproduct category
is symmetric monoidal in a canonical way.

336 P. Selinger

Equivalently, a biproduct category can be defined as a symmetric monoidal cate-
gory, together with natural families of morphisms

ΔA : A → A ⊗ A, ♦A : A → I, ∇A : A ⊗ A → A, �A : I → A,

satisfying the axioms in Table 4.7, as well as their duals.

Graphical Language

The graphical language of biproducts is obtained by combining the graphical lan-
guages for products and coproducts. In this case, one has the equalities in Table 4.9,
which are consequences of the naturality axioms in Table 4.8. Note that the axiom
πi ◦ ι j = δi j holds automatically in the graphical language.

Table 4.9 Some biproduct laws

=

= =

= (empty)

Theorem 22 (Coherence for biproduct categories) A well-formed equation
between morphism terms in the language of biproduct categories follows from the
axioms of biproduct categories if and only if it holds in the graphical language, up
to isomorphism of diagrams, the diagrammatic manipulations shown in Table 4.8,
and their duals.

This theorem is a simple consequence of coherence for symmetric monoidal cat-
egories, together with the fact that the axioms in Table 4.8 (and their duals) are
exactly the graphical representations of the axioms in Table 4.7 (and their duals)
that do not already hold up to graphical isomorphism.

4.6.4 Traced Product, Coproduct, and Biproduct Categories

It potentially makes sense to revisit each of the notions of Sects. 4.3, 4.4 and 4.5 and
consider the case where the monoidal structure is given by a product, coproduct,
or biproduct. Since products, coproducts, and biproducts are automatically sym-
metric, we do not need to consider the weaker notions (such as balanced, braided,
etc).

Moreover, we do not need to consider any autonomous cases, because an
autonomous category where the tensor is given by a product (or coproduct) is trivial.
Indeed, for any objects A, B, the morphisms f : A → B are in one-to-one corre-
spondence with morphism A ⊗ B∗ → I . Since I is terminal, there is exactly one

4 A Survey of Graphical Languages 337

such morphism, and therefore there is a unique morphism between any two objects.
Such a category is equivalent to the one-object one-morphism category.

Therefore, the only new notion from Sects. 4.3, 4.4 and 4.5 that admits non-trivial
examples in the context of products, coproducts, or biproducts is that of a symmetric
traced category.

Definition 47 A traced product [coproduct, biproduct] category is a symmetric
traced category where the tensor is given by a categorical product [coproduct,
biproduct].

Example 6 [24] The symmetric traced category (Rel,+) from Example 4.5.7 is a
traced biproduct category.

Example 7 Consider the category Set⊥ whose objects are sets, and whose mor-
phisms are partial functions, regarded as a subcategory of Rel from Example 4.6.4.
In this category, the empty set 0 is a zero object, and the disjoint union operation
A + B defines a coproduct (but not a product). Trace is given as in Example 4.6.4.
With these definitions, Set⊥ is a traced coproduct category.

Graphical Language

As expected, the graphical language of traced product [coproduct, biproduct] cat-
egories is given by adding a trace (as in Section 4.5) to the graphical language of
finite product [finite coproduct, biproduct] categories.

Theorem 23 (Coherence for traced product [coproduct, biproduct] categories)
A well-formed equation between morphism terms in the language of traced product
[coproduct, biproduct] categories follows from the respective axioms if and only if it
holds in the graphical language, up to isomorphism of diagrams, and the diagram-
matic manipulations shown in Table 4.8 and/or their duals (as appropriate).

Remark 25 In computer science, traces arise naturally in the context of data flow (as
fixed points), and in the context of control flow (as iteration). The two situations cor-
respond to traced product categories and traced coproduct categories, respectively.
The duality between data flow and control flow was first described by Bainbridge
[3]. The following are typical examples of a data flow diagram (on the left) and a
control flow diagram (on the right). The data flow diagram represents the fixed point
expression y = (3 + x)(x + y), parametric on an input x . The control flow diagram
represents a generic “while loop”. Note that data flow diagrams have a notion of
“copying” data, whereas control flow diagrams have a dual notion of “merging”
control paths.

x
y

3

body
condition

338 P. Selinger

Proposition 2 (Căzănescu and Ştefănescu [10, 11]) In a category with finite
coproducts, giving a trace is equivalent to giving an iteration operator. Here, an
iteration operator is a family of operations

iterX : hom(X, A + X) → hom(X, A),

natural in A and dinatural in X, satisfying

1. Iteration: iter(f) = [idA, iter(f)] ◦ f , for all f : X → A + X;
2. Diagonal property: iter(iter(f)) = iter((idA +[idX , idX])◦ f), for all f : X →

A + X + X.

Dually, on a finite product category, giving a trace is equivalent to a fixed point
operator fixX : hom(A × X, X) → hom(A, X).

This makes precise the intuitive idea that in the presence of coproducts, the while
loop in Remark 25 is sufficient for constructing arbitrary traces.

Remark 26 In the presence of the other axioms, the diagonal property is equivalent
to the so-called Bekič Lemma:

iter[f, g] = [idA, iter([idA+X , iter(g)] ◦ f)] ◦ [in2, iter(g)],

for all f : X → A + X + Y and g : Y → A + X + Y [36, Prop. B.1].

Remark 27 Iteration operators in the sense of Proposition 2 were first defined, using
different but equivalent axioms, by Căzănescu and Ungureanu [12, 9], under the
name “algebraic theory with iterate”.

Proposition 3 [11] In a category with finite biproducts, giving a trace is equivalent
to giving a repetition operation, i.e., a family of operators

∗ : hom(A, A) → hom(A, A)

satisfying

1. f ∗ = id + f f ∗,
2. (f + g)∗ = (f ∗g)∗ f ∗.
3. (f g)∗ f = f (g f)∗ (dinaturality).

Here, f +g denotes the morphism ∇A◦(f ⊕g)◦ΔA : A → A, for f, g : A → A.

4.6.5 Uniformity and Regular Trees

Definition 48 Suppose we are given a traced category with a distinguished subclass
of morphisms called the strict morphisms. Then the trace is called uniform if for all
f : A ⊗ X → B ⊗ X , g : A ⊗ Y → B ⊗ Y , and strict h : X → Y , the following
implication holds:

4 A Survey of Graphical Languages 339

(idB ⊗ h) ◦ f = g ◦ (idA ⊗ h) ⇒ TrX (f) = TrY (g).

Equivalently, in pictures:

=f
h h g ⇒ =f g

whenever h is strict. Note that uniformity is not an equational property.

Proposition 4 [11] A traced coproduct category is uniformly traced if and only if
for all f : X → A + X, g : Y → A + Y , and strict h : X → Y ,

(idA + h) ◦ f = g ◦ h ⇒ iterX (f) = iterY (g) ◦ h.

Moreover, a traced biproduct category is uniformly traced if and only if for all f :
X → X, g : Y → Y , and strict h : X → Y ,

h ◦ f = g ◦ h ⇒ h ◦ f ∗ = g∗ ◦ h.

In the particular case where the class of strict morphisms is taken to be the small-
est co-cartesian subcategory containing all objects, Ştefănescu [36, 35] proved that
the free uniformly traced coproduct category over a monoidal signature is given
by the graphical language of traced coproduct categories, modulo a suitable notion
of simulation equivalence on diagrams. This simulation equivalence is easiest to
describe in the case where all morphism variables are of input arity 1. In this case,
two diagrams are simulation equivalent if and only if they have the same infinite tree
unwinding. There is also an analogous result for biproducts. We refer the reader to
[36, 37, 40] for full details.

The following is an example of an equation that holds up to infinite tree unwind-
ing, but fails in general traced coproduct categories:

ff
f

=

(4.1)

Ésik’s “iteration theories” [14] are a direct equational axiomatization of such infinite
tree unwindings. They include an iteration operator as in Proposition 2, but with an
infinite family of additional properties, such as (4.1).

4.6.6 Cartesian Center

Sometimes it is useful to consider notions that are weaker than product categories,
yet still have copy and erase maps ΔA : A → A ⊗ A and ♦A : A → I . For

340 P. Selinger

example, it is common to drop the naturality axioms, while retaining the com-
mutative comonoid and coherence axioms (see Tables 4.7 and 4.8). An equivalent
way to describe such a category is as a symmetric monoidal category with (faith-
ful) cartesian center [18], i.e., a symmetric monoidal category with a symmetric
monoidal subcategory that contains all the objects and is cartesian. Similar ideas
have occurred, with varying degrees of explicitness, in the literature on flowcharts,
see e.g. [12, 7, 39].

Similarly, if one omits naturality from the axioms for coproducts, one obtains cat-
egories with a co-cartesian center. A weakened version of biproducts is obtained by
combining the axioms of cartesian center and co-cartesian center. In this case, one
requires the operations Δ, ♦, ∇, � to be natural with respect to one another, yielding
the properties from Table 4.9. More generally, one may require any subset of the
operations Δ, ♦, ∇, � to exist, and a further subset to be natural transformations.
As the reader may imagine, this leads to a nearly endless number of categorical
notions and corresponding graphical languages; see e.g. [39, 40].

4.7 Dagger Categories

The concept of a dagger category (also called involutive category or *-category in
the literature) is motivated by the category of Hilbert spaces, where each morphism
f : A → B has an adjoint f † : B → A.

Definition 49 A dagger category is a category C together with an involutive,
identity-on-objects, contravariant functor † : C → C.

Concretely, this means that to every morphism f : A → B, one associates a
morphism f † : B → A, called the adjoint of f , such that for all f : A → B and
g : B → C :

id†
A = idA : A → A,

(g ◦ f)† = f † ◦ g† : C → A,

f †† = f : A → B,

Example 8 The category Hilb of Hilbert spaces and bounded linear maps is a dagger
category, where f † : B → A is given by the usual adjointness property of linear
algebra, i.e., 〈 f †x | y〉 = 〈x | f y〉 for all x ∈ B and y ∈ A.

Definition 50 (Unitary map, self-adjoint map) In a dagger category, a morphism
f : A → B is called unitary if it is an isomorphism and f −1 = f †. A morphism
f : A → A is called self-adjoint or hermitian if f = f †.

A dagger functor between dagger categories is a functor that satisfies F(f †) =
(F f)† for all f .

4 A Survey of Graphical Languages 341

Graphical Language

The graphical language of dagger categories extends that of categories. The adjoint
of a morphism variable f : A → B is represented diagrammatically as follows:

f : A → B
A

f
B

f † : B → A
B

f
A

More generally, the adjoint of any diagram is its mirror image. Note that the
mirror image of a box is visually distinguishable because we have marked the upper
left corner of each box representing a morphism variable. Also note that, while we
have taken the mirror image of each box, we have reversed the location, but not the
direction, of the wires. Contrast this with (4.5).

Theorem 24 (Coherence for dagger categories) A well-formed equation between
two morphism terms in the language of dagger categories follows from the axioms of
dagger categories if and only if it holds in the graphical language up to isomorphism
of diagrams.

Proof This is a consequence of coherence for categories, from Theorem 1. As usual,
soundness is easy to check. For completeness, notice that any morphism term t of
dagger categories can be transformed, via the axioms (g ◦ f)† = f † ◦ g†, id† = id,
and f †† = f , into an equivalent term t ′ with the property that † is only applied to
morphism variables in t ′. Such a term can be regarded as a term in the language of
categories, over the extended set of morphism variables { f, f †, . . .}. Now if t and
s are two terms that have isomorphic diagrams, then by soundness, t ′ and s′ have
isomorphic diagrams. By Theorem 1, t ′ and s ′ are provably equal from the axioms
of categories. Therefore t and s are provably equal from the axioms of dagger cate-
gories. �

We now consider “dagger notions” for the various monoidal categories from Sec-
tions 4.3, 4.4 and 4.5.

4.7.1 Dagger Monoidal Categories

Definition 51 A dagger monoidal category is a monoidal category that is a dagger
category, such that the dagger structure is compatible with the monoidal structure in
the following sense:

(a) (f ⊗ g)† = f † ⊗ g†, for all f, g;
(b) the canonical isomorphisms of the monoidal structure, αA,B,C : (A⊗ B)⊗C →

A ⊗ (B ⊗ C), λA : I ⊗ A → A, and ρA : A ⊗ I → A, are unitary.

342 P. Selinger

Graphical Language

The graphical language of dagger monoidal categories is like the graphical language
of monoidal categories, with the adjoint of a diagram given by its mirror image. For
example,

⎡
⎢⎢⎢
⎢
⎢⎢⎢
⎢
⎢⎣

A

g

E

B D

g

F

C G

⎤
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

†

=

E A

F D f B

G g C

Theorem 25 (Coherence for planar dagger monoidal categories) A well-formed
equation between morphism terms in the language of dagger monoidal categories
follows from the axioms of dagger monoidal categories if and only if it holds, up to
planar isotopy, in the graphical language.

Proof This is a consequence of coherence for planar monoidal categories, from
Theorem 3. The proof is analogous to that of Theorem 24. Note that the axioms
of dagger monoidal categories are precisely what is needed to ensure that all occur-
rences of † can be removed from a morphism term, except where applied directly to
a morphism variable. �

4.7.2 Other Progressive Dagger Monoidal Notions

We can now “daggerize” the other progressive monoidal notions from Sect. 4.3:

Definition 52 • A dagger monoidal category is spacial if it is spacial as a monoidal
category.

• A dagger braided monoidal category is a dagger monoidal category with a unitary
braiding cA,B : A ⊗ B → B ⊗ A.

• A dagger balanced monoidal category is a dagger braided monoidal category
with a unitary twist θA : A → A.

• A dagger symmetric monoidal category [33] is a dagger braided monoidal cate-
gory such that the unitary braiding is a symmetry.

Graphical Languages

In each case, the graphical language extends the corresponding language from
Sect. 4.3, with the dagger of a diagram taken to be its mirror image. Each notion

4 A Survey of Graphical Languages 343

has a coherence theorem, proved by the same method as Theorems 24 and 25. The
requirements that the braiding and twist are unitary ensures that the dagger can be
removed from the corresponding terms. The respective caveats from Sect. 4.3 also
apply to the dagger cases.

Example 9 The category Hilb of Hilbert spaces is dagger symmetric monoidal, with
the usual tensor product and symmetry.

4.7.3 Dagger Pivotal Categories

In defining dagger variants of the notions of Sect. 4.4, we find that the notion of a
dagger autonomous category and a dagger pivotal category coincide. This is because
the presence of a dagger structure on an autonomous category already induces a
canonical isomorphism A ∼= A∗∗, which automatically satisfies the pivotal axioms
under mild assumptions.

To be more precise, consider a dagger monoidal category that is also right
autonomous (as a monoidal category). Because ηA : I → A∗ ⊗ A has an adjoint
η

†
A : A∗ ⊗ A → I , we can define a family of isomorphisms

i A = A
∼=−→ I ⊗ A

ηA∗⊗idA−−−−−→ A∗∗ ⊗ A∗ ⊗ A
idA∗∗⊗η

†
A−−−−−→ A∗∗ ⊗ I

∼=−→ A∗∗.

We can represent this schematically as follows (but bearing in mind that we do not
yet have a formal graphical language to work with):

A
iA

A∗∗
=

A

η
†

A∗

ηA∗
A∗∗

A

(4.1)

Lemma 7 The following are equivalent in a right autonomous, dagger monoidal
category:

• the family of isomorphisms i A : A → A∗∗, as defined above, determines a pivotal
structure;

• for all A, B, the canonical isomorphisms (A⊗B)∗ ∼= B∗⊗A∗ and I ∗ ∼= I (deter-
mined by the right autonomous structure) are unitary, and for all f : A → B, the
equation f ∗† = f †∗ holds.

Proof By a direct calculation from the definitions, one can check three separate and
independent facts:

344 P. Selinger

• For any given f : A → B, the diagram

A
i A

f

A∗∗

f ∗∗

B
iB

B∗∗

commutes if and only if f ∗† = f †∗. In particular, the family i A is a natural
transformation if and only if this condition holds for all f .

• The diagram from (4.3),

A ⊗ B
i A⊗iB i A⊗B

A∗∗ ⊗ B∗∗ ∼=
(A ⊗ B)∗∗

commutes if and only if the canonical isomorphism (A ⊗ B)∗ ∼= B∗ ⊗ A∗ is
unitary.

• The morphism i I : I → I ∗∗ is equal to the canonical isomorphism (from the
right autonomous structure) if and only if the canonical isomorphism I → I ∗ is
unitary.

Since the three conditions are the defining conditions for a pivotal structure, the
lemma follows. �

Lemma 8 Under the equivalent conditions of Lemma 7, the following hold:

(a) iA is unitary.

(b) i A = A
∼=−→ A ⊗ I

idA⊗ε
†
A∗−−−−−→ A ⊗ A∗ ⊗ A∗∗ εA⊗idA∗∗−−−−−→ I ⊗ A∗∗ ∼=−→ A∗∗:

A
iA

A∗∗
=

†
A

A

∗

A∗∗

A∗

A

(c) η
†
A = εA∗ ◦ (idA∗ ⊗ iA):

iA
A∗

A

η
†
AA∗ =

A A∗∗

A∗

4 A Survey of Graphical Languages 345

(d) ε
†
A = (i−1

A ⊗ idA∗) ◦ ηA∗:

iA

A∗†
A

A∗

A
= η

A∗

A∗∗
−1 A

Proof To prove (a), first consider

ηA

A∗

=

A

A∗

A∗∗ η
†

(iA)†

By definition of adjoint mates, we have

A∗∗η

A∗η
†

(iA)†∗ =

A∗

A∗∗

A∗∗∗

But this is just the definition of i A∗ , therefore (iA)†∗ = iA∗ . By definition, i A is
unitary iff (iA)† = i−1

A , iff (iA)†∗ = (i−1
A)∗, iff i A∗ = (i−1

A)∗ = (i∗A)−1. Since
i is a monoidal natural transformation, this holds by Saavedra Rivano’s Lemma
(Lemma 1).

To prove (b), note that the right-hand side is the inverse of (i A)†. Therefore, (b)
is equivalent to (a).

Finally, equations (c) and (d) are restatements of the definition of i A from (4.1).
�

Remark 28 The equivalence between (a) and (b) in Lemma 8 holds only if iA is
defined as in (4.1). It does not hold for an arbitrary pivotal structure on a right
autonomous dagger monoidal category.

Armed with these results, we finally state the two equivalent definitions of a
dagger pivotal category:

Definition 53 A dagger pivotal category is defined in one of the following equiva-
lent ways:

1. as a dagger monoidal, right autonomous category such that the natural isomor-
phisms (A ⊗ B)∗ ∼= B∗ ⊗ A∗ and I ∗ ∼= I (from the right autonomous structure)
are unitary, and such that f ∗† = f †∗ holds for all morphisms f ; or

2. as a pivotal, dagger monoidal category satisfying the condition in Lemma 8(c)
(or equivalently, (d)).

The first form of this definition is much easier to check in practice. The second
form is more suitable for the proof of the coherence theorem below.

346 P. Selinger

Remark 29 In a dagger pivotal category, the operation (−)∗ arises from an adjunc-
tion (in the categorical sense) of objects, with associated unit, counit, and adjoint
mates. On the other hand, the operation (−)† arises from an adjunction (in the linear
algebra sense) of morphisms. The two concepts should not be confused with each
other.

Graphical Language

The graphical language of dagger pivotal categories is like that of pivotal categories,
where the adjoint of a diagram is given, as usual, by its mirror image. For example:

⎡
⎢⎢⎢⎢⎢⎣

A

g
C

B

B

⎤
⎥⎥⎥⎥⎥⎦

†

=
g

A

C

B

B

Note that in the graphical language, adjoint mates f ∗ : B∗ → A∗ are represented
by rotation and adjoints f † : B → A by mirror image. Therefore, each morphism
variable f : A → B induces four kinds of boxes:

f =
A

f
B

f † =
B

f
A

f ∗† =
A

f
B

f∗ =
B

f
A

Also note that, unlike the informal notation used above, the graphical language
does not explicitly display the isomorphism i A : A → A∗∗, and it does not explicitly
distinguish ηA : I → A∗ ⊗ A from ε

†
A∗ : I → A∗ ⊗ A∗∗. This is justified by the

following coherence theorem.

Theorem 26 (Coherence for dagger pivotal categories) A well-formed equation
between morphisms in the language of dagger pivotal categories follows from the
axioms of dagger pivotal categories if and only if it holds in the graphical language
up to planar isotopy, including rotation of boxes (by multiples of 180 degrees).

Proof This follows from coherence of pivotal categories (Theorem 10), by the same
argument used in the proof of Theorem 25. The equations from Lemma 8(c) and (d),
and the fact that i A is unitary, can be used to replace η

†
A, ε

†
A, and i†

A by equivalent
terms not containing †. �

4 A Survey of Graphical Languages 347

4.7.4 Other Dagger Pivotal Notions

It is possible to define dagger variants of the remaining pivotal notions from
Sect. 4.4:

Definition 54 A dagger pivotal category is spherical (respectively spacial) if it is
spherical (respectively spacial) as a pivotal category.

Definition 55 A dagger braided pivotal category is a dagger pivotal category with
a unitary braiding cA,B : A ⊗ B → B ⊗ A.

Remark 30 Like any braided pivotal category, a dagger braided pivotal category is
balanced by Lemma 4. However, in general the resulting twist θA : A → A is not
unitary. In fact, θA is unitary in this situation if and only if θA∗ = (θA)∗, i.e., if and
only if the category is tortile.

Definition 56 A dagger tortile category is defined in one of the following equivalent
ways:

1. as a dagger braided pivotal category in which the canonical twist θA, defined as
in Lemma 4, is unitary;

2. as a tortile, dagger monoidal category such that the braiding is unitary, and such
that εA and ηA satisfy the (equivalent) conditions of Lemma 8(c) and (d); or

3. as a dagger balanced monoidal category that is right autonomous and satisfies

=

A A

ηA

θA

A∗ η
†
A (4.2)

The first form of this definition emphasizes the relationship to dagger pivotal
categories. The second form is easiest to check if a category is already known to
be tortile. Finally, the third form takes εA, ηA, cA,B and θA as primitive operations
and does not mention the pivotal structure iA at all. The pivotal structure, in this
case, is definable from (4.7) or (4.1), with the condition (4.2) ensuring that the two
definitions coincide.

Definition 57 [1, 33] A dagger compact closed category is a dagger tortile cate-
gory such that θA = idA for all A. Equivalently, it is a dagger symmetric monoidal
category that is right autonomous and satisfies

ηA

A

A∗ = †
A

A∗ A

A A∗
(4.3)

348 P. Selinger

The equivalence of the two definition is immediate from the third form of the def-
inition of dagger tortile categories. Note that (4.2) is equivalent to (4.3) in the sym-
metric case. Further, these conditions are equivalent to the condition in Lemma 8(d).

Example 10 The category FdHilb of finite dimensional Hilbert spaces is dagger
compact closed, with A∗ the usual dual space of linear functions from A to I , and
with f † the usual linear algebra adjoint.

Graphical Languages

Each of the notions defined in this section (except the spherical notion) has a graph-
ical language, extending the corresponding graphical language from Sect. 4.4, with
the dagger of a diagram taken to be its mirror image. Each notion has a coherence
theorem, proved by the same method as Theorems 24 and 25. As expected, equiva-
lence of diagrams is up to isomorphism (for spacial dagger pivotal categories); up to
regular isotopy (for dagger braided pivotal categories); up to framed 3-dimensional
isotopy (for dagger tortile categories); and up to isomorphism (for dagger compact
closed categories).

4.7.5 Dagger Traced Categories

There is no difficulty in defining dagger variants of each of the traced notions of
Sect. 4.5. A (left or right) trace on a dagger monoidal category is called a dagger
trace if it satisfies

(Tr f)† = Tr(f †) (4.4)

For example: a dagger right traced category is a right traced dagger monoidal cate-
gory satisfying (4.4). A balanced traced category is dagger balanced traced if it is
dagger balanced and satisfies (4.4). And similarly for the other notions. The repre-
sentation theorems of Sect. 4.5 extend to these dagger variants:

Theorem 27 (Representation of dagger braided/balanced/symmetric traced
categories) Every dagger braided [balanced, symmetric] traced category can be
fully and faithfully embedded in a dagger braided pivotal [dagger tortile, dagger
compact closed] category, via a dagger braided [balanced, symmetric] traced func-
tor. �

The proof, in each case, is by Joyal, Street, and Verity’s Int-construction [24],
which respects the dagger structure.

Graphical Languages

The graphical language of each class of traced categories extends to the correspond-
ing dagger traced categories, in a way suggested by Eq. (4.4). As usual, the dagger

4 A Survey of Graphical Languages 349

of a diagram is its mirror image, thus for example

⎡
⎢⎢⎢⎢⎢⎣

X X

A f B

⎤
⎥⎥⎥⎥⎥⎦

†

=
X X

B f A

The coherence theorems of Sect. 4.5 extend to this setting.

4.7.6 Dagger Biproducts

In a dagger category, if A ⊕ B is a categorical product (with projections π1 : A ⊕
B → A and π2 : A ⊕ B → B), then it is automatically a coproduct (with injections
π

†
1 : A → A ⊕ B and π

†
2 : B → A ⊕ B). It therefore makes sense to define a notion

of dagger biproduct.

Definition 58 A dagger biproduct category is a biproduct category carrying a dag-
ger structure, such that π

†
i = ιi : Ai → A1 ⊕ A2 for i = 1, 2.

As in Sect. 4.6.3, we can equivalently define a dagger biproduct category as a
dagger symmetric monoidal category, together with natural families of morphisms

ΔA : A → A ⊗ A, ♦A : A → I, ∇A : A ⊗ A → A, �A : I → A,

such that Δ
†
A = ∇A and ♦†

A = �A, satisfying the axioms in Table 4.7.

Graphical Language

The graphical language of dagger biproduct categories is like that of biproduct cat-
egories, where the dagger of a diagram is taken to be its mirror image. For example,

⎡
⎢⎢⎣

f

g

⎤
⎥⎥⎦

†

= g

f

Theorem 28 (Coherence for dagger biproduct categories) A well-formed equa-
tion between morphism terms in the language of dagger biproduct categories follows
from the axioms of dagger biproduct categories if and only if it holds in the graphical
language, up to isomorphism of diagrams, the diagrammatic manipulations shown
in Table 4.8, and their duals.

350 P. Selinger

Proof By reduction to biproduct categories, as in the proofs of Theorems 24 and 25.
The axioms Δ

†
A = ∇A and ♦†

A = �A allow † to be removed from anywhere but a
morphism variable. �

Finally, there is an obvious notion of dagger traced biproduct category (which is
really a dagger traced dagger biproduct category), with graphical language derived
from traced biproduct categories.

4.8 Bicategories

A bicategory [6] is a generalization of a monoidal category. In addition to objects
A, B, . . . and morphisms f, g, . . ., one now also considers 0-cells α, β, . . ., which
we can visualize as colors. For example, consider the following diagram. It is a
standard diagram for monoidal categories, except that the areas between the wires
have been colored.

blue

red

green

yellow

f

g

A

F

E

green

D

B

C

As usual, we have objects A, B, C, D, E, F and morphisms f : A → C ⊗ D and
g : B ⊗ C → F ⊗ E . But now there are also 0-cells called green, red, yellow, and
blue. In such diagrams, each object has a source, which is the 0-cell just above it, and
a target, which is the 0-cell just below it. For example, we have A : green → yellow,
B : yellow → blue, and so on. It is now clear that, to be consistently colored, such
diagrams have to satisfy some coloring constraints. The constraints are:

• The tensor B ⊗ A of two objects may only be formed if the target of A is equal to
the source of B. In symbols, for any 0-cells α, β, γ , if A : α → β and B : β →
γ , then B ⊗ A : α → γ .

• If f : A → B is a morphism, then A and B must have a common source and a
common target. In symbols, if f : A → B and A : α → β, then B : α → β.

• One also requires a unit object Iα : α → α for every color α.

As an illustration of the second property, consider f : A → C ⊗ D in the above
example, where A : green → yellow and C ⊗ D : green → yellow. Subject to
the above coloring constraints, a bicategory is then required to satisfy exactly the
same axioms as a monoidal category. Notice, for example, that if f : A → B and
g : B → C and f, g are well-colored, then so is g ◦ f : A → C . Also, the identity

maps idA : A → A, the associativity map αA,B,C : (A ⊗ B) ⊗ C
∼=−→ A ⊗ (B ⊗ C),

4 A Survey of Graphical Languages 351

and the other structural maps are well-colored. In particular, a monoidal category is
the same thing as a one-object bicategory.

To give a detailed account of bicategories and their graphical languages is beyond
the scope of this paper. We have already discussed over 30 different flavors of
monoidal categories, and the reader can well imagine how many possible variations
of bicategories there are, with 2-, 3-, and 4-dimensional graphical languages, once
one considers bicategorical versions of braids, twists, adjoints, and traces. There are
even more variations if one considers tricategories and beyond. We refer the reader
to [6] for the definition and basic properties of bicategories, and to [41], [2, Sect. 7]
for a taste of their graphical languages.

4.9 Beyond a Single Tensor Product

All the categorical notions that we have considered in this paper have just a single
tensor product, which we represented as juxtaposition in the graphical languages.
For notions of categories with more than one tensor product, the graphical languages
get much more complicated. The details are beyond the scope of this paper, so we
just outline the basics and give some references.

Examples of categories with more than one tensor are linearly distributive cat-
egories [13] and *-autonomous categories [4]. Both of these notions are models
of multiplicative linear logic [17]. These categories have two tensors, often called
“tensor” and “par”, and written

A ⊗ B and A
...

............
.................................... B.

The two tensors are related by some morphisms, such as A ⊗ (B
...

............
.................................... C) → (A ⊗

B)
...

............
.................................... C , while other similar morphisms, such as (A ⊗ B)

...
............
.................................... C → A ⊗ (B

...
............
.................................... C), are

not present.
To make a graphical language for more than one tensor product, one must label

the wires by morphism terms, rather than morphism variables. One must also intro-
duce special tensor and par nodes as shown here:

B

⊗ A ⊗ B

A

A ⊗ B ⊗
B

A

B

A

B

A

,
A B A B

along with similar nodes for the units. Equivalence of diagrams must be taken up to
axiomatic manipulations, such as the following, which is called cut elimination in
logic:

352 P. Selinger

B

⊗ A ⊗ B ⊗
B

AA

=
B

A

.

Finally, one must state a correctness criterion, to explain why certain diagrams, such
as the left one following, are well-formed, while others, such as the right one, are
not well-formed.

A ⊗ B ⊗

B

A

⊗ A ⊗ B

B

A

⊗ A ⊗ BA B

The resulting theory is called the theory of proof nets, and was first given by Girard
for unit-free multiplicative linear logic [17]. It was later extended to include the
tensor units by Blute et al. [8].

4.10 Summary

Table 4.10 summarizes the graphical languages from Sects. 4.2, 4.3, 4.4, 4.5 and
4.6. The name of each class of categories is shown along with a typical diagram or
equation. The arrows indicate forgetful functors. We have omitted spherical cate-
gories, because they do not possess a graphical language modulo a natural notion of
isotopy.

The letter d indicates the dimension of the diagrams, and the letter i indicates
the dimension of the ambient space for isotopy. If i > d, then isotopy coincides
with isomorphism of diagrams. Special cases are “3f” for framed diagrams and
framed isotopy in 3 dimensions; “2+” for two-dimensional diagram with crossings
(i.e., isotopy is taken on 2-dimensional projections, rather than on 3-dimensional
diagrams); “reg” for regular isotopy; and “rot” to indicate that isotopy includes
rotation of boxes. Finally, “eqn” indicates that equivalence of diagrams is taken
modulo equational axioms.

The letter c indicates the status of a coherence theorem. This is usually a refer-
ence to a proof of the theorem, or “conj” if the result is conjectured. A checkmark
“

√
” indicates a result that is folklore or whose proof is trivial. “int” indicates that

the coherence theorem follows from a version of Joyal, Street, and Verity’s Int-
construction, and the corresponding coherence theorem for pivotal categories. An
asterisk “∗” indicates that the result has only been proved for simple signatures.

Dagger variants can be defined of all of the notions shown in Table 4.10,
except the planar autonomous and braided autonomous notions. Finally, bicategories
require their own (presumably much larger) table and are not included here.

4 A Survey of Graphical Languages 353

Table 4.10 Summary of monoidal notions and their graphical languages

Progressive Traced Autonomous

Category

d:1 i:1 c:
√

Right traced

d:2 i:2 c:conj

Planar autonomous
(rigid)

d:2 i:2 c:[21]

Planar monoidal

d:2 i:2 c:[21, 22]

Planar traced

d:2 i:2 c:conj

Planar pivotal
(sovereign)

d:2 i:2.rot c:[16]∗

Spacial monoidal

=

d:2 i:3 c:conj

Spacial traced

=

d:2 i:3 c:conj

Spacial pivotal

=

d:2 i:3 c:conj

Braided autonomous

d:2+ i:reg c:[16]∗

Braided monoidal

d:3 i:3 c:[22]

Braided traced

d:2+ i:reg.rot c:int∗

Braided pivotal
(balanced autonomous)

d:2+i:reg.rotc:[16]∗

Balanced monoidal

d:3f i:3f c:[22]

Balanced traced

=

=

d:3f i:3f c:int∗

Tortile (ribbon)

d:3f i:3f c:[34]∗

Symmetric monoidal

d:3 i:4 c:[22]

Symmetric traced

d:3 i:4 c:int∗

Compact closed

d:3 i:4 c:[27]∗

Product

=

d:3 i:eqn c:
√

Traced product

d:3 i:eqn c:
√

Coproduct

=

d:3 i:eqn c:
√

Traced coproduct

d:3 i:eqn c:
√

Biproduct

=

d:3 i:eqn c:
√

Traced biproduct

d:3 i:eqn c:
√

354 P. Selinger

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 415–425.
IEEE Computer Society Press, Washington, DC (2004) 347

2. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J.
Math. Phys. 36(11), 6073–6105 (1995) 351

3. Bainbridge, E.S.: Feedback and generalized logic. Inf. Control 31, 75–96 (1976) 337
4. Barr, M.: ∗-Autonomous Categories. Lectures Notes in Mathematics 752. Springer, New York

(1979) 307, 351
5. Barrett, J.W., Westbury, B.W.: Spherical categories. Adv. Math. 143, 357–375 (1999) 314
6. Bénabou, J.: Introduction to bicategories, part I. In: Reports of the Midwest Category Seminar,

Lecture Notes in Mathematics 47, pp. 1–77. Springer, New York (1967) 350, 351
7. Bloom, S.L., Esik, Z.: Axiomatizing schemes and their behaviors. J. Comput. Syst. Sci. 31,

375–393 (1985) 340
8. Blute, R.F., Cockett, J.R.B., Seely, R.A.G., Trimble, T.H.: Natural deduction and coherence

for weakly distributive categories. J. Pure Appl. Algebra 113(3), 229–296 (1996) 352
9. Căzănescu, V.-E.: On context-free trees. Theor. Comput. Sci. 41, 33–50 (1985) 338

10. Căzănescu, V.-E., Stefănescu, G.: Towards a new algebraic foundation of flowchart scheme
theory. Fundamenta Informaticae 13, 171–210 (1990). Also appeared as: INCREST Preprint
Series in Mathematics 43, Bucharest (1987) 323, 331, 332, 338

11. Căzănescu, V.-E., Stefănescu, G.: Feedback, iteration and repetition. In: Păun, G. (ed.) Math-
ematical Aspects of Natural and Formal Languages, pp. 43–62. World Scientific, Singapore
(1995). Also appeared as: INCREST Preprint Series in Mathematics 42, Bucharest (1988) 323, 331, 332, 338,

12. Căzănescu. V.-E., Ungureanu, C.: Again on advice on structuring compilers and proving them
correct. Preprint Series in Mathematics 75, INCREST, Bucharest (1982) 338, 340

13. Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. Pure Appl. Algebra 114(2),
133–173 (1997) 351

14. Esik, Z.: Identities in iterative and rational algebraic theories. Comput. Linguistics Comput.
Lang. XIV, 183–207 (1980) 339

15. Freyd, P.J., Yetter, D.N.: Braided compact closed categories with applications to low dimen-
sional topology. Adv. Math. 77, 156–182 (1989) 312, 318

16. Freyd, P.J., Yetter, D.N.: Coherence theorems via knot theory. J. Pure Appl. Algebra 78, 49–76
(1992) 312, 313, 316, 318

17. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987) 351, 352
18. Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec. PhD

thesis, Department of Computer Science, University of Edinburgh (July 1997) 340
19. Joyal, A., Street, R.: The geometry of tensor calculus II. Unpublished draft, available from

Ross Street’s website 312, 313
20. Joyal, A., Street, R.: Braided monoidal categories. Mathematics Report 860081, Macquarie

University (November 1986) 307
21. Joyal, A., Street, R.: Planar diagrams and tensor algebra. Unpublished manuscript, available

from Ross Street’s website (September 1988) 299, 300, 307, 308, 309, 310, 311
22. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88(1), 55–112 (1991) 294, 299, 300, 304,
23. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993) 296, 302, 305, 307, 310, 315, 32
24. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Philoso. Soc.

119, 447–468 (1996) 323, 329, 330, 331, 337, 348
25. Kauffman, L.H.: An invariant of regular isotopy. Trans. Am. Math. Soc. 318(2), 417–471

(1990) 316
26. Kelly, G.M.: An abstract approach to coherence. In: Mac Lane, S. (ed.) Coherence in Cate-

gories, Lecture Notes in Mathematics 281, pp. 106–147. Springer, New York (1972) 300
27. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra

19, 193–213 (1980) 322

4 A Survey of Graphical Languages 355

28. Mac Lane, S.: Natural associativity and commutativity. Rice Uni. Stud. 49, 28–46 (1963) 300
29. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics 5.

Springer, New York (1971) 292, 296
30. Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D.J.A. (ed.) Combina-

torial Mathematics and Its Applications, pp. 221–244. Academic Press, New York (1971) 290, 291
31. Reidemeister, K.: Knotentheorie. Springer, Berlin (1932); Chelsea, New York (1948). English

translation: Knot Theory, BCS Associates (1983) 316
32. Saavedra Rivano, N.: Categories Tanakiennes. Lecture Notes in Mathematics 265. Springer,

New York (1972) 307, 310
33. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings

of the 3rd International Workshop on Quantum Programming Languages, Electronic Notes in
Theoretical Computer Science 170, pp. 139–163. Elsevier Science, Amsterdam (2007) 342, 347

34. Shum, M.C.: Tortile tensor categories. J. Pure Appl. Algebra 93, 57–110 (1994) 320
35. Stefănescu, G.: An algebraic theory of flowchart schemes. In: Proceedings of the 11th Collo-

quium on Trees in Algebra and Programming, CAAP’86, Lecture Notes in Computer Science
214, pp. 60–73. Springer, New York (1986) 339

36. Stefănescu, G.: On flowchart theories, part I. the deterministic case. J. Comput. Syst. Sci.
35(2):163–191 (1987) 338, 339

37. Stefănescu, G.: On flowchart theories: Part II. The nondeterministic case. TCS 52, 307–340
(1987) 339

38. Stefănescu, G.: Feedback theories (a calculus for isomorphism classes of flowchart schemes).
Revue Roumaine de Mathématiques Pures et Appliquées 35, 73–79 (1990). Also appeared as:
INCREST Preprint Series in Mathematics 24, Bucharest (1986) 323, 332

39. Stefănescu, G.: Algebra of flownomials. Technical Report TUM-I9437, Technische Univerität
München (1994) 340

40. Stefănescu, G.: Network Algebra. Springer, New York (2000) 339, 340
41. Street, R.: Low-dimensional topology and higher-order categories. In: Proceedings of

the International Category Theory Conference (CT’95), 1995. Available from http://
www.mta.ca/_cat-dist/ct95.html 351

42. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Studies in Mathematics 18. Wal-
ter De Gruyter & Co., Berlin (1994) 320

43. Yetter, D.N.: Framed tangles and a theorem of Deligne on braided deformations of tan-
nakian categories. In: Gerstenhaber, M., Stasheff, J.D. (eds.) Deformation Theory and Quan-
tum Groups with Applications to Mathematical Physics, Contemporary Mathematics 134,
pp. 325–349. Americal Mathematical Society, Providence (1992) 317

Chapter 5
Geometry of Interaction and the Dynamics
of Proof Reduction: A Tutorial

E. Haghverdi and P. Scott

Abstract Girard’s Geometry of Interaction (GoI) is a program that aims at giving
mathematical models of algorithms independently of any extant languages. In the
context of proof theory, where one views algorithms as proofs and computation as
cut-elimination, this program translates to providing a mathematical modelling of
the dynamics of cut-elimination. The kind of logics we deal with, such as Girard’s
linear logic, are resource sensitive and have their proof-theory intimately related
to various monoidal (tensor) categories. The GoI interpretation of dynamics aims to
develop an algebraic/geometric theory of invariants for information flow in networks
of proofs, via feedback.

We shall give an introduction to the categorical approach to GoI, including
background material on proof theory, categorical logic, traced and partially traced
monoidal ∗-categories, and orthogonalities.

5.1 Introduction

In the 1930s, Gerhard Gentzen developed a profound approach to Hilbert’s proof
theory, in which formal laws for deriving logical entailments Γ � Δ (i.e. premisses
Γ entail conclusions Δ) were carefully systematized, breaking the laws of logic
into three groups: (i) the Axiom and Cut-Rule, (ii) Structural Rules, and (iii) Log-
ical Rules. Gentzen’s work revealed the hidden symmetries in logical syntax, and

E. Haghverdi (B)
School of Informatics, Indiana University, Bloomington, IN, USA
e-mail: ehaghver@indiana.edu

P. Scott (B)
Department of Mathematics and Statistics, University of Ottawa, Ottawa ON, Canada
e-mail: phil@mathstat.uottawa.ca

P. Scott Research partially supported by a Discovery Grant from NSERC, Canada.

Haghverdi, E., Scott, P.: Geometry of Interaction and the Dynamics of Proof Reduction:
A Tutorial. Lect. Notes Phys. 813, 357–417 (2011)
DOI 10.1007/978-3-642-12821-9_5 c© Springer-Verlag Berlin Heidelberg 2011

358 E. Haghverdi and P. Scott

his remarkable Cut-Elimination Theorem, one of the deepest in logic, has also had
considerable significance for theoretical computer science.

In these lectures we shall give the background, both logical and categorical,
to a remarkable new approach to Gentzen’s work, stemming from J-Y Girard’s
introduction of Linear Logic in 1987 [Gi87]. Linear Logic, a radical analysis
of the Gentzen rules of traditional logic, is based upon studying the use of
resources in these rules, e.g. in duplicating and eliminating premisses and con-
clusions in a logical inference. We may think of proofs as dynamical systems,
with inputs and outputs being the hypotheses and the conclusions respectively,
and we think of the rules involved in transforming, i.e. in rewriting, proof trees
(in Gentzen’s Cut-Elimination Algorithm) as interaction between these dynami-
cal systems. We are looking for mathematical invariants for the dynamics of these
systems.

Girard’s Geometry of Interaction (GoI) project began in the late 1980s [Gi89,
Gi89a]. The first paper on GoI was set in an operator algebraic context: proofs were
interpreted as operators on the Hilbert space of square summable sequences. The
GoI interpretation of cut-elimination was given by a finite sum, which was finite
due to nilpotency of the summands. This already pointed to the usefulness of the
GoI view of logic: one has a degree of nilpotency that measures the complexity
of cut-elimination (=computation). This also inspired a different line of work in
GoI research, the so called path-semantics with relationships to lambda calculus, a
fundamental model of computation [DR95].

One might ask: why is this important? The answer lies in realizing that one way
to model computation is precisely as an instance of Gentzen’s algorithm. We search
for mathematical models of this dynamical process of cut-elimination, expecting
that such an analysis will shed deep light on the very nature of computation and its
complexity. Indeed, there are connections of the whole project with complexity, as
we mention in Remark 5.5.2 in these notes.

The early work on understanding the categorical framework of GoI was begun
in lectures of Abramsky and of Hyland in the early 1990s. This brought the notion
of abstract trace (in the sense of Joyal, Street, and Verity [JSV96]) into the pic-
ture. Work by Hyland, by Abramsky [Abr96] and later by us [AHS02, HS04a] has
emphasized the role of abstract traces in modelling cut-elimination in GoI. Our cate-
gorical modelling of GoI has recently led us to the use of ∗-categories (see Sect. 5.8),
already familiar to theoretical physicists in the work by Doplicher, Roberts and oth-
ers. This approach to GoI offers a potential connection to the literature in several
areas of interest in mathematics and physics, for example to knot theory, where
trace appears under the name braid closure (cf. [Abr07]). The most recent work by
Girard [Gi08], makes use of type II1 von Neumann algebras to offer a new inter-
pretation of GoI, although the categorical meaning is totally open. It is our strong
hope and belief that the categorical and logical structures outlined in these notes
will be conducive to non-trivial and productive connections with applications to
physics.

5 Geometry of Interaction 359

5.2 From Monoidal Categories to *-Autonomy

5.2.1 Monoidal Categories

Monoidal (tensor) categories are a fundamental mathematical structure arising in
many areas of mathematics, theoretical computer science and physics, and increas-
ingly in mathematical logic. The subject is a vast one, so we will just include defi-
nitions and examples relevant to these lectures. For general background, the reader
is referred to standard category theory texts [Bor93, Mac98]. For general surveys
of monoidal categories in relation to categorical and linear logics, see the articles
[Sc00, BS04, Mel07] and further references given below.

Definition 5.2.1 A monoidal (or tensor) category (C,⊗, I, α, �, r) is a category C,
with functor ⊗ : C × C → C, unit object I ∈ ob(C), and specified isomorphisms

(natural in A, B, C): αABC : (A ⊗ B)⊗ C
∼=−→ A ⊗ (B ⊗ C), �A : I ⊗ A

∼=−→ A,

rA : A ⊗ I
∼=−→ A satisfying the following equations (in diagrammatic form):

�I = rI : I ⊗ I → I , as well as:

(A ⊗
⊗

I) ⊗ C
α

A ⊗ (I ⊗ C)

A ⊗ C

rA⊗idC

= A ⊗ C

idA ⊗�C

A(B(CD))
α

(AB)(CD)
α

((AB)C)D

A((BC)D)

idA ⊗α

α
(A(BC))D

α⊗ idD

where we omit ⊗’s and subscripts in the second diagram for typographical reasons.
This latter diagram is known as the Mac Lane pentagon. It expresses an equality
between the two a priori different natural isomorphisms between ((A⊗B)⊗C)⊗D
and A ⊗ (B ⊗ (C ⊗ D)).

Monoidal structure is not generally unique nor canonical: there may be several
(nonisomorphic) tensor structures on the same category. An interesting special case
is when the isos α, �, r are all identity morphisms. In that case, we say the monoidal
category is strict.

Definition 5.2.2 A strict monoidal category is a category C with a functor ⊗ : C ×
C → C and I ∈ ob(C) satisfying the following equations:

• (A ⊗ B)⊗ C = A ⊗ (B ⊗ C).
• A ⊗ I = A = I ⊗ A.
• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) for any arrows f, g, h.
• f ⊗ idI = f = idI ⊗ f , for any arrow f : A → B.

Many concrete examples of strict monoidal categories arise in knot theory, quan-
tum groups and related areas (e.g. [KRT97]). More generally, the Mac Lane Coher-
ence Theorem [Mac98] states that every monoidal category is equivalent to a strict

360 E. Haghverdi and P. Scott

one. This essentially says that in an arbitrary monoidal category C, every “formal”
diagram of arrows (from a source object to a target object) which is built from
instances of the maps α, �, r under the monoidal category operations automatically
commutes. Thus, without loss of generality (up to equivalence) we can assume our
monoidal categories are strict. Notice in a strict monoidal category, the objects form
a monoid (= semigroup with unit) under ⊗.

From now on we write (C,⊗, I) for monoidal categories, omitting the remain-
ing structure maps α, �, r when it is clear. We introduce some standard graphical
notation for arrows in Fig. 5.1.

A1

f

Am

B1

Bn

A1 ⊗ · · · ⊗ Am
f−→ B1 ⊗ · · · ⊗ Bn

...
...

X ⊗ U
g⊗h−→ Y ⊗ V

X
g

h
U

Y

V

Fig. 5.1 Pictorial representation of morphisms

In any monoidal category (C,⊗, I), we can define the monoid of scalars to be
C(I, I). For example, in the monoidal category (Vec,⊗, I) of k-vector spaces and
linear maps, with the usual notion of algebraic tensor product, and I = k (the
base field) observe Vec(I, I) ∼= I . The following result is from [KL80] (see also
[Abr05]).

Proposition 5.2.3 (Kelly-Laplaza) In any monoidal category, the scalars form a
commutative monoid.

There are many additional structures one may add to this basic definition. We
shall introduce below such notions as symmetric, closed, ∗-autonomous, and traced
structure, which are key to modelling proofs in linear logic.
Suppose first that there is a natural isomorphism sAB : A ⊗ B → B ⊗ A (called a
braiding) making the following three diagrams commutative.

(1)

A ⊗ B
sA,B

B ⊗ A

A ⊗ B

sB,Aid (2)

B ⊗ I
sB,I

I ⊗ B

B

��

(3)

A ⊗ (B ⊗ C)
α−1

(A ⊗ B) ⊗ C
s

C ⊗ (A ⊗ B)

A ⊗ (C ⊗ B)

idA ⊗ s

α−1

(A ⊗ C) ⊗ B
s ⊗ idB (C ⊗ A) ⊗ B

α−1

5 Geometry of Interaction 361

where in (3) we have omitted subscripts for typographical reasons. We say C is
symmetric if Diagrams (1), (2), and (3) commute. Notice in a symmetric monoidal
category, sAB = (sB A)−1.

More generally, a braided monoidal category is a monoidal category satisfying
the commutativity of diagrams (2), (3), and (3’), where (3’) is like (3) but replacing
α−1 by α, id ⊗ s by s ⊗ id and appropriately relabelling the nodes. Such categories
arise in knot theory and physics [JS91, JS93, KRT97] as well as in recent semantical
studies in Quantum Computing [AbCo04, Abr05].

Let us give some examples that will be useful later.

Examples 5.2.4 (Symmetric Monoidal Categories)

1. Any cartesian category (=finite products), with ⊗ = ×.
2. Any co-cartesian category (= finite coproducts), with ⊗ = +
3. Rel×. This is the category Rel whose objects are sets and whose arrows are

binary relations. Recall the composition of two arrows is their relational product:

given A
R−→ B

S−→ C , define A
SoR−→ C to be the relation defined by

a(SoR)c iff ∃b∈B a Rb ∧ bSc .

The identity morphism A
idA−→ A is simply the diagonal relation ΔA =

{(a, a) | a ∈ A}. The functor ⊗ : Rel × Rel → Rel is defined as follows. On

objects, ⊗ = ×, the cartesian product of sets; on arrows, A ⊗ B
R⊗S−→ C ⊗ D is

the relation given by: (a, b)R ⊗ S(c, d) iff a Rc & bSd. The tensor unit I = {∗},
any one element set.

4. Rel+. This is again the category Rel, except ⊗ = + (disjoint union), where
disjoint union in Set is given by: X + Y = X × {1} ∪ Y × {2}. On arrows,

A ⊗ B
R⊗S−→ C ⊗ D is the relation given by:

(x, i)R ⊗ S(y, j) iff [(i = j = 1 and x Ry) or (i = j = 2 and x Sy)]
Here the tensor unit I = ∅.

5. Two important monoidal subcategories of Rel+ are:

(i) Pfn: Sets and partial functions. Here the morphisms between sets are

relations which are functional, i.e. binary relations A
R−→ B satisfying:

∀x∈A∀y,y′∈B [xRy ∧ xRy′ → y = y′].
(ii) PInj: Sets and partial injective functions. This is the subcategory of Pfn con-

sisting of those partial functions which are also injective on their domains:
∀x,x ′∈A∀y∈B [xRy ∧ x ′Ry → x = x ′].

6. Vec f d and Vec: (finite dimensional) vector spaces over k, where k is a field. Here
V ⊗ W is taken to be the usual tensor product, and I = k.

7. The categories Hilb⊕, (Hilb⊕) f d of Hilbert spaces (resp. finite dimensional
Hilbert spaces) and bounded linear maps with the direct sum ⊕ as tensor.
Similarly, we may consider the categories Ban and Ban f d of Banach spaces
(resp. finite dimensional Banach spaces) and bounded linear maps. Important

362 E. Haghverdi and P. Scott

subcategories of the above include cBan and cHilb, where the maps are (nonex-
pansive) contractions, i.e. linear maps L satisfying ‖L(x)‖ ≤ ‖x‖.

8. Hilb⊗ is the category of Hilbert spaces and bounded linear maps, with the tensor
being the usual Hilbert space tensor product. There are also a variety of tensor
products on Banach spaces, but we shall not require that theory.

5.2.2 Closed Structure

In order to deal with internal function spaces, we introduce the notion of closedness,
as an adjoint functor to ⊗:

Definition 5.2.5 A symmetric monoidal closed category (smcc) C is a symmetric
monoidal category such that for all A ∈ C, the functor − ⊗ A : C → C has a right
adjoint A −◦ −, i.e. there is an isomorphism, natural in B, C , satisfying

C(C ⊗ A, B) ∼= C(C, A −◦ B) (5.1)

We say A −◦ B is the “linear exponential” or “linear function space”. In particular,
the isomorphism (5.1) induces evaluation and coevaluation maps (A −◦ B)⊗ A →
B and C → (A −◦ (C ⊗ A)), satisfying the adjoint equations.

Examples 5.2.6

1. Any ccc, with A ⊗ B = A × B and A −◦ B = A ⇒ B.
2. A poset P = (P,≤) is an smcc iff there are operations ⊗,−◦: P2 → P , 1 ∈ P

satisfying:

(i) (P,⊗, 1) is a commutative monoid.
(ii) ⊗,−◦ are functorial in the posetal sense: i.e. x ≤ x ′, y ≤ y′ implies x⊗y ≤

x ′ ⊗ y′ and x ′ −◦ y ≤ x −◦ y′
(iii) (Closedness) x ⊗ y ≤ z iff x ≤ y −◦ z.

3. Girard’s Phase Semantics: This is a posetal smcc, in the sense of Example 2
above. Let M = (M, ., e) be a commutative monoid. Consider the poset P(M),
the powerset of M . We view P(M) as a poset ordered by inclusion. For X, Y ∈
P(M), define

X ⊗ Y = XY =def {x .y | x ∈ X, y ∈ Y }
X −◦ Y = {z ∈ M | z .X ⊆ Y } and I = {e}

4. Vec, where V ⊗ W is the usual algebraic tensor product and V −◦ W =
Lin(V, W). More generally, consider R-Modules over a commutative ring R,
with the standard algebraic notions of V ⊗R W and V −◦ W = Hom(V, W).

5. MOD(G). This example extends groups acting on sets to groups acting linearly
on vector spaces. Let G be a group and V a vector space. A representation of

5 Geometry of Interaction 363

G on V is a group homomorphism ρ : G → Aut(V); equivalently, it is a left
G-action G × V

.−→ V (satisfying the same equations as a G-set) such that
v �→ g .v is a linear automorphism, for each g ∈ G. The pair (ρ, V) is called a
G-module or G-space. MOD(G) has as objects the G-modules and as mor-
phisms the linear maps commuting with the G-actions. Define the smcc structure
of MOD(G) as follows:

V ⊗ W = the usual tensor product, with action determined by

g .(v ⊗ w) = g .v ⊗ g .w

V −◦ W = Lin(V, W), with action (g. f)(v) = g . f (g−1 .v) ,

the contragredient action.

5.2.3 Monoidal Categories with Duality

For the purposes of studying linear logic, as well as general duality theories, we
need to consider monoidal categories equipped with a notion of involutive negation
(or “duals”). A general categorical theory of such dualities, including many tradi-
tional mathematical duality theories, was developed by M. Barr [Barr79] in the mid
1970’s, some ten years before linear logic.

Definition 5.2.7 ([Barr79]) A ∗-autonomous category (C,⊗, I,−◦,⊥) is an smcc
with a distinguished dualizing object ⊥, such that (letting A∗ = A −◦⊥), the canon-
ical map μA : A → A∗∗ is an iso, for all A (i.e. “all objects are reflexive”).

Facts about ∗-autonomous categories C:

• The operation (−)∗ induces a contravariant dualizing functor Cop ()∗−→ C such
that C(A, B) ∼= C(B∗, A∗) which is a natural iso and which satisfies all natural
coherence equations.

• C is closed under duality of categorical constructions: e.g. C has products iff it
has coproducts, C is complete iff it is co-complete, etc.

• (A −◦ B)∗ ∼= A ⊗ B∗ and I ∼=⊥∗ Also A −◦ B ∼= B∗ −◦ A∗.
• We may define A

...
............
.................................... B = (A∗⊗B∗)∗, a kind of “de Morgan dual” of⊗. In linear

logic, this is the connective “par”, a kind of “parallel disjunction”. In general,
⊗ �=...

............
.................................... , and (in general) there is not even a C-morphism A ⊗ B → A

...
............
.................................... B.

• As we shall see below, categorical models of multiplicative, additive linear logic
will be ∗-autonomous categories with products (hence coproducts).

The first two examples are from Example 5.2.4 above.

Example 5.2.8 Rel×. The category of relations Rel× is probably the simplest
∗-autonomous category. For sets A, B, A ⊗ B = A −◦ B = A × B. Let the
dualizing object ⊥= {∗}, any one-element set. As for the dualizing functor (−)∗,
on objects define A∗ = A. On arrows, given a relation R : A → B, we define
R∗ = Rop : B → A to be the opposite relation (so that bR∗a iff a Rb, for any
a ∈ A, b ∈ B). Notice: (A ⊗ B)∗ = A∗ ⊗ B∗ = A × B.

364 E. Haghverdi and P. Scott

Example 5.2.9 Vec is symmetric monoidal closed, where I = k (the base field),
V ⊗ W is the usual algebraic tensor product and V −◦ W = Lin(V, W). Note that
in the category Vec of vector spaces over the field k, V satisfies V ∼= V ∗∗(via the
canonical map μV) iff V is finite dimensional (see [Ger85], p. 68). Hence, Vec f d
is ∗-autonomous, where I = k (the base field) and V ∗ = V −◦ I is the usual dual
space.

Unfortunately, the above two examples Rel× and Vec f d are “degenerate”
∗-autonomous categories (from the viewpoint of linear logic), since

...
............
.................................... ∼= ⊗. That

is, (A ⊗ B)∗ ∼= A∗ ⊗ B∗. We shall mention these below, as examples of compact
categories. Indeed, from the viewpoint of linear logic, it is quite hard to find nice
examples of nondegenerate ∗-autonomous categories. One of the motivations that
led to [Barr79] was that such categories arise quite naturally in various topologi-
cal duality theories. The following discussion is a quick summary, primarily based
on work of M. Barr (e.g. [Barr79]) and the treatment in Blute [Bl96], based on
a topology originally due to Lefschetz ([Lef]). See also [BS96]. Let TVec denote
the category whose objects are vector spaces equipped with linear topologies, and
whose morphisms are linear continuous maps.

Barr showed that TVec is a symmetric monoidal closed category, when V −◦ W
is defined to be the vector space of linear continuous maps, topologized with the
topology of pointwise convergence. (It is shown in [Barr79] that the forgetful func-
tor TVec→Vec is tensor-preserving). Let V ∗ denote V −◦ k. Lefschetz proved
that the canonical embedding V→V ∗∗ is always a bijection, but need not be an
isomorphism. Now we just cut down to so-called reflexive spaces: those for which
the embedding V→V ∗∗ is actually an isomorphism:

Theorem 5.2.10 (Barr) RTVec, the full subcategory of reflexive objects in TVec, is
a complete, cocomplete ∗-autonomous category, with I ∗ = I = k the dualizing
object. Moreover, in RTVec, ⊗ and

...
............
.................................... are not isomorphic.

More generally, other classes of ∗-autonomous categories arise by taking a con-
tinuous linear analog of G-sets, namely categories of group representations, using
the category RTVec.

Definition 5.2.11 Let G be a group. A continuous G-module is a linear action of G
on a space V in TVec, such that for all g ∈ G, the induced map g.() : V → V is
continuous. Let TMOD(G) denote the category of continuous G-modules and con-
tinuous equivariant maps. Let RTMOD(G) denote the full subcategory of reflexive
objects.

Theorem 5.2.12 The category TMOD(G) is symmetric monoidal closed. The cate-
gory RTMOD(G) is ∗-autonomous, and a reflective subcategory of TMOD(G) via
the functor ()∗∗. Furthermore the forgetful functor | | : RTMOD(G) → RTVec
preserves the ∗-autonomous structure.

Following [Bl96], still more general classes of ∗-autonomous categories arise
analogously using the category RTMOD(H), the reflective subcategory of linearly
topologized H -modules, for a cocommutative Hopf algebra H .

5 Geometry of Interaction 365

The next notion is much more familiar mathematically, although logically it cor-
responds to a rather degenerate case of linear logic: the case where ⊗ = ...

............
.................................... :

Definition 5.2.13 A compact closed category [KL80] is a symmetric monoidal cat-
egory such that for each object A there exists a dual object A∗, and canonical mor-
phisms:

ν : I → A ⊗ A∗

ψ : A∗ ⊗ A → I

such that evident equations hold. In the case of a strict monoidal category, these
equations reduce to the usual adjunction triangles.

Remark 5.2.14 (From Compactness to *-Autonomy) For constructing new mod-
els of multiplicative linear logic, there is a general categorical construction Dou-
ble Glueing which can be used to turn compact closed categories into nontrivial
*-autonomous ones, essentially by breaking the isomorphism between ⊗ and

...
............
.................................... .

This is described in detail in [HylSc03]. Indeed, double gluing can be iterated, to
obtain interesting categories, e.g. see [HaSc07].

We have already remarked above that the categories Rel× and Vec f d are com-
pact closed. In the study of quantum computing, Abramsky and Coecke [AbCo04]
have shown the utility of strongly compact closed categories, those with additional
structure abstracting the theory of inner product spaces.

Lemma 5.2.15

• Compact closed categories are ∗-autonomous, with the tensor unit as dualizing
object.

• Recall A
...

............
.................................... B = (A∗⊗B∗)∗. In any ∗-autonomous category in which the tensor

unit is the dualizing object, there is a canonical morphism
A ⊗ B→A

...
............
.................................... B given by: μA ⊗ μB : A ⊗ B→A∗∗ ⊗ B∗∗ ∼= (A∗ ⊗ B∗)∗. In a

compact closed category, this morphism is an isomorphism.

What are monoidal functors between monoidal categories? Here there can be
several notions. Let us pick an important one:

Definition 5.2.16 A monoidal functor between monoidal categories is a 3-tuple
(F, m I , m) where F : C → D is a functor, together with a morphism m I :
I −→ F(I) and a natural transformation mU V : F(U) ⊗ F(V) −→ F(U ⊗ V)

satisfying some coherence diagrams (which we omit). F is strict if mI , mU V are
identities. A monoidal functor is symmetric if m commutes with the symmetries:
m B,AsF A,F B = F(sA,B)m A,B , for all A, B.

Finally, we need an appropriate notion of natural transformation for monoidal
functors.

Definition 5.2.17 A natural transformation between monoidal functors α : F → G
is monoidal if it is compatible with both mI and mU V , for all U, V , in the sense that

366 E. Haghverdi and P. Scott

the following equations hold:
(i) αI om I = m I and
(ii) mU V o(αU ⊗ αV) = αU⊗V omU V .

Remark 5.2.18 (Alternative Treatments of ∗-autonomy) There are alternative defi-
nitions of ∗-autonomous categories, some based on attempts to axiomatize a fully
faithful dualizing functor (−)∗ : Cop → C. This leads to thorny problems con-
cerning what are the appropriate categorical coherence equations to impose. Recent
work of Robin Houston [Hou07] has shown that this is subtle and is inadequately
addressed in the literature, so we omit discussing it.

A more radical alternative categorical treatment of the various layers of linear
logic (and thus of ∗-autonomous categories) arose in work of Cockett and Seely
and coworkers [CS97, BCST96, BCS00]. Their idea is to first consider linearly
(or weakly) distributive categories: monoidal categories with two monoidal struc-
tures tensor (⊗) and cotensor (

...
............
....................................), together with various coherence and (weak)

distributive laws relating them. This corresponds to a kind of multiplicative linear
logic of just conjunction/disjunction, without any negation or duality relating the
two tensors. On top of this structure, one can impose an involutive negation (−)∗
(which will satisfy a De Morgan duality between tensor and cotensor); in addi-
tion, one may adjoin products × (and thus, coproducts +) for the additive struc-
ture. Finally, one may impose the further exponential structure of linear logic (see
below). The authors in the above papers also take extra care in handling the logical
units (for tensor and cotensor) and the various categorical coherence problems these
require.

5.3 Linear Logic and Categorical Proof Theory

5.3.1 Gentzen’s Proof Theory

Gentzen’s approach to Hilbert’s proof theory [GLT, Mel07], especially his sequent
calculi and his fundamental theorem on Cut-Elimination, have had a profound influ-
ence not only in logic, but recently in category theory and computer science as well.
The connections of Gentzen proof theory with categorical logic (and linear logic)
are discussed in various survey papers and books [LS86, Sc00, BS04, Mel07]. Let
us just introduce some basic terminology.

A sequent for a logical language L is an expression

A1, A2, · · · , Am � B1, B2, · · · , Bn (5.2)

where A1, A2, · · · , Am and B1, B2, · · · , Bn are finite lists (possibly empty) of for-
mulas of L. Sequents are denoted Γ � Δ, where Γ and Δ are lists of formulas. We
think of sequent (5.2) as a formal entailment relationship between the premisses Γ

and (potential) conclusions Δ.

5 Geometry of Interaction 367

Traditional logicians would give the semantical meaning (of the truth) of the
sequent (5.2) as: the conjunction of the Ai entails the disjunction of the B j . More
generally, following Lambek and Lawvere, category theorists interpret proofs of
such sequents (modulo equivalence of proofs) as arrows in appropriate (freely gen-
erated) monoidal categories. For logics L similar to Girard’s linear logic [Gi87], we
interpret a proof π of sequent (5.2) in a *-autonomous category (C,⊗, I,−◦,⊥)

with a “cotensor”
...

............
.................................... (see Definition 5.2.7 above) as an arrow of the following form

A1 ⊗ A2 ⊗ · · · ⊗ Am
π−→ B1

...
............
.................................... B2

...
............
.................................... · · · ...

............
.................................... Bn (5.3)

Here − : L→ C is an interpretation function of formulas and proofs (of the logic
L) into the objects and arrows of C. We interpret formulas Ai as objects Ai ∈ C
by induction, starting with an arbitrary interpretation of the atoms (as objects of C).

Remark 5.3.1 (Notation) We abuse notation for π above and omit writing −
on formulas when it is clear; thus we write the arrow (5.3) above as

A1 ⊗ A2 ⊗ · · · ⊗ Am
π−→ B1

...
............
.................................... B2

...
............
.................................... · · · ...

............
.................................... Bn (5.4)

as an interpretation of sequent (5.2) above in category C.

Gentzen’s approach to proof theory gives rules for generating formal proofs of
sequents. These formal proofs are trees generated by certain rules (called rules of
inference) for building new sequents from old sequents, starting from initially given
sequents called axioms. Thus, a (formal) proof of Γ � Δ is a tree with root labelled
by Γ � Δ and in which every node is labelled by a rule of inference and in which
the leaves are labelled by instances of axioms.

Lambek [L89] pointed out that Gentzen’s sequent calculus was analogous to
Bourbaki’s method of bilinear maps. For example, given lists Γ = A1 · · · Am and
Δ = B1 B2 · · · Bn of R − R bimodules of a given ring R, there is a natural isomor-
phism

Mult(Γ ABΔ, C) ∼= Mult(Γ A ⊗ BΔ, C) (5.5)

between m+n+2-linear and m+n+1-linear maps. Bourbaki derived many aspects
of tensor products just from this universal property. Such a formal bijection is at the
heart of Linear Logic, whose rules we now present briefly.

GENTZEN’S RULES

Gentzen’s rules analyze the deep structure and implicit symmetries hidden in logical
syntax. Gentzen broke down the manipulations of logic into two classes of rules
applied to sequents: structural rules and logical rules (including Axiom and Cut
rules.) All rules come in pairs (left/right) applying to the left (resp. right) side of a
sequent.

368 E. Haghverdi and P. Scott

Gentzen’s Structural Rules (Left/Right)

Permutation
Γ � Δ

σ(Γ) � Δ

Γ � Δ

Γ � τ(Δ) σ, τ permutations.

Contraction
Γ, A, A � Δ

Γ, A � Δ

Γ � Δ, B, B
Γ � Δ, B

Weakening
Γ � Δ

Γ, A � Δ
Γ � Δ

Γ � Δ, B

Permutation says that if Γ entails Δ (i.e. if the sequent Γ � Δ holds), then we
can permute arbitrarily the order of the lists of premisses and conclusions and still
have a valid inference. Contraction says (for the Left rule) that if Γ together with
two copies of premise A entail Δ, then we can still infer Δ from Γ but using only
one copy of A; dually for contraction on the right. Weakening (on the left) says if Γ

entails Δ, then adding extra premisses to Γ still entails Δ, and dually for the right
hand rule (see [GSS, Abr93, L89]).

In linear logic we do not allow such uncontrolled contraction and weakening
rules; rather, formulas which can be contracted or weakened are marked with !A
(for left rules) and ?A for right rules. We shall mention more on this below.

By controlling (and making explicit) these traditional structural rules, logic takes
on a completely different character.

Definition 5.3.2 (Linear Logic) Formulas of the theory LL (linear logic) are gener-
ated from atoms and their negations p, p⊥, q, q⊥, · · · , constants I,⊥, 1, 0 using the
binary connectives ⊗,

...
............
.................................... ,×,+ and unary operations !, ?. Negation is extended by

de Morgan duality to all expressions as follows: p⊥⊥ = p, (A⊗ B)⊥ = A⊥ ...
............
.................................... B⊥

and dually, as well as (A × B)⊥ = A⊥ + B⊥ and (!A)⊥ =?(A⊥) and dually.
Finally, A −◦ B is defined to be A⊥ ...

............
.................................... B (this connective is redundant, but useful

for understanding the categorical semantics of linear logic).

We think of A⊗B and A×B as kinds of conjunctions, A
...

............
.................................... B and A+B as kinds

of disjunctions, and A⊥ as (linear) negation. As suggested by the notation, such
logics will be interpretable in ∗-autonomous categories with additional structure
(see below).

The Rules of Linear Logic are in Fig. 5.2. Previously equivalent notions (of tra-
ditional classical logic) now split into subtle variants based on resource allocation.
For example, the rules for Multiplicative connectives simply concatenate their input
hypotheses Γ and Γ ′, whereas the rules for Additive connectives merge two input
hypotheses Γ into one. The situation is analogous for conclusions Δ and Δ′. The
names of the rules suggest their categorical meaning.

The Exponential rules are the rules for the connectives ! and ? (e.g. contraction
and weakening on the left side of sequents). Using the rules of negation, one can
obtain the dual laws (e.g. contraction and weakening on the right side) by using the
dual ? connective.

The logical connectives in linear logic can represent linguistic distinctions related
to resource use which are simply impossible to formulate in traditional logic (see
[Gi89, Abr93]). For example, we think of a linear entailment A1, · · · , Am � B

5 Geometry of Interaction 369

Structural Perm
Γ � Δ

σ(Γ) � τ(Δ)
σ, τ permutations.

Axiom & Cut Axiom A � A

Cut
Γ � A,Δ Γ ′, A � Δ′

Γ, Γ ′ � Δ,Δ′

Negation
Γ � A,Δ

Γ, A⊥ � Δ

Γ, A � Δ

Γ � A⊥,Δ

Multiplicatives Tensor
Γ, A, B � Δ

Γ, A ⊗ B � Δ

Γ � A,Δ Γ ′ � B,Δ′

Γ, Γ ′ � A ⊗ B,Δ,Δ′

Par

Γ, A � Δ Γ ′, B � Δ′

Γ, Γ ′, A
...

............
.................................... B � Δ,Δ′

Γ � A, B,Δ

Γ � A
...

............
.................................... B,Δ

Units
Γ � Δ

Γ, I � Δ
� I

⊥ � Γ � Δ

Γ �⊥,Δ

Implication
Γ � A,Δ Γ ′, B � Δ′

Γ, Γ ′, A −◦ B � Δ,Δ′
Γ, A � B,Δ

Γ � A −◦ B,Δ

Additives Product
Γ, A � Δ

Γ, A × B � Δ

Γ, B � Δ

Γ, A × B � Δ

Γ � A,Δ Γ � B,Δ

Γ � A × B,Δ

Coproduct
Γ, A � Δ Γ, B � Δ

Γ, A + B � Δ

Γ � A,Δ

Γ � A + B,Δ

Γ � B,Δ

Γ � A + B,Δ

Units
Γ, 0 � Δ Γ � 1,Δ

Exponentials Weakening
Γ � Δ

Γ, !A � Δ
Contraction

Γ, !A, !A � Δ

Γ, !A � Δ

Storage
!Γ � A
!Γ � !A Dereliction Γ, A � Δ

Γ, !A � Δ

Fig. 5.2 Rules for classical propositional LL

as an action–a kind of process that in a single step consumes the inputs Ai and
produces output B. Think of a chemical reaction, in which B is produced in 1-step
from the reactants Ai . For example, this permits representing in a natural manner the
step-by-step behaviour of various abstract machines, certain models of concurrency
like Petri Nets, etc. Thus, linear logic permits us to describe the instantaneous state
of a system, and its step-wise evolution, intrinsically within the logic itself (e.g. with
no need for explicit time parameters, etc.)

We should note that linear logic is not about simply removing Gentzen’s struc-
tural rules, but rather modulating their use. The particular connective !A, which
indicates that contraction and weakening may be applied to formula A, yields the
Exponential connectives in Fig. 5.2. From a resource viewpoint, an hypothesis !A is

370 E. Haghverdi and P. Scott

one which can be reused arbitrarily. It is roughly like an infinite tensor power ⊗ω A,
and more generally (for physicists) something like an exterior algebra or Fock-space
like construction.

Moreover, this connective permits decomposing intuitionistic implication “⇒”
(categorically, the cartesian closed function space) into more basic notions:

A ⇒ B = (!A) −◦ B

Remark 5.3.3 (1-sided Sequents & Theories) Observe that in classical linear logic
LL, two-sided sequents can be replaced by one-sided sequents, since Γ � Δ is
equivalent to � Γ ⊥,Δ, with Γ ⊥ the list A⊥1 , · · · , A⊥n , where Γ is A1, · · · , An .
This permits halving the number of rules, and we shall use this notation frequently,
see Fig. 5.3. Finally, we end with the following standard terminology of subtheories
of LL in Fig. 5.2. The literature usually presents the theories below using 1-sided
sequents.

MLL: multiplicative linear logic is built from the atoms and multiplicative units
{I,⊥} using the connectives {⊗,

...
............
.................................... , ()⊥}. The rules include the structural (permu-

tation), axioms, cut, negation and the multiplicative rules. This theory corresponds
semantically to ∗-autonomous categories (in which we interpret linear negation
by ()∗).

Structural Perm
� Γ

� τ(Γ)
τ a permutation.

Axiom & Cut Axiom � A⊥, A

Cut
� A, Γ � A⊥, Γ ′

� Γ, Γ ′

Multiplicatives Tensor
� A, Γ � B, Γ ′

� A ⊗ B, Γ, Γ ′

Par

� A, B, Γ

� A
...

............
.................................... B, Γ

Units � I
� Γ

�⊥, Γ

Additives Product
� A, Γ � B, Γ

� A × B, Γ

Coproduct
� A, Γ

� A + B, Γ

� B, Γ

� A + B, Γ

Units � 1, Γ

Exponentials Weakening
� Γ

� ?A, Γ
Contraction

� ?A, ?A, Γ

� ?A, Γ

Storage
� ?Γ , A
� ?Γ , !A Dereliction � A, Γ

� ?A, Γ

Fig. 5.3 1-Sided rules for classical propositional LL

5 Geometry of Interaction 371

MALL: multiplicative additive linear logic is built from the atoms and the
units {I,⊥, 0, 1} using the connectives {⊗,

...
............
.................................... , ()⊥,×,+}. The rules include the

MLL rules together with the additive rules. This theory corresponds semantically to
∗-autonomous categories with products (hence coproducts).

MELL: multiplicative exponential linear logic is built from those formulas of
LL that do not use any of the additive structure: that is, formulas built from the
atoms and multiplicative units {I,⊥} using only the connectives {⊗,

...
............
.................................... , ()⊥, !, ?}.

The rules include the structural (permutation), axioms, cut, negation and the multi-
plicative and exponential rules.

CATEGORICAL PROOF THEORY

One of the basic ideas of categorical logic and categorical proof theory is that (the
proof theory of) various logics generate interesting classes of free categories: free
cartesian, cartesian closed, monoidal, monoidal closed, *-autonomous, toposes, etc.
The intuition is:

• Formulas of a logic should be the objects of a category.
• Proofs (or, rather, equivalence classes of proofs) should be the morphisms.

The subject began in the work of Lawvere and of Lambek in the 1960s and is
discussed in detail in [LS86] (cf. also the expository treatment in [BS04]). One of
the early applications of Lambek was to apply these methods to solve coherence
problems for various monoidal categories.

5.3.2 Categorical Models of Linear Logic

We are interested in finding the categories appropriate to modelling linear logic
proofs (just as cartesian closed categories modelled intuitionistic ∧,⇒,� proofs).
The basic equations we certainly must postulate arise from the operational
semantics–that is cut-elimination of proofs. If we have a proof-rewriting

π....
A1, · · · , Am � B1, · · · , Bn

�
π ′
....

A1, · · · , Am � B1, · · · , Bn

then the categorical interpretation − of these proofs (as arrows in an appropriate
category as in (5.4) above) should be to give equal arrows π = π ′ :
A1 ⊗ · · · ⊗ Am → B1

...
............
.................................... · · · ...

............
.................................... Bn .

In the case of sequent calculi, this rewriting is generated by the rules of Gentzen’s
Cut-Elimination algorithm [GLT]. However, there are sometimes natural categorical
equations (e.g. the universal property of cartesian products) which are not decided
by traditional proof theoretic rewriting, and need to be postulated separately (other-
wise, conjunction only gives a “weak product” [LS86]). Precisely which equations
to add, to make a mathematically natural and beautiful structure, is an important
question. The problem is further compounded in linear logic (at the level of the

372 E. Haghverdi and P. Scott

exponentials) where the equations and coherences are more subtle, with more vari-
ations possible.

The first attempted categorical semantics of LL is in Seely’s paper [See89] which
is still a good resource (although some fine details have turned out to require mod-
ification). Since that time, considerable effort by many researchers has led to major
clarifications and quite different axiomatizations. An excellent survey of the current
state-of-the-art is in Melliès [Mel07]. In the case of Multiplicative-Additive classical

Arrow-generating Rules Equations

A
id−→ A

A
f−→ B B

g−→ C

A
g f−→ C equations of a category

A
f−→ B A′ g−→ B ′

A ⊗ A′ f⊗g−→ B ⊗ B ′
⊗ is a functor : f f ′ ⊗ gg′ = (f ⊗ g)(f ′ ⊗ g′)

id ⊗ id = id

(A ⊗ B)⊗ C
α−→ A ⊗ (B ⊗ C) α, s, � are natural isos

A ⊗ B
s−→ B ⊗ A equations for symmetric

I ⊗ A
�−→ A monoidal structure

A ⊗ B
f−→ C

A
f ∗−→ (B −◦ C)

−◦R
equations for monoidal closedness

(A −◦ B)⊗ A
ev−→ B (this gives smcc’s)

C
f−→ A C

g−→ B

C
〈 f,g〉−→ A × B cartesian products

A × B
π1−→ A A × B

π2−→ B (this gives smcc’s + products)

A
!A−→ �

A
f−→ B

B∗ f ∗−→ A∗ (−)∗ is a contravariant functor

A∗ −→ (A −◦⊥) these are natural isos
(A −◦⊥) −→ A∗

(A −◦ B) → (B∗ −◦ A∗) natural strength iso

A → ((A −◦⊥) −◦⊥) natural iso

Fig. 5.4 ∗-Autonomous categories equationally

5 Geometry of Interaction 373

linear logic MALL, there is little controversy: the syntax should generate a free
∗-autonomous category with products (and thus coproducts). In more detail, in
Fig. 5.4 we present the categorical structure of (free) ∗-autonomous categories con-
sidered as symmetric monoidal closed categories (smcc’s) with dualizing objects

⊥, as in the discussion above. We may think of the arrows A
f−→ B as proofs of

very simple sequents A � B (where premisses and conclusions are lists of length

1). For example, the identity map A
id−→ A corresponds to the axiom A � A.

The remaining laws of linear logic follow from the arrow-generating rules. The
associated equations guarantee that: (i) we get all the axioms of ∗-autonomous cat-
egories with products, but also (ii) these are the equations between proofs we must
postulate to get a nice categorical structure (this is relevant to our next section on
Cut-Elimination).

At this point we could also add coproducts, denoted+, and their associated equa-
tions, dual to products. But once we have the equations of ∗-autonomous categories
(at the bottom of Fig. 5.4) we get coproducts for free, essentially by De Morgan
duality. Finally we add any necessary coherence equations, as in Barr’s monograph
[Barr79].

5.3.3 Adding Exponentials: Full Linear Logic

By far the most subtle question is how to model the linear modality !. We begin with
seven basic derivation forms, arising from the rules of linear logic and then postulate
equations which arise directly from the categorical viewpoint.

Exercise 5.3.4 Prove the laws in Fig. 5.5, using the 2-sided rules in Fig. 5.2. Let us

give two examples. As mentioned above, we think of A
f−→ B as a proof f of the

sequent A � B.

Fig. 5.5 Basic exponential
laws

Functoriality

A
f−→ B

!A
!f−→!B

Monoidalness I
mI−→!I !A⊗!B

mAB−→ !(A ⊗ B)

Products I
nI−→!� !A⊗!B

nAB−→!(A × B)

Dereliction !A
εA−→ A

Weakening !A
ε′

A−→ I

Contraction !A
δ′

A−→!A⊗!A

Digging (Storage) !A
δA−→!!A

374 E. Haghverdi and P. Scott

• Functoriality:

f....
A � B
!A � B

Derel.

!A �!B Storage
, where f is the given proof of A � B.

• Contraction: Applying functoriality to the axiom A � A, we get a proof π : !A �
!A. Now use π twice in the following proof tree:

π....!A �!A

π....!A �!A
!A, !A �!A⊗!A ⊗R

!A �!A⊗!A Contr

So, what is a model of full linear logic? The state-of-the-art is described in work
of Hyland-Schalk [HylSc03] and especially Melliès [Mel07]. Here is one class
of structure that is popular to impose: let C be a model of MALL proofs, i.e. a
∗-autonomous category with products (and hence coproducts). We add:

• (!, m I , m AB) : C → C is a monoidal endofunctor

• !A εA−→ A and !A δA−→!!A are monoidal natural transformations.
• (!, δ, ε) is a monoidal comonad.
• nI , n AB are isomorphisms, natural in A, B.
• The associated adjunction structure 〈F, U, η, ε〉 between the co-Kleisli category

of ! and C is monoidal.
• Various coherence equations [BCS96, Mel07].

However, for the purposes of Geometry of Interaction, we shall not need all
this elaborate structure of the exponentials and the associated properties of cocom-
mutative comonoids, etc. Indeed, beyond the basic derivations in Fig. 5.5, one
merely needs the exponential structure associated to a Linear Combinatory Algebra
[AHS02], as we shall see.

5.3.4 Cut Elimination: Gentzen’s Operational Semantics of Proofs

Let us briefly discuss the Cut-Elimination theorem in proof theory. For more details,
the reader may examine the works of Girard (e.g. [GLT, Gi87]) or the survey of
Melliès [Mel07] or the textbook [TrSc]. Recall the Cut-Rule, which is a kind of
generalized composition law:

Γ � Δ, A Γ ′, A � Δ′
Γ, Γ ′ � Δ,Δ′ Cut

5 Geometry of Interaction 375

A fundamental theorem of logic is the following result of Gentzen:

Cut-elimination (Gentzen’s Haupsatz, 1934): If π is a proof of Γ � Δ, then there
is a proof π ′ of Γ � Δ which does not use the cut rule.

It is the basis of Proof Theory, at the very foundations of Hilbert’s approach to
logic, and has applications in a wide range of areas of both logic and theoretical
computer science.

For usual sequent calculus, Gentzen gave a Non-Deterministic algorithm π � π ′
(the cut-elimination procedure) for transforming proofs π into proofs π ′. The details
of the rewriting steps (for each proof rule, Left and Right) become rather intricate.
Here is an example of one rewriting step, with respect to the Contraction-Right Rule:

....
Γ � B, B
Γ � B Contr

....
B � Δ

Γ � Δ
Cut

�

....
Γ � B, B

....
B � Δ

Γ � B,Δ
Cut

....
B � Δ

Γ � Δ,Δ
Cut

.... Contrs&Perms
Γ � Δ

Notice that this is slightly strange: starting from the root of the tree and going
upwards, the subproof of B � Δ in the original left proof is now duplicated in
the right proof higher up in the tree. So moving from the LHS proof to the RHS
proof, we have replaced a single Cut (on B) by two cuts on B higher up in the
tree (beyond the contraction); at the same time we have postponed the contractions
until later, lower down in the proof. But since the duplicated proof of B � Δ may
be arbitrarily complex (millions of lines long) it is not obvious that the rewriting
above has “simplified” anything. The point is that Gentzen, with respect to subtle
complexity measures, is able to show that there is a measure which decreases, thus
the process terminates. This is explained in more details in [GLT, GSS, TrSc]. Thus,
to every proof we obtain a “cut-free” proof, i.e. its normal form. One sometimes calls
the process proof normalization.

For the systems of linear logic we deal with in this paper, the rewriting/cut-
elimination process yields unique normal forms, that is the cut-free form of a proof
is independent of the order of applying the rewriting steps. This is proved by a
Church-Rosser (or Diamond Lemma) type of argument [LS86, GLT]. In GoI, we
shall obtain analogs of this property (e.g., see Lemma 5.6.8).

5.4 Traced Monoidal Categories

The theory of traces has had a fundamental impact within diverse areas of math-
ematics, from functional analysis and noncommutative geometry to topology and
knot theory. More recently, abstract traces have arisen in logic and theoretical com-
puter science. For example, in the 1980s and 1990s it was realized there was a need

376 E. Haghverdi and P. Scott

for algebraic structures modelling cyclic operations. parametrized fixedpoints and
feedback in such areas as: flowchart schemes, dataflow, network algebra, and more
recently in quantum computing and biological modelling.

Traced monoidal categories were introduced by Joyal, Street, and Verity
[JSV96]. These categories and their variants have turned out to be key ingredients
in discussing the above phenomena. As quoted by [JSV96],

This paper introduces axioms for an abstract trace on a monoidal category. This trace can be
interpreted in various contexts where it could alternatively be called contraction, feedback,
Markov trace or braid closure. . .

There have been various extensions of traces and partial traces: we discuss more
of this in Sect. 5.7 as well as in Remark 5.4.4 below.

Definition 5.4.1 A traced symmetric monoidal category is a symmetric monoidal
category (C,⊗, I, s) with a family of functions TrU

X,Y : C(X ⊗ U, Y ⊗ U) −→
C(X, Y) pictured in Fig. 5.6, called a trace, subject to the following axioms:

Fig. 5.6 The trace TrU
X,Y (f)

f

X

U

Y

U

1. Natural in X , TrU
X,Y (f)g = TrU

X ′,Y (f (g⊗1U)) , where f : X⊗U −→ Y⊗U ,
g : X ′ −→ X ,

2. Natural in Y , gTrU
X,Y (f) = TrU

X,Y ′((g⊗1U) f) , where f : X⊗U −→ Y ⊗U ,
g : Y −→ Y ′,

3. Dinatural in U , TrU
X,Y ((1Y ⊗g) f) = TrU ′

X,Y (f (1X⊗g)) , where f : X⊗U −→
Y ⊗U ′, g : U ′ −→ U ,

4. Vanishing (I, II), TrI
X,Y (f) = f and TrU⊗V

X,Y (g) = TrU
X,Y (TrV

X⊗U,Y⊗U (g)),
for f : X ⊗ I −→ Y ⊗ I and g : X ⊗U ⊗ V −→ Y ⊗U ⊗ V .

5. Superposing,

g ⊗ TrU
X,Y (f) = TrU

W⊗X,Z⊗Y (g ⊗ f)

for f : X ⊗U −→ Y ⊗U and g : W −→ Z .
6. Yanking, TrU

U,U (sU,U) = 1U .

Given f : X ⊗ U → Y ⊗ U , we think of TrU
X,Y (f) as “feedback along U”, as in

Fig. 5.6. Similarly, the axioms of traced monoidal categories have suitable geomet-
rical representation, given in Appendix 1 (cf. also [JSV96, AHS02, Has08]).

Observe that if X = Y = I , up to isomorphism we have TrU
X,Y (f) : C(U, U) →

C(I, I) is a scalar-valued trace (cf. Proposition 5.2.3).

5 Geometry of Interaction 377

Exercise 5.4.2 (Generalized Yanking) Let C be a traced symmetric monoidal cat-
egory, with arrows f : X→Y and g : Y→Z . Then go f = TrY

X,Z (sY,Z o(f ⊗ g)).

Geometrically, stare at the diagram in Fig. 5.7, and do a “string-pulling” argument
(For an algebraic proof, see Proposition 2.4 in [AHS02])

Fig. 5.7 Generalized yanking

X
f

g
Y

Y Z

Z

= X
f−→ Y

g−→ Z

Note that this exercise actually says that composition go f in a traced monoidal
category is definable from tensor and symmetries. More generally, in [AHS02] we
have the following normal-form theorem for arrows in traced symmetric monoidal
categories:

Theorem 5.4.3 Let C be a traced symmetric monoidal category, and T a collection
of arrows in C. Then any expression E built from arrows in T using tensor product,
composition, and trace can be represented as Tr(π Fτ) where F consists of tensor
products of arrows in T and π, τ are permutations (built from symmetry and identity
maps).

Let us remark that for logicians, the discussion above prefigures the Execution
Formula (see Eq. (5.10) and Fig. 5.9(b) below), since it illustrates the reduction of
general composition (“cut”) to a global trace applied to primitive compositions of
permutations and tensoring.

Generalized yanking is also often used in some axiomatizations for partial traces
[ABP99, Pl03] although for our purposes it is equivalent to yanking [AHS02].

Remark 5.4.4 (Some traces literature) In computer science, there has been a long
tradition of studying theories related to traces and partial traces in the analysis of
feedback, fixed points, iteration theories, and related notions in network algebra
and flowcharts. Detailed and fundamental categorical work by Manes and Arbib
[MA86], Bloom and Esik [BE93], and Stefanescu [Ste00] have greatly influenced
our development here. We should mention very interesting work on circuits and
feedback categories in a series of papers by Katis, Sabadini, and Walters (e.g.
[KSW02]). They also introduce an interesting notion of partial trace, an important
topic we introduce (for purposes of GoI) in Sect. 5.7 below. We should also men-
tion work of P. Hines [Hi97, Hi03] both on analyzing GoI and studies of abstract
machines. Finally, a survey of recent results on traced monoidal categories is in
Hasegawa [Has08].

378 E. Haghverdi and P. Scott

5.4.1 Wave vs. Particle Style Traces

Many examples of traces can be divided into two styles [Abr96, AHS02]: Product
Style and Sum Style, or more evocatively (following Abramsky) “wave style” and
“particle style”. These refer, respectively, to whether the monoidal tensor ⊗ is given
by a cartesian product versus whether it is given by a disjoint union. As explained in
[Abr96, AHS02], product-style traces may be thought of as passing information in
a “global information wave” while sum-style traces can be modelled by streams of
particles or tokens flowing around a network (cf. [AHS02, Hag00, Hi97]). We shall
now illustrate both styles of trace.

Examples 5.4.5 (Product Style Traces)

1. The category Rel× is traced. Let R : X ×U −→ Y ×U be a morphism in Rel×.
Then TrU

X,Y (R) : X −→ Y is defined by: TrU
X,Y (R)(x, y) = ∃u.R(x, u, y, u).

2. The category Vec f d is traced. Let f : V ⊗ U −→ W ⊗ U be a linear map,
where U, V, W are finite dimensional vector spaces with bases {ui }, {v j }, {wk}.
We define TrU

V,W (f) : V −→ W by:

TrU
V,W (f)(vi) =

∑

j,k

ak j
i j wk where f (vi ⊗ u j) =

∑

k,m

akm
i j wk ⊗ um .

This reduces to the usual trace of f : U −→ U when V and W are one dimen-
sional.

3. Note that both Rel× and Vec f d are compact closed categories. More generally
[JSV96], every compact closed category has a unique canonical trace given by:

TrU
A,B(f) = A ∼= A⊗ I

id⊗ν−→ A⊗U ⊗U∗ f⊗id−→ B⊗U ⊗U∗ id⊗ψos−→ B⊗ I ∼= B.

Uniqueness of this trace is shown in [Has08].
4. Coherent Logic and ∃-Doctrines. A slight generalization of Example (1) is to

consider any theory in multisorted coherent logic, that is the fragment {∃,∧}
of ordinary logic (here it doesn’t matter if one picks intuitionist or classical
logic) [KR77]. The objects are Sorts (assumed closed under×), denoted X, Y, Z ,
etc. Morphisms are (equivalence classes of) formulas, thought-of as relations
between sorts: R(x, y) : X → Y , modulo provable equivalence. Composition is

defined like relational composition: X
R(x,y)−→ Y

S(y,z)−→ Z = X
T (x,z)−→ Z , where

T (x, z) = ∃y.R(x, y) ∧ S(y, z)

This is a well-defined operation, using laws of coherent logic. Omitting pairing
symbols, given R(x, u, y, u ′) : X ×U −→ Y ×U , define

TrU
X,Y (x, y) : X → Y = ∃u R(x, u, y, u)

5 Geometry of Interaction 379

The same calculations used in Example (1) can be mimicked in Coherent Logic
to show that this yields a trace. The close connections of Coherent Logic with
Regular Categories provides a large stock of examples of these styles of trace.
Indeed, still more generally, the calculations are true for Lawvere’s Existential
Doctrines with ∃π -quantifiers along projections, Frobenius Reciprocity, Beck-
Chevalley, and in which equality is definable by ∃Δ, existential quantification
along a diagonal [Law69, Law70].

5. The category ω-CPO⊥ consists of objects of ω-CPO with a least element ⊥,
and maps of ω-CPO that do not necessarily preserve ⊥. Here ⊗ = ×, I =
{⊥}. The (dinatural) family of least-fixed-point combinators YU : UU → U
induces a trace, given as follows (using informal lambda calculus notation): for
any f : X × U → Y × U , TrU

X,Y (f)(x) = f1(x, YU (λu. f2(x, u))), where
f1 = π1o f : X × U → Y, f2 = π2o f : X × U → U and YU (λu. f2(x, u)) =
the least element u′ of U such that f2(x, u′) = u′.

6. (cf. Katis, Sabadini,Walters [KSW02]) Take any (Lawvere) equational theory,
for example the theory of rings. Define a category whose objects are of the form
Rn for a fixed ring R, where n ∈ N. Define Hom(Rn, Rm) = m-tuples of poly-
nomials in n indeterminates, with composition being substitution. For example,

the identity map Rn id−→ Rn is given by the list of n polynomials p1, · · · , pn ,
where pi (x1, · · · , xn) = xi . Here ⊗ is cartesian product.
A morphism �f , �g ∈ Hom(Rn × R p, Rm × R p) is a list of m + p polynomials in
n + p unknowns. We can write it as a system of polynomial equations:

y1 = f1(�x, �u)

...

ym = fm(�x, �u)

u′1 = g1(�x, �u)

...

u′p = gp(�x, �u)

The operation of trace or feedback is the formal identification of the variables
u′i on the LHS of the equations with the ui on the RHS. Of course, to know this
setting is consistent (yielding a nontrivial category) we should provide models in
which there exist nontrivial solutions of such simultaneous feedback equations.
These are discussed, for example, in [KSW02] above. This example admits many
generalizations: for example, to general Lawvere theories, in which morphisms
are represented by (equivalence classes of) terms with free variables, modulo
provable equality in the theory.

Unfortunately, the above examples do not really illustrate the notion of feed-
back as data flow: the movement of tokens through a network. This latter view,
emphasized in work of Abramsky and later Haghverdi and Hines (cf. [Abr96,

380 E. Haghverdi and P. Scott

AHS02, Hag00, Hi97]), is illustrated by examples based on sum-style monoidal
structure. They are related to dataflow interpretations of graphical networks. We
illustrate this view with categories connected to Rel.

Examples 5.4.6 (Sum-style Traces)

1. Rel+ , the category Rel with ⊗ = +, disjoint union. Suppose X + U
R−→

Y + U is a relation. The coproduct injections induce four restricted rela-
tions : RUU , RUY , RXY , RXU (for example, RXY ⊆ X × Y is such that
RXY (x, y) = R(inX,U

1 (x), inY,U
1 (y)). Let R∗ be the reflexive, transitive closure

of the relation R. A trace can be defined as follows:

TrU
X,Y (R) = RXY ∪

⋃

n≥0

RUY oRn
UU

oRXU

= RXY ∪ RUY oR∗
UU oRXU . (5.6)

2. The categories Pfn and PInj of sets and partial functions (resp. sets and partial
injective functions), as monoidal subcategories of Rel+. The tensor product is
given by the disjoint union of sets, where we identify A+ B = A×{1}∪ B×{2}
(note that this is not a coproduct in PInj, although it is a coproduct in Pfn).
There are the obvious injections in A,B

1 : A → A + B and in A,B
2 : B → A + B

as well as “quasiprojections” ρ1 : A+ B −→ A given by ρ1((a, 1)) = a (where
ρ1((b, 2)) is undefined) and similarly for ρ2 : A + B −→ B.

Given a morphism f : X + U −→ Y + U , we may consider its four “com-
ponents” fXY : X → Y , fXU : X → U , fU X : U → X, and fUU : U → U
obtained by pre- and post-composing with injections and quasiprojections: for

example, fXY = X
in1−→ X +U

f−→ Y +U
ρ1−→ Y , (See Fig. 5.8).

Fig. 5.8 Components of
f : X +U → Y +U

X

U

fXY

fUU

fXU

fUY

Y

U

Both Pfn and Pinj are traced, the trace being given by the following iterative
formula

TrU
X,Y (f) = fXY +

∑

n∈ω

fUY f n
UU fXU , (5.7)

which we interpret as follows:
For the category Pfn (respectively PInj), a family {hi }i∈I : X −→ Y is said to be
summable if the hi ’s have pairwise disjoint domains (respectively, have pairwise
disjoint domains and codomains). In either case, we define the sum of the family
to be:

5 Geometry of Interaction 381

(
∑

i∈I

hi

)

(x) =
{

h j (x), if x ∈ Dom(h j) for some j ∈ I ;
undefined, else.

From a dataflow view, particles enter through X , travel around a loop on U some
number n of times, then exit through Y . Numerous other examples of such “particle-
style” traces are studied in [AHS02, Hag00]. We shall now introduce a general
theory of such traces, based upon Haghverdi’s Unique Decomposition Categories.

5.4.2 Unique Decomposition Categories and Particle-Style Traces

How do we make sense of sums such as in Eq. (5.7) above? Haghverdi [Hag00,
Hag00a] introduced symmetric monoidal categories whose homsets come equipped
with (technically, are enriched in) an abstract summability structure, called a Σ-
monoid. Sigma monoids, and their variants, permit forming certain infinite sums of
maps, in a manner compatible with the monoidal category structure. Haghverdi’s
work is a generalization of the work of Manes and Arbib [MA86] who introduced
partially additive categories in programming language semantics. These categories
form a useful general framework for speaking of while-loops, and axiomatizing
Elgot’s work on feedback and iteration, as well as fixed-point semantics.

Recently, Hines and Scott have investigated the the work of Haghverdi and
Manes-Arbib in more general Σ-structures with certain partially defined traces (cf
Sect. 5.7 below), aimed at a general theory of “quantum while-loops” in quantum
computing.

In what follows, we give a basic framework for Σ structures sufficient for our
purposes.

Definition 5.4.7 A Σ-monoid consists of a pair (M,Σ) where M is a nonempty set
and Σ is a partial operation on the countable families in M (we say that {xi }i∈I is
summable if

∑
i∈I xi is defined), subject to the following axioms:

1. Partition-Associativity Axiom. If {xi }i∈I is a countable family and if {I j } j∈J is
a (countable) partition of I , then {xi }i∈I is summable if and only if {xi }i∈I j is
summable for every j ∈ J and

∑
i∈I j

xi is summable for j ∈ J . In that case,
∑

i∈I xi = ∑
j∈J (

∑
i∈I j

xi).
2. Unary Sum Axiom. Any family {xi }i∈I in which I is a singleton is summable and∑

i∈I xi = x j if I = { j}.
A morphism of Σ monoids is a function that preserves sums of countably-

indexed summable families: i.e. if {xi }i∈I is summable, then so is { f (xi)}i∈I and
f (

∑
i∈I xi) = ∑

i∈I f (xi). Σ-monoids form a symmetric monoidal closed cate-
gory ΣMon.

A ΣMon-category C is a category enriched in ΣMon; i.e. its homsets are
enriched with a partial infinitary sum, compatible with composition. Such categories

382 E. Haghverdi and P. Scott

have non-empty homsets, e.g. they have zero morphisms 0XY : X −→ Y =∑
i∈∅ fi for fi ∈ C(X, Y). For details see [MA86, Hag00].

Definition 5.4.8 A unique decomposition category (UDC) C is a symmetric
monoidal ΣMon-category which satisfies the following axiom:

(A) For all j ∈ I there are morphisms called quasi injections: ι j : X j −→ ⊗I Xi ,
and quasi projections: ρ j : ⊗I Xi −→ X j , such that

(i) ρk ι j = 1X j if j = k and 0X j Xk otherwise.
(ii)

∑
i∈I ιiρi = 1⊗I Xi .

Proposition 5.4.9 (Finite Matrix Representation) Given f : ⊗J X j −→ ⊗I Yi

in a UDC with |I | = m and |J | = n, there exists a unique family { fi j }i∈I, j∈J :
X j −→ Yi with f = ∑

i∈I, j∈J ιi fi jρ j , namely, fi j = ρi f ι j .

Thus every morphism f : ⊗J X j −→ ⊗I Yi in a UDC can be represented by
a matrix; for example f above (with |I | = m and |J | = n) is represented by the
m×n matrix [fi j]. Composition of morphisms in a UDC then corresponds to matrix
multiplication.

Proposition 5.4.10 (Standard Trace Formula) Let C be a unique decomposition
category such that for every X, Y, U and f : X ⊗ U −→ Y ⊗ U, the sum f11 +∑∞

n=0 f12 f n
22 f21 exists, where fi j are the components1 of f . Then, C is traced and

TrU
X,Y (f) = f11 +∑∞

n=0 f12 f n
22 f21.

The trace formula above is called the standard trace, and a UDC with such a trace
is called a traced UDC with standard trace. Note that a UDC can be traced with a
trace different from the standard one. In this paper all traced UDCs are the ones with
the standard trace.

We now present some more examples. For further details, see [AHS02, Hag00].

Examples 5.4.11 (Traced UDC’s)

1. All the categories in Example 5.4.6 above. In Rel+, all countable families are
summable, and

∑
i∈I Ri = ∪i Ri . In the case of Pfn and PInj, summability of

a family of morphisms { fi }i∈I is as given above in the Examples. In this case,
the two trace Formulas (5.6) and (5.7) exactly correspond to the standard trace
formula in Proposition 5.4.10 above.

2. SRel, the category of stochastic relations. Here the objects are measurable
spaces (X,FX) and maps f : (X,FX) → (Y,FY) are stochastic kernels,
i.e. f : X × FY → [0, 1] which are bounded measurable in the first vari-
able and subprobability measures in the second. Composition go f (x, C) =∫

Y g(−, C)d f (x,−) where f (x,) is the measure for integration. This category
has finite and countable coproducts (which form the tensor). A family { fi }i∈I is
summable iff

∑
i∈I fi (x, Y) ≤ 1 for all x ∈ X .

1 Here f11 : X → Y, f12 : U → X, f21 : X → U, f22 : U → U .

5 Geometry of Interaction 383

3. Hilb2. Consider the category cHilb of Hilbert spaces and linear contrac-
tions (norm ≤ 1). Barr [Barr92] defined a contravariant faithful functor �2 :
PInjop −→ cHilb by: for a set X , �2(X) is the set of all complex valued func-
tions a on X for which the (unordered) sum

∑
x∈X |a(x)|2 is finite. �2(X) is a

Hilbert space with norm given by ||a|| = (
∑

x∈X |a(x)|2)1/2 and inner product
given by < a, b >= ∑

x∈X a(x)b(x) for a, b ∈ �2(X). Given a partial injection
f : X → Y in PInj, then l2(f) : �2(Y) → �2(X) is defined by

�2(f)(b)(x) =
{

b(f (x)) x ∈ Dom(f)

0 otherwise.

This gives a correspondence between partial injective functions and partial
isometries on Hilbert spaces (see also [Gi95a, Abr96].) Let Hilb2 = �2[PInj].
Its objects are �2(X) for a set X and morphisms u : �2(X) −→ �2(Y) are of

the form �2(f) for some partial injective function Y
f−→ X . Hence, Hilb2 is a

nonfull subcategory of Hilb. It forms a traced UDC with respect to the induced
�2 structure, as follows:

• �2(X) ⊕ �2(Y) ∼= �2(X � Y) is a tensor product in Hilb2 (but is a biproduct
in Hilb) with unit �2(∅).

• Quasi injections and projections = their �2 images from PInj.
• Define: A Hilb2 family {�2(fi)} is summable if

– { fi } is summable in PInj
– In that case,

∑
i �2(fi) = de f �2(

∑
i fi).

• Hilb2 is traced. Given

u : �2(X)⊕ �2(U) −→ �2(Y)⊕ �2(U)

Tr(u) = de f �2(T rU
Y,X (f))

where u = �2(f) with f : Y �U −→ X �U ∈ PInj.
• Since PInj is self-dual, �2 : PInj → Hilb2 is an equivalence of categories.

Here is a chart giving some explicit equivalences:

PInj(X, Y) Hilb(�2(Y), �2(X))
f �2(f)

Partial injective function Partial isometry
Total Isometry

Total and surjective Unitary
X = Y and f is identity on Dom(f) Projection

• Many (although not all) of the above examples of traced UDC’s are special
cases of the Partially Additive Categories of Manes and Arbib [MA86]. Those
also form traced UDC’s with standard trace formula.

384 E. Haghverdi and P. Scott

5.4.3 The Int Construction

Starting with a symmetric traced monoidal category C, we now describe a compact
closed category Int(C) given in [JSV96] (which is isomorphic to the category G(C)

in [Abr96]). We follow the treatment in [Abr96], and actually give the construction
for G(C); for simplicity, we call both these categories the Int construction. The
reason for the name is in Exercise 5.4.13 below.

Definition 5.4.12 (The Int Construction) Given a traced monoidal category C we
define a compact closed category Int(C) ∼= G(C) as follows:

• Objects: Pairs of objects (A+, A−) where A+ and A− are objects of C.
• Arrows: An arrow f : (A+, A−) −→ (B+, B−) in Int(C) is an arrow

f : A+ ⊗ B− −→ A− ⊗ B+ in C.
• Identity: 1(A+,A−) = sA+,A− , the symmetry or “twist” map.
• Composition: Arrows f : (A+, A−) −→ (B+, B−) and g : (B+, B−) −→

(C+, C−) have composite go f : (A+, A−) −→ (C+, C−) given by:

go f = TrB−⊗B+
A+⊗C−,A−⊗C+(β(f ⊗ g)α)

where α = (1A+ ⊗1B− ⊗ sC−,B+)(1A+ ⊗ sC−,B− ⊗1B+) and β = (1A− ⊗1C+ ⊗
sB+,B−)(1A− ⊗ sB+,C+ ⊗ 1B−)(1A− ⊗ 1B+ ⊗ sB−,C+). Pictorially, go f is given
by symmetric feedback:

f g

A+

A−

B−

B−

C−

C+B+

B+

• Tensor: (A+, A−)⊗ (B+, B−) = (A+ ⊗ B+, A− ⊗ B−) and for (A+, A−) −→
(B+, B−) and g : (C+, C−)−→ (D+, D−), f ⊗ g = (1A− ⊗ sB+,C− ⊗ 1D+)

(f ⊗ g)(1A+ ⊗ sC+,B− ⊗ 1D−)

• Unit: (I, I).
• Duality: The dual of (A+, A−) is given by (A+, A−)∗ = (A−, A+) where the

unit η : (I, I) −→ (A+, A−)⊗ (A+, A−)∗ =de f sA−,A+ and the counit map
ε : (A+, A−)∗ ⊗ (A+, A−) −→ (I, I) =de f sA−,A+ .

• Internal Homs: As usual, (A+, A−) −◦ (B+, B−) = (A+, A−)∗ ⊗ (B+, B−) =
(A− ⊗ B+, A+ ⊗ B−).

Following Abramsky [Abr96], we interpret the objects of Int(C) in a game-
theoretic manner: A+ is the type of “moves by Player (the System)” and A− is
the type of “moves by Opponent (the Environment)”. The composition of mor-
phisms in Int(C) is connected to Girard’s execution formula (see below). In [Abr96]
it is pointed out that G(PInj) captures the essence of the original Girard GoI

5 Geometry of Interaction 385

interpretation in [Gi89a] (we discuss this in more detail below), while G(ω-CPO⊥)

is the model of GoI in [AJ94a].

Exercise 5.4.13 (Why Int?) The Int construction above is analogous to (in fact, it
yields) the construction of the integers Z from the natural numbers N. Indeed (using
the notation above): put an equivalence relation on N×N by defining: (A+, A−) ∼
(B+, B−) iff A+ + B− = A− + B+ in N. Prove this yields Z. Harder question:
show how this is a special case of the Int construction.

Translating the work of [JSV96] in our setting we obtain that Int(C) is a kind
of “free compact closure” of C at the bicategorical level (for which the reader is
referred to [JSV96]):

Proposition 5.4.14 Let C be a traced symmetric monoidal category

1. Int(C) defined above is a compact closed category. Moreover,
FC : C −→ Int(C) defined by FC(A) = (A, I) and FC(f) = f is a full and
faithful embedding.

2. The inclusion2 of 2-categories CompCl ↪→ TraMon of compact closed cate-
gories into traced monoidal ones has a left biadjoint with unit having component
at C given by FC .

We remark that [Has08] shows (in the general setting of [JSV96]) that a traced
monoidal category C is closed iff the canonical inclusion C ↪→ Int(C) has a right
adjoint. Finally, we should remark that the Int construction has seen other applica-
tions in recent categorical studies of the semantics of quantum computing, arising
from the fundamental paper [AbCo04].

5.5 What is the Geometry of Interaction?

5.5.1 Dynamical Invariants for Cut-Elimination

Recall the earlier discussion of Cut-Elimination and the rewriting theory of proofs.
We begin with some general questions:

• How do we mathematically model the dynamics of cut-elimination (i.e. the move-
ment of information in the rewriting of the proof trees)?

• Are there dynamical (mathematical) invariants ϕ for proof normalization, that is:
if π rewrites to π ′, then ϕ(π) = ϕ(π ′)?

• In what sense is cut-elimination related to recent theories of abstract algorithms?

Recall that in categorical proof theory, for any logic L, we may interpret proofs
of sequents Γ � Δ as arrows (in an appropriate structured category C) as in (5.4)

2 Recent work of Hasegawa and Katsumata [HK09] has shown that the notion of 2-cell in [JSV96]
must be changed to invertible monoidal natural transformation.

386 E. Haghverdi and P. Scott

above. This gives an interpretation function (call a denotation) − d : L → C
which satisfies: for any rewriting step � in the cut-elimination process, if π � π ′
then π d = π ′

d . Such functions π d lead to a rather bland notion of “invari-
ant” for cut-elimination. Indeed, “�” implies simply denotational equality, the
equations one must impose to give the appropriate algebraic structure of the cat-
egory of proofs (depending on the logic): e.g. cartesian, cartesian closed, monoidal
closed, etc. We search for more meaningful invariants, with deeper connections to
the dynamics.

Girard’s Geometry of Interaction (GoI) program was the first attempt to model,
in a mathematically sophisticated way, the dynamics of cut-elimination, and in
particular to find an invariant (the Execution Formula) with more subtle features.
The first proposal appeared in [Gi89], followed by an important series of papers
[Gi89a, Gi88, Gi95a] written in the language of operator algebras. His recent work
[Gi07, Gi08] has moved towards the framework of von Neumann algebras. How-
ever, it became clear early on, from lectures of Abramsky [AJ94a, Abr96] and
also Hyland in the early 1990s that more simple conceptual machinery, now under-
stood to be based on traced monoidal categories, suffices to understand many of
the fundamental algebraic and geometric ideas underlying early GoI. This was
explored by us in a series of papers [AHS02, HS04a, HS04b, HS05a, Hag06].
In what follows we shall explore some algebraic aspects of Girard’s early GoI
1, and the notion of information flow. We leave it an open question how to con-
nect this up with Girard’s more recent ideas based on von Neumann algebras
[Gi07, Gi08].

5.5.2 Girard’s GoI 1 Framework: An Overview

The basic idea of [Gi89a] is to consider proofs as certain matrix operators on a
C∗-algebra B(H) of bounded linear operators on a Hilbert space H. We shall look
at proofs π of 1-sided sequents in LL, say π : � Γ , where Γ is a list of formulas.
A key notion in Girard’s work was to keep track of all the cut formulas used in a
proof. These general proofs have the form π : � [Δ], Γ where Δ is a list of all the
Cut formulas generated from applying the Cut Rule, as follows:

� [Δ], Γ, A � [Δ′], A⊥, Γ ′

� [Δ,Δ′, A, A⊥] Γ, Γ ′ Cut

We think of this Cut Rule as taking the cut formulas A, A⊥ (in that order) and
putting them on a stack: the (ordered) list [Δ,Δ′, A, A⊥].

Thus, in a general proof π : � [Δ], Γ , we have that Δ is an even length list
of cut formulas, say Δ = A1, A⊥1 , · · · , Am, A⊥m . In general suppose |Δ| = 2m and
|Γ | = n, so that � [Δ], Γ has n + 2m formulas. Let us informally describe the GoI
ingredients.

5 Geometry of Interaction 387

Γ

π

(a)

(π , σ)

ΔΔ

Δ

Γ

Δ

...
...

σ

Γ

π

Δ

Γ

Δ

σ

Ex(π , σ) = Tr⊗Δ
⊗Γ,⊗Γ ((1⊗Γ ⊗ σ) π)

(b)

...
...

Fig. 5.9 Proofs of � [Δ], Γ as I/O boxes

A key aspect of Girard’s interpretation is to consider a Dynamic Interpretation
− of proofs. A proof π : � [Δ], Γ will be modelled by a pair of I/O (input-output)

boxes (Fig. 5.9(a)), in which σ represents the set of cuts Δ. Cut-elimination will be
modelled by a diagram involving the feedback on σ (Fig. 5.9(b).)

Formulas in sequents are interpreted (uniformly) using a special object U in
the category C. In Girard’s GoI 1, C = Hilb, the category of Hilbert spaces and
bounded linear maps and U = �2(N) = �2, the Hilbert space of square summable
sequences. Indeed, the interpretation actually occurs in Hilb2 (Example 5.4.11 (3)).
We know that Hilb2 is equivalent to PInj under the �2 functor; it follows that the
GoI 1 interpretation below may equally well be thought-of as occurring in PInj,
with U = N.

In the GoI interpretation of logic, formulas are interpreted as types via a notion
of orthogonality, ()⊥, on certain hom-sets. Such notions of orthogonality are
needed both to define types (as sets equal to their biorthogonal) as well as to give
convergence-like properties of the Execution Formula. Below we introduce such
notions concretely in Definition 5.6.3, and more abstractly (following [HylSc03]) in
Definition 5.7.9.

Proofs on the other hand are interpreted as morphisms in Int(C). Suppose we
have a proof π of a sequent � [Δ], Γ , with |Γ | = n and |Δ| = 2m. This is
interpreted as a morphism π in Int(C) from (U n, U 2m) to itself, where U k is
a shorthand for the k-fold tensor product of U with itself: equivalently, as a map

U n+2m π−→ U n+2m in C. Notice that all formulas Γ and Δ occur twice (i.e. as both
inputs and outputs to π) in Fig. 5.9(a).

Remark 5.5.1 (GoI Notation) For ease of computing the GoI interpretation of proofs
π (using their graphical representations as in Fig. 5.9 above), we often label the
inputs and outputs by the I/O formulas themselves (e.g. Γ , Δ in Fig. 5.9), rather
than the object U (which uniformly interprets all formulas).

The interpretation of proofs is completed by defining the morphism σ := s⊗m

representing Δ, where s is the symmetry (i.e. the identity map in Int(C)). The pre-
cise sense in which we interpret formulas and proofs will be described in Sect. 5.6
below.

388 E. Haghverdi and P. Scott

To recap, we will interpret proofs-with-cuts π : � [Δ], Γ as pairs (π , σ)

such that:

• π : U n+2m −→ U n+2m is defined inductively on proofs, and
• σ : U 2m −→ U 2m = s⊗m (the m-fold tensor product of the symmetry morphism

sU,U with itself) represents the cuts Δ.

Here, |Δ| = 2m and |Γ | = n. If Δ = ∅, π is cut-free and σ = 0 will be a zero
morphism. (This will always exist, since our categories will be Σ-monoid enriched).
We note that in Girard’s model Hilb2 and our ∗-category approach in Proposition
5.8.7 below, (π , σ) are partial symmetries).

As we are working in a traced UDC, we can use the matricial representation of
arrows (see Proposition 5.4.9) to write π as a block matrix:

π =
(

π11 π12

π21 π22

)

The dynamics of proofs (cut-elimination) will be interpreted using the Execution
Formula defined in formula (5.8) below. This is illustrated in Fig. 5.9(b). In any
traced UDC, this can be represented as a sum, as in (5.9) below.

Execution/Trace Formula

E X (π , σ) = de f Tr⊗Δ
⊗Γ,⊗Γ ((1⊗Γ ⊗ σ) π) (5.8)

= π11 +
∑

n≥0

π12(σπ22)
n(σπ21) (5.9)

Note that the underlying category C is a traced UDC and more generally in Sect. 5.8,
a traced category, where ⊗Δ = U 2m , ⊗Γ = U n . Thus E X (π , σ) : U n →
U n exists as a C-morphism.

The essential mathematical ingredients at work in GoI were understood to consist
of a traced symmetric monoidal category, a traced endofunctor and the special object
U we alluded to above, called a reflexive object. Such structures are called GoI Situ-
ations, see below for detailed definitions. In [HS04a], we showed that Girard’s GoI
1 can be modeled categorically, using GoI Situations where the underlying category
C is a traced UDC. In particular, we proved that the original operator algebraic
framework in [Gi89a] is captured by the GoI Situation on the category Hilb2, see
Proposition 5.6.13 below.

Remark 5.5.2 (GoI, Path-Based Computing, Complexity) Important approaches to
GoI arose in work of V. Danos and L. Regnier and coworkers [Dan90, DR95, Lau01,
MR91]. This work analyzes information flow in β-reduction of untyped lambda cal-
culus, using paths in proof-nets. The GoI execution formula may be analyzed as a
certain kind of sum-of-paths formula, breaking down β-reduction to local reversible
asynchronous steps. The authors give detailed and profound analyses of the kinds
of paths and information flow this viewpoint represents, together with fundamental

5 Geometry of Interaction 389

algebraic models for computation. This leads to important connections with pre-
vious work in the geometry of β-reduction; in particular, to relations of GoI with
optimal reduction [GAL92].

GoI has also had some connections with complexity [GSS, BP01] in particular
with evaluation strategies and rates of growth of numerical measures assigned to
proofs in bounded logics. In the case of Traced UDC-style models of GoI and GoI
Situations as studied here, more recently Schöpp [Sch07] used this machinery to
study fragments of bounded (affine) linear logic suitable for studying logarithmic
space.

In a different direction, in [AHS02], a general analysis of algebraic models of GoI
is carried out. There it is shown how to use GoI Situations to obtain models of the
{!,−◦} fragment of linear logic, presented in terms of linear combinatary algebras.
These are certain combinatory algebras (A, .) equipped with a map ! : A → A and
constants B, C, I, K , W, D, δ, F satisfying the combinatory identities for a Hilbert-
style axiomatization of {!,−◦}. The method is sketched as follows.

Let C be a traced smc, with an endofunctor T : C → C and an object (called a
reflexive object) U ∈ C with retractions U ⊗ U � U , I � U , and T U � U . Then
if T satisfies some reasonable axioms and setting V = (U, U) and I = (I, I), it is
shown in [AHS02] how the homset Int(C)(I, V) = C(U, U) naturally inherits the
structure of a linear combinatory algebra. For example, in the case of C = PInj,
N is such a reflexive object, with endofunctor T (−) = N × (−). This example
underlies the original Girard GoI constructions. The model in [AJ94a] likewise
arises from Int(CPO⊥). Moreover, Girard’s original operator-theoretic models (in
the category of Hilbert spaces), as well as Danos-Regnier’s small model [DR95]
are also captured in the above framework using some additional functorial structure
(see [Hag00]).

We should mention Abramsky’s paper [Abr07] which, while discussing
Temperley-Lieb Algebra in knot theory, develops a version of planar GoI. In a dif-
ferent vein, Fuhrman and Pym [FP07] develop a categorical framework for obtaining
models for classical logic using a GoI/Int construction applied to certain extensions
of symmetric linearly distributive categories, along the lines of the work of Blue-
Cockett-Seely.

5.6 GoI Interpretation of MELL

The Geometry of Interaction interprets an underlying logical system at three lev-
els: formulas, proofs and cut-elimination. We shall carry out this interpretation
for MELL without units in the following sections. There are two fundamental
ingredients in a GoI interpretation: (i) A GoI Situation containing the underlying
traced UDC, and (ii) A notion of orthogonality. We begin by defining these ingre-
dients. We shall discuss generalizations and extensions of these notions in later
sections.

390 E. Haghverdi and P. Scott

Definition 5.6.1 A GoI Situation is a triple (C, T, U) where:

1. C is a traced symmetric monoidal category
2. T : C −→ C is a traced symmetric monoidal functor with the following monoidal

retractions (i.e. the retraction pairs are monoidal natural transformations):

a) T T � T (e, e′) (Comultiplication)
b) I d � T (d, d ′) (Dereliction)
c) T ⊗ T � T (c, c′) (Contraction)
d) KI � T (w,w′) (Weakening). Here KI is the constant I functor.

3. U is an object of C, called a reflexive object, with retractions:
(a) U ⊗U � U (j, k), (b) I � U , and (c) T U � U (u, v).

Here T T � T (e, e′) means that there are monoidal natural transformations eX :
T T X −→ T X and e′X : T X −→ T T X such that e′e = 1T T . We say that T T is a
retract of T . Similarly for the other items.

Before we proceed, let’s consider some examples of GoI Situations (C, T, U).
For comparison of our notation with the notation of Girard and his students, see
Appendix 2.

Examples 5.6.2

1. (PInj, N×−, N). Here N is the set of natural numbers. The functor T = N×−,
is defined as T X = N× X and for a morphism f : X −→ Y , T f = 1N× f . We
shall refer the reader to [AHS02] for details on this and the following examples.
However, we include a few definitions for illustration. For example, consider the
cases for U ⊗U � U (j, k), Comultiplication and Contraction:

• N�N�N (j, k) is defined by j : N�N −→ N, j (1, n) = 2n, j (2, n) = 2n+1
and k : N −→ N � N,

k(n) =
{

(1, n/2), if n even;
(2, (n − 1)/2), if n odd .

Clearly k j = 1N�N.

• (Comultiplication) N × (N × X)
eX−→ N × X and N × X

e′X−→ N × (N × X)

N× (N× X)
eX−→ N× X is defined by, eX (n1, (n2, x)) = (〈n1, n2〉, x). Given

f : X −→ Y , (1N× f)eX ((n1, (n2, x)) = (〈n1, n2〉, f (x)) = eY (1N× (1N×
f)(n1, (n2, x)) for all n1, n2 ∈ N and x ∈ X proving the naturality of eX .
e′X (n, x) = (n1, (n2, x)) where 〈n1, n2〉 = n.
e′X eX (n1, (n2, x)) = e′X (〈n1, n2〉, x) = (n1, (n2, x)) for all n1, n2 ∈ N and
x ∈ X .

• (Contraction) (N×X)�(N×X)
cX−→ N×X and N×X

c′X−→ (N×X)�(N×X).

cX =
{

(1, (n, x)) �→ (2n, x)

(2, (n, x)) �→ (2n + 1, x)

5 Geometry of Interaction 391

Given f : X−→Y , (1N× f)cX (1, (n, x)) = (2n, f (x)) = cY (1N× f �1N× f)

(1, (n, x)) for all n ∈ N and x ∈ X . Similarly (1N × f)cX (2, (n, x)) =
(2n + 1, f (x)) = cY (1N × f � 1N × f)(2, (n, x)) for all n ∈ N and x ∈ X ,
proving the naturality of cX .

c′X (n, x) =
{

(1, (n/2, x)), if n is even;

(2, ((n − 1)/2, x), if n is odd.

Finally, c′X cX (1, (n, x)) = c′X (2n, x) = (1, (n, x)) and c′X cX (2, (n, x)) =
c′X (2n + 1, x) = (2, (n, x)).

2. (Pfn, N×−, N).
3. (Rel+, N×−, N).
4. (SRel, T, N

∞). Here T : SRel −→ SRel is defined as T (X,FX) = (N ×
X,FN×X) where FN×X is the σ -field on X � X � X · · · (ω copies). For a given
f : (X,FX) −→ (Y,FY), T f ((n, x),

⊎
i∈ω Bi) = f (x, Bn).

Note that throughout this section we shall be working with GoI Situations where
the underlying category C is a traced UDC. Formulas and proofs will be interpreted
in the endomorphism monoid of the reflexive object, i.e. C(U, U).

Definition 5.6.3 (Orthogonality and Types) Let f, g be morphisms in C(U, U).
We say that f is nilpotent if f k = 0 for some k ≥ 1. We say that f is orthogonal
to g, denoted f ⊥ g if g f is nilpotent. Orthogonality is a symmetric relation and it
makes sense because 0UU exists. Also, 0 ⊥ f for all f ∈ C(U, U).

Given a subset X of C(U, U), we define

X⊥ = { f ∈ C(U, U)|∀g(g ∈ X ⇒ f ⊥ g)}

A type is any subset X of C(U, U) such that X = X⊥⊥. Note that types are inhab-
ited, since 0UU belongs to every type.

5.6.1 GoI Interpretation of Formulas

Formulas are interpreted by types as defined above, by induction.

Definition 5.6.4 Consider a GoI situation (C, T, U) as above with j1, j2, k1, k2
components of j and k respectively. Let A be an MELL formula. We define the
GoI interpretation of A, denoted θ A, inductively as follows:

1. If A ≡ α that is A is an atom, then θ A = X an arbitrary type.
2. If A ≡ α⊥, θ A = X⊥, where θα = X is given by assumption.
3. If A ≡ B ⊗ C, θ A = Y⊥⊥, where Y = { j1ak1 + j2bk2|a ∈ θ B, b ∈ θC}.
4. If A ≡ B

...
............
.................................... C , θ A = Y⊥, where

Y = { j1ak1 + j2bk2|a ∈ (θ B)⊥, b ∈ (θC)⊥}.

392 E. Haghverdi and P. Scott

5. If A ≡ !B, θ A = Y⊥⊥ , where Y = {uT (a)v|a ∈ θ B}.
6. If A ≡ ?B, θ A = Y⊥ , where Y = {uT (a)v|a ∈ (θ B)⊥}.
An easy consequence of the definition is (θ A)⊥ = θ A⊥ for any formula A.

5.6.2 GoI Interpretation of Proofs

In this section we formally define the GoI interpretation for proofs of MELL
without the units in a GoI situation. Proofs are interpreted in the homset C(U, U)

of endomorphisms of U . In what follows, we urge the reader to re-examine the
overview remarks of Sect. 5.5.2 and refer back to the feedback diagrams in Fig. 5.9.

Convention: All identity morphisms are on tensor copies of U ; however we adopt
the convention of writing 1Γ instead of 1Un with |Γ | = n, where U n denotes
the n-fold tensor product of U with itself. The retraction pairs are fixed once and
for all.

Every MELL sequent will be of the form � [Δ], Γ where Γ is a sequence
of formulas and Δ is a sequence of cut formulas that have already been made in
the proof of � Γ (e.g. A, A⊥, B, B⊥). This is used to keep track of the cuts that
are already made in the proof of � Γ . Suppose that Γ consists of n and Δ con-
sists of 2m formulas. Then a proof π of � [Δ], Γ is represented by a morphism
π ∈ C(U n+2m, U n+2m). Recall that this corresponds to a morphism from U

to itself, using the retraction morphisms U ⊗ U � U (j, k). However, it is much
more convenient to work in C(U n+2m, U n+2m) (matrices on C(U, U)). Define the
morphism σ : U 2m −→ U 2m , as σ = s⊗· · ·⊗s (m-copies) where s is the symmetry
morphism, the 2×2 antidiagonal matrix [ai j], where a12 = a21 = 1; a11 = a22 = 0.
Here σ represents the cuts in the proof of � Γ , i.e. it models Δ. If Δ is empty (that
is for a cut-free proof), we define σ : I −→ I to be the zero morphism 0I I . Note
that U 0 = I where I is the unit of the tensor in the category C.

Given block matrices A, B, by A ⊗ B we mean the block matrix with A and B
on the main diagonal (the rest zeros). Thus σ above is the 2m × 2m block matrix
with the 2 × 2 matrix s along the main diagonal.

Definition 5.6.5 (The GoI Interpretation) Let π be a proof of � [Δ], Γ . We define
the GoI interpretation of π , denoted by π , by induction on the length of the proof
as follows. We illustrate two key cases (Cut and Contraction) geometrically below.
The other cases have a similar geometric form and are left as exercises.3

3 The GoI interpretation of proofs involves manipulation and rearrangment of the interface wires of
a proof box. GoI situations, with their reflexive object U and monoidal retracts, give the essential
mechanism for modelling the “permuting, splitting, merging, and manipulating” of wires underly-
ing the GoI interpretation of proofs. This is illustrated here for the Cut and Contraction Rules.

5 Geometry of Interaction 393

1. π is an axiom � A, A⊥, then m = 0, n = 2 and π = s =
[

0 1
1 0

]

.

2. π is obtained using the cut rule on π ′ and π ′′ that is

π ′
....

� [Δ′], Γ ′, A

π ′′
....

� [Δ′′], A⊥, Γ ′′

� [Δ′,Δ′′, A, A⊥], Γ ′, Γ ′′ cut

Then we define π as follows: π = τ−1
(

π ′ ⊗ π ′′
)

τ where τ and

τ−1 are the permutations of the interface (the identity on Γ ′,Δ′) indicated below:

A⊥

Γ ′′

Δ′′

A⊥

Γ ′′

Δ′′

Γ ′

A
π′

π′′

Δ′

Γ ′

A

Δ′

Δ′′

A

A⊥

Δ′′

A

A⊥

Γ ′

Γ ′′

Δ′

Γ ′

Γ ′′

Δ′

3. π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ ′. That
is π is of the form

π ′
...

� [Δ], Γ ′
� [Δ], Γ exchange

where in Γ ′ we have Ai , Ai+1. Then, π is obtained from π ′ by inter-
changing the rows i and i + 1. So suppose that Γ ′ = Γ ′

1, Ai , Ai+1, Γ
′

2, then

Γ = Γ ′
1, Ai+1, Ai , Γ

′
2 and π = τ−1 π ′ τ , where τ = 1Γ ′

1
⊗ s ⊗ 1Γ ′

2⊗Δ.
4. π is obtained using an application of the par rule, that is π is of the form:

π ′
...

� [Δ], Γ ′, A, B
� [Δ], Γ ′, A

...
............
.................................... B

...
............
....................................

Then π = g π ′ f , where f = 1Γ ′ ⊗k⊗1Δ and g = 1Γ ′ ⊗ j⊗1Δ, recalling
that U ⊗U � U (j, k).

394 E. Haghverdi and P. Scott

5. π is obtained using an application of the times rule, that is π has the form

π ′ π ′′
...

...

� [Δ′], Γ ′, A � [Δ′′], Γ ′′, B

� [Δ′,Δ′′], Γ ′, Γ ′′, A ⊗ B
times

Then (similarly to the Cut rule), define π = gτ−1
(

π ′ ⊗ π ′′
)

τ f , where

τ is a permutation, f = 1Γ ′⊗Γ ′′ ⊗ k ⊗ 1Δ′⊗Δ′′ and
g = 1Γ ′⊗Γ ′′ ⊗ j ⊗ 1Δ′⊗Δ′′ .

6. π is obtained from π ′ by an of course rule; that is π has the form :

π ′
.
.
.

� [Δ], ?Γ ′, A

� [Δ], ?Γ ′, !A of course

Then π = ((ueU)⊗n ⊗ u ⊗ u⊗2m)ϕ−1T ((v⊗n ⊗ 1A ⊗ 1Δ) π ′ (u⊗n ⊗ 1A ⊗
1Δ))ϕ((e′U v)⊗n ⊗ v ⊗ v⊗2m), where T T � T (e, e′), |Γ ′| = n, |Δ| = 2m, and
ϕ : (T 2U)⊗n ⊗ T U ⊗ (T U)⊗2m −→ T ((T U)⊗n ⊗U ⊗U⊗2m) is the canonical
isomorphism.

7. π is obtained using the contraction rule on π ′, that is

π ′
....

� [Δ], Γ ′, ?A, ?A
� [Δ], Γ ′, ?A

contraction

Then we define π as follows, , where T ⊗ T � T (c, c′):

π = (1Γ ′ ⊗ (u(cU v ⊗ v))⊗ 1Δ) π ′ (1Γ ′ ⊗ (u ⊗ u)c′U v ⊗ 1Δ)

Δ Δ

Γ ′ Γ ′

?A ?A

?A?A

U

U
U

Γ ′

Δ

v TU

UT U
TU

U

U

TU

U

Γ ′

Δ

TU
TU U

u
c′ cUU

u

u

v

v

π′

5 Geometry of Interaction 395

8. π is obtained from π ′ by the dereliction rule, that is π is of the form:

π ′
.
.
.

� [Δ], Γ ′, A

� [Δ], Γ ′, ?A
dereliction

Then π = (1Γ ′ ⊗ udU ⊗ 1Δ) π ′ (1Γ ′ ⊗ d ′U v ⊗ 1Δ) where I d � T (d, d ′).
9. π is obtained from π ′ by the weakening rule, that is π is of the form:

π ′
.
.
.

� [Δ], Γ ′

� [Δ], Γ ′, ?A
weakening

Then π = (1Γ ′ ⊗uwU ⊗1Δ) π ′ (1Γ ′ ⊗w′
U v⊗1Δ), where KI � T (w,w′).

This finishes the GoI interpretation for MELL.

Example 5.6.6 Let π be the following proof (of cut applied to the axioms). Categor-
ically it corresponds to id oid.

� A⊥, A � A⊥, A

� [A, A⊥], A⊥, A
cut

Then the GoI semantics of this proof (see the Cut rule above) is given by conjugation
with a permutation matrix τ :

π =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤

⎥
⎥
⎦ =

[
0 I d2

I d2 0

]

where I d2 is the 2 × 2 identity matrix, 0 is the 2 × 2 zero matrix and the middle
matrix is s ⊗ s.

5.6.3 GoI Interpretation of Cut-Elimination

Dynamics is at the heart of the GoI interpretation as compared to denotational
semantics and it is hidden in the cut-elimination process. The mathematical model
of cut-elimination is given by the execution formula defined as follows:

E X (π , σ) = TrU2m

Un,U n ((1Un ⊗ σ) π) (5.10)

396 E. Haghverdi and P. Scott

where π is a proof of the sequent � [Δ], Γ . Pictorially this can be represented as in
Fig. 5.9(b) in Sect. 5.5.2 above.

Note that E X (π , σ) is a morphism from U n −→ U n and it always makes
sense since the trace of any morphism in C(U 2m+n, U 2m+n) is defined. Since we are
working with a traced UDC with the standard trace, we can rewrite the execution
Formula (5.10) in a more familiar form:

E X (π , σ) = π11 +
∑

n≥0

π12(σπ22)
n(σπ21)

where π =
[

π11 π12
π21 π22

]

. Note that the execution formula defined in this categori-

cal framework always makes sense; that is, we do not need a convergence criterion.
The intention here is to prove that the result of this execution formula is what

corresponds to the cut-free proof obtained from π using Gentzen’s cut-elimination
procedure. We will also show that for any proof π of MELL the execution formula
is a finite sum, which corresponds to termination of computation as opposed to
divergence.

Example 5.6.7 Consider the proof π in Example 5.6.6 above. Recall also that σ = s
in this case (m = 1). Then

E X (π , σ) = TrU 2

U 2,U 2

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

=
[

0 0
0 0

]

+
∑

n≥0

[
1 0
0 1

] [
0 0
0 0

]n [
0 1
1 0

]

=
[

0 1
1 0

]

= � A⊥, A .

Note that in this case we have obtained the GoI interpretation of the cut-free proof
obtained by applying Gentzen’s Hauptsatz to the proof π . (Categorically, this just
says idoid = id in Int(C), where the composition is obtained dynamically by run-
ning the Execution formula). This is generalized in Theorem 5.6.12 below.

5.6.4 Soundness of the GoI Interpretation: Running
the Execution Formula

In order to ensure that the definition above yields a semantics, we need to prove
the soundness of the GoI interpretation. In other words, we have to show that if a
proof π is reduced (via cut-elimination) to its cut-free form π ′, then E X (π , σ)

is a finite sum and E X (π , σ) = π ′ . Intuitively this says that if one thinks
of cut-elimination as computation then π can be thought of as an algorithm.
The computation takes place as follows: if we run E X (π , σ), it terminates after

5 Geometry of Interaction 397

finitely many steps (cf. finite sum) and yields a datum (cf. cut-free proof). This
intuition will be made precise in this section through the definition of type and the
main theorems (see Theorems 5.8.12, 5.8.14). The next result is the analog of the
Church-Rosser (or Diamond) property in our setting.

Lemma 5.6.8 (Associativity of cut) Let π be a proof of � [Γ,Δ],� and σ and τ

be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

E X (π , σ ⊗ τ) = E X (E X (π , τ), σ)

Proof Follows from naturality and vanishing II properties of trace. "
Definition 5.6.9 Let Γ = A1, · · · , An . A datum of type θΓ is a morphism
M : U n −→ U n such that for any β1 ∈ θ(A⊥1), · · · , βn ∈ θ(A⊥n), (β1⊗· · ·⊗βn)M
is nilpotent. An algorithm of type θΓ is a morphism M : U n+2m −→ U n+2m

for some integer m such that for σ : U 2m −→ U 2m defined in the usual way,
E X (M, σ) = TrU 2m

U n,U n ((1 ⊗ σ)M) is a finite sum and a datum of type θΓ .

Lemma 5.6.10 Let M : Un −→ U n and a : U −→ U. Define CU T (a, M) =
(a ⊗ 1U n−1)M : U n −→ U n. Note that the matrix representation of CU T (a, M)

is the matrix obtained from M by multiplying its first row by a. Then M = [mi j]
is a datum of type θ(A, Γ) iff for any a ∈ θ A⊥, am11 is nilpotent and the mor-
phism ex(CU T (a, M)) = TrA(s−1

Γ,ACU T (a, M)sΓ,A) is in θ(Γ). Here sΓ,A is the
symmetry morphism from Γ ⊗ A to A ⊗ Γ .

Theorem 5.6.11 (Proofs as Algorithms) Let Γ be a sequent, and π be a proof of
Γ . Then π is an algorithm of type θΓ

Theorem 5.6.12 (Ex is an invariant) Let π be a proof of a sequent
� [Δ], Γ in MELL. Then

(i) E X (π , σ) is a finite sum.
(ii) If π reduces to π ′ by any sequence of cut-eliminations and ?A does not occur

in Γ for any formula A, then E X (π , σ) = E X (π ′ , τ). So E X (π , σ)

is an invariant of reduction.
(iii) In particular, if π ′ is any cut-free proof obtained from π by cut-elimination,

then E X (π , σ) = π ′ .

In [HS04a] we show that we obtain the same execution formula as Girard. Note
that in Girard’s original execution formula π and σ are both 2m + n by 2m + n
matrices. To connect up with our previous notation, let σ̃ = s ⊗ · · · ⊗ s (m-times.)

Proposition 5.6.13 (Original Execution Formula) Let π be a proof of
� [Δ], Γ . Then in Girard’s model Hilb2,

((1 − σ 2)

∞∑

n=0

π (σ π)n(1 − σ 2))n×n = TrU2m

Un,U n ((1 ⊗ σ̃) π)

398 E. Haghverdi and P. Scott

where (A)n×n is the submatrix of A consisting of the first n rows and the first n
columns.

In the next two sections we discuss further generalizations of the notions of trace
and orthogonality. These notions play crucial roles in GoI interpretations.

5.7 Partial Trace and Abstract Orthogonality

In this section we look at partial traces. The idea of generalizing the abstract trace
of [JSV96] to the partial setting is not new. For example, partial traces were already
studied in work of Abramsky, Blute, and Panangaden [ABP99], in unpublished lec-
ture notes of Gordon Plotkin [Pl03], work of Blute, Cockett, and Seely [BCS00]
(see Remark 5.7.2), and others. The guiding example in [ABP99] is the relationship
between trace class operators on a Hilbert space and Hilbert-Schmidt operators. This
allows the authors to establish a close correspondence between trace and nuclear
ideals in a tensor ∗-category. Plotkin’s work develops a theory of Conway ideals on
biproduct categories, and an associated categorical trace theory. Unfortunately none
of these extant theories is appropriate for Girard’s GoI. So we present an axiomati-
zation for partial traces suitable for our purposes.

Recall, following Joyal, Street, and Verity [JSV96], a (parametric) trace in a sym-
metric monoidal category (C,⊗, I, s) is a family of maps

TrU
X,Y : C(X ⊗U, Y ⊗U) −→ C(X, Y),

satisfying various well-known naturality equations. A partial (parametric) trace
requires instead that each TrU

X,Y be a partial map (with domain denoted T
U
X,Y) and

satisfy various closure conditions.

Definition 5.7.1 (Trace Class) Let (C,⊗, I, s) be a symmetric monoidal category.
A (parametric) trace class in C is a choice of a family of subsets, for each object U
of C, of the form

T
U
X,Y ⊆ C(X ⊗U, Y ⊗U) for all objects X , Y of C

together with a family of functions, called a (parametric) partial trace, of the form

TrU
X,Y : T

U
X,Y −→ C(X, Y)

subject to the following axioms. Here the parameters are X and Y and a morphism
f ∈ T

U
X,Y , by abuse of terminology, is said to be trace class.

• Naturality in X and Y : For any f ∈ T
U
X,Y and g : X ′ −→ X and h : Y −→ Y ′,

(h ⊗ 1U) f (g ⊗ 1U) ∈ T
U
X ′,Y ′,

and TrU
X ′,Y ′((h ⊗ 1U) f (g ⊗ 1U)) = h TrU

X,Y (f) g.

5 Geometry of Interaction 399

• Dinaturality in U : For any f : X ⊗U −→ Y ⊗U ′, g : U ′ −→ U ,

(1Y ⊗ g) f ∈ T
U
X,Y iff f (1X ⊗ g) ∈ T

U ′
X,Y ,

and TrU
X,Y ((1Y ⊗ g) f) = TrU ′

X,Y (f (1X ⊗ g)).

• Vanishing I: T
I
X,Y = C(X ⊗ I, Y ⊗ I), and for f ∈ T

I
X,Y

TrI
X,Y (f) = ρY fρ−1

X .

Here ρA : A ⊗ I −→ A is the right unit isomorphism of the monoidal category.
• Vanishing II: For any g : X ⊗U ⊗ V −→ Y ⊗U ⊗ V , if g ∈ T

V
X⊗U,Y⊗U , then

g ∈ T
U⊗V
X,Y iff TrV

X⊗U,Y⊗U (g) ∈ T
U
X,Y ,

and in the latter case TrU⊗V
X,Y (g) = TrU

X,Y (TrV
X⊗U,Y⊗U (g)).

• Superposing: For any f ∈ T
U
X,Y and g : W −→ Z ,

g ⊗ f ∈ T
U
W⊗X,Z⊗Y ,

and TrU
W⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrU

X,Y (f).

• Yanking: sUU ∈ T
U
U,U , and TrU

U,U (sU,U) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called a
partially traced category, or a category with a trace class.

If we let X and Y be I (the unit of the tensor), we get a family of operations
TrU

I,I : T
U
I,I −→ C(I, I) defining what we call a non-parametric (scalar-valued)

trace.

Remark 5.7.2 An early definition of a partial parametric trace is due to Abramsky,
Blute and Panangaden in [ABP99]. Our definition is different but related to theirs.
First, we have used the Yanking axiom in Joyal, Street and Verity [JSV96], whereas
in [ABP99] they use a conditional version of the so-called “generalized yanking”;
that is, for f : X −→ U and g : U −→ Y , TrU

X,Y (sU,Y (f ⊗ g)) = g f whenever
sU,Y (f ⊗ g) is trace class. In our theory sUU is traceable for all U ; on the other
hand, many examples in [ABP99] do not have this property. More importantly, we
do not require one of the ideal axioms in [ABP99]. Namely, we do not ask that for
f ∈ T

U
X,Y and any h : U −→ U , (1Y ⊗ h) f and f (1X ⊗ h) be in T

U
X,Y . Indeed

in the next section we prove that the categories (Vec f d ,⊕) of finite dimensional
vector spaces, and (CMet,×) of complete metric spaces are partially traced. It can
be shown that in both categories the above ideal axiom and Vanishing II of [ABP99]
fail and hence they are not traced in the sense of [ABP99].

In [BCS00], Blute, Cockett, and Seely develop an interesting and detailed theory
of trace (and fixpoint) combinators in a linearly distributive category, including an

400 E. Haghverdi and P. Scott

appropriate version of the Int construction of [JSV96] in that setting. The authors
take a local view of the trace combinator: rather than assuming that a trace is avail-
able at every object, they consider the effect of particular objects having a trace
(partiality of trace), as well as restricting to “compatible classes” of trace operators
(which guarantees that an object may have at most one trace structure.)

One is obliged to say that there are many different approaches to partial categor-
ical traces and ideals; ours is geared to the details of Girard’s GoI. We believe our
traceability conditions are most naturally formulated as we did above, as properties
of morphisms rather than objects, but this may be a matter of taste.

5.7.1 Examples of Partial Traces

(a) Finite Dimensional Vector Spaces

The category Vec f d of finite dimensional vector spaces and linear transformations is
a symmetric monoidal, indeed an additive, category (see [Mac98]), with monoidal
product taken to be ⊕, the direct sum (biproduct). Hence, given f : ⊕I Xi −→
⊕J Y j with |I | = n and |J | = m, we can write f as an m × n matrix f = [fi j] of
its components, where fi j : X j −→ Yi (notice the switch in the indices i and j).

We give a trace class structure on the category (Vec f d ,⊕, 0) as follows. We shall
say an f : X ⊕ U −→ Y ⊕ U is trace class iff (I − f22) is invertible, where I is
the identity matrix, and I and f22 have size dim(U). In that case, we write

TrU
X,Y (f) = f11 + f12(I − f22)

−1 f21 (5.11)

This definition is motivated by a generalization of the fact that for a matrix A, (I −
A)−1 = ∑

i Ai , whenever the infinite sum converges. Clearly this sum converges
when the matrix norm of A is strictly less than 1, or when A is nilpotent, but in both
cases the general idea is the desire to have (I − A) invertible. If the infinite sum for
(I − f22)

−1 exists, the above formula for TrU
X,Y (f) becomes the usual “particle-

style” trace in [Abr96, AHS02, HS04a]. One advantage of formula (5.11) is that it
does not a priori assume the convergence of the sum, nor even that (I − f22)

−1 be
computable by iterative methods.

Proposition 5.7.3 (Vec f d⊕, 0) is partially traced, with trace class as above.

The proof is sketched in [HS05a]. Proposition 5.7.3 uses the following standard
facts from linear algebra:

Lemma 5.7.4 Let M =
[

A B
C D

]

be a partitioned matrix with blocks A (m × m),

B (m × n), C (n × m) and D (n × n). If D is invertible, then M is invertible iff
A − B D−1C (the Schur Complement of D) is invertible.

Lemma 5.7.5 Given A (m×n) and B (n×m), (Im− AB) is invertible iff (In−B A)

is invertible. Moreover (Im − AB)−1 A = A(In − B A)−1.

5 Geometry of Interaction 401

Proof (Proposition 5.7.3) We shall verify a couple of axioms.

• Naturality in X and Y : Suppose f ∈ T
U
X,Y and g : X ′ −→ X and h : Y −→

Y ′, (h ⊕ 1U) f (g ⊕ 1U) can be represented by its matrix

[
h f11g h f12
f21g f22

]

whose

component from U to itself is f22 and hence (h ⊕ 1U) f (g ⊕ 1U) ∈ T
U
X ′,Y ′ and it

is easy to see that hTrU
X,Y (f)g = TrU

X ′,Y ′((h ⊕ 1U) f (g ⊕ 1U)).

• Dinaturality in U : Let f : X⊕U −→ Y⊕U ′, g : U ′ −→ U . (1Y ⊕g) f ∈ T
U
X,Y

iff I − g f22 is invertible iff I − f22g is invertible by Lemma 5.7.5 and thus iff
f (1X ⊕ g) ∈ T

U ′
X,Y .

TrU
X,Y ((1Y ⊕ g) f) = f11 + f12(I − g f22)

−1g f21

= f11 + f12g(I − f22g)−1 f21 by Lemma 5.7.5.

= TrU ′
X,Y (f (1X ⊕ g)).

 "

As discussed in Remark 5.7.2, the category (Vec f d ,⊕) is not partially traced in the
sense of ABP.

(b) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive maps,
that is f : (M, dM) −→ (N , dN) such that dN (f (x), f (y)) ≤ dM (x, y), for all
x, y ∈ M . Note that the tempting collection of complete metric spaces and con-
tractions (dN (f (x), f (y)) < dM (x, y)) is not a category: there are no identity
morphisms! CMet has products, namely given (M, dM) and (N , dN) we define
(M × N , dM×N) with dM×N ((m, n), (m ′, n′)) = max{dM (m, m′), dN (n, n′)}.

We define the trace class structure on CMet(where ⊗ = ×) as follows. We say
that a morphism f : X ×U −→ Y ×U is in T

U
X,Y iff for every x ∈ X the induced

map π2λu. f (x, u) : U −→ U has a unique fixed point; in other words, iff for every
x ∈ X , there is a unique u, and a y, such that f (x, u) = (y, u). Note that in this
case y is necessarily unique. Also, note that contractions have unique fixed points,
by the Banach fixed point theorem.

Suppose f ∈ T
U
X,Y . We define TrU

X,Y (f) : X −→ Y by TrU
X,Y (f)(x) = y, where

f (x, u) = (y, u) for the unique u. Equivalently, TrU
X,Y (f)(x) = π1 f (x, u) where

u is the unique fixed point of π2λt. f (x, t).

Proposition 5.7.6 (CMet,×, {∗}) is a partially traced category with trace class as
above.

Lemma 5.7.7 Let A and B be sets, f : A −→ B and g : B −→ A. Then, g f has
a unique fixed point if and only if f g does. Moreover, let a ∈ A be the unique fixed
point of g f : A −→ A and b ∈ B be the unique fixed point of f g : B −→ B. Then
f (a) = b and g(b) = a.

402 E. Haghverdi and P. Scott

Proof (Proposition 5.7.6) We shall verify the dinaturality axiom. For f : X×U −→
Y ×U and x ∈ X , we will use fx to denote the map λu. f (x, u) : U −→ Y ×U.

Dinaturality in U: Let f : X × U −→ Y × U ′, g : U ′ −→ U . Note that for any
x ∈ X , π2((1Y × g) f)x = g(π2 fx) and π2(f (1X × g))x = (π2 fx)g and g(π2 fx)

has a unique fixed point iff (π2 fx)g has a unique fixed point, by Lemma 5.7.7. Thus
(1Y × g) f ∈ T

U
X,Y iff f (1X × g) ∈ T

U ′
X,Y .

TrU
X,Y ((1Y × g) f)(x) = π1(1 × g) f (x, u) u is the unique

fixed point of g(π2 fx)

= π1 f (x, u)

= π1 f (x, g(u′)) by Lemma 5.7.7

where u′ is the unqiue fixed point of (π2 fx)g

= TrU ′
X,Y (f (1X × g))(x).

 "

Proposition 5.7.6 remains valid for the category (Set,×) of sets and mappings. The
latter then becomes a partially traced category with the same definition for trace
class morphisms as in CMet. However, this fails for the category (Rel,×), of sets
and relations, as Lemma 5.7.7 is no longer valid: consider the sets A = {a}, B =
{b, b′}, and let f = {(a, b), (a, b′)} and g = {(b, a), (b′, a)}.

(c) Total Traces

Of course, all (totally-defined) traces in the usual definition of a traced monoidal
category yield a trace class, namely the entire homset is the domain of Tr.

Remark 5.7.8 (A Non-Example) Consider the structure (CMet,×). Defining the
trace class morphisms as those f such that π2λu. f (x, u) : U −→ U is a con-
traction, for every x ∈ X , does not yield a partially traced category: all axioms are
true except for dinaturality and Vanishing II.

For details and motivation on the orthogonality relation we refer the interested
reader to [HS05a]. See also the important work by Hyland and Schalk in [HylSc03]
for the general definition of orthogonality relations in a symmetric monoidal closed
category and its connections to models of linear logic.

Definition 5.7.9 Let C be a traced symmetric monoidal category. A (strong) orthog-
onality relation on C is a family of relations ⊥U V between maps u : V −→ U and
x : U −→ V , denoted V

u−→ U ⊥U V U
x−→ V , subject to the following axioms:

(i) Isomorphism : Let f : U ⊗ V ′ −→ V ⊗U ′ and f̂ : U ′ ⊗ V −→ V ′ ⊗U be
such that TrV ′

(TrU ′
((1 ⊗ 1 ⊗ sU ′,V ′)α−1(f ⊗ f̂)α)) = sU,V and

TrV (TrU ((1⊗1⊗sU,V)α−1(f̂ ⊗ f)α)) = sU ′,V ′ . Here α = (1⊗1⊗s)(1⊗s⊗1)

with s at appropriate types. Note that this simply means that f : (U, V) −→

5 Geometry of Interaction 403

(U ′, V ′) and f̂ : (U ′, V ′) −→ (U, V) are inverses of each other in G(C) (the
compact closure of C, [Hag00, AHS02].)
Then, for all u : V −→ U and x : U −→ V,

u ⊥U V x iff TrU
V ′,U ′(sU,U ′(u ⊗ 1U ′) f sV ′,U) ⊥U ′V ′ TrV

U ′,V ′((1V ′ ⊗ x) f̂);

that is, orthogonality is invariant under isomorphism. This is so because the
expressions above correspond to composition of u and f , and x and f̂ in the
compact closed category G(C).

(ii) Precise Tensor: For all u : V −→ U , v : V ′ −→ U ′ and h : U ⊗ U ′ −→
V ⊗ V ′,

(u ⊗ v) ⊥U⊗U ′,V⊗V ′ h,

iff

v ⊥U ′V ′ TrU
U ′,V ′(sU,V ′(u ⊗ 1V ′)hsU ′,U) and u ⊥U V TrU ′

U,V ((1 ⊗ v)h)

(iii) Identity : For all u : V −→ U and x : U −→ V , u ⊥U V x implies 1I ⊥I I
TrV

I,I (xu).

(iv) Symmetry : For all u : V −→ U and x : U −→ V , u ⊥U V x iff x ⊥V U u.

Example 5.7.10 (Orthogonality as trace class) Let (C,⊗, I, Tr) be a partially traced
category where ⊗ is the monoidal product with unit I , and Tr is the partial trace
operator as in above. Let A and B be objects of C. For f : A−→ B and g : B −→ A,
we can define an orthogonality relation by declaring f ⊥B A g iff g f ∈ T

A
I,I . The

axioms can be checked easily and we shall not include the verification here. It turns
out that this is a variation of the notion of Focussed orthogonality of Hyland and
Schalk [HylSc03].

Hence, from our previous discussion on traces, we obtain the following
examples:

• Vec f d . For A ∈ �f d , f, g ∈ End(A), define f ⊥ g iff I − g f is invertible. Here
I is the identity matrix of size dim(A).

• CMet. Let M ∈ CMet. For f, g ∈ End(M), define f ⊥ g iff g f has a unique
fixed point.

5.8 Typed GoI for MELL in *-Categories

The GoI interpretation we presented in Sect. 5.6 was carried out using a GoI Sit-
uation with the underlying category a traced UDC, and using an orthogonality
relation, defined based on nilpotency. Moreover, formulas and proofs were inter-
preted based on a single reflexive object U . It is possible to extend this framework
vastly beyond these limits, indeed it is possible to give a multi-object (typed) GoI
(MGOI) interpretation for MELL using a GoI Situation with additional structure

404 E. Haghverdi and P. Scott

and a compatible abstract orthogonality relation. We shall briefly highlight what is
involved without getting into details. Interested readers can refer to [Hag06] and
[HS09].

For the purposes of this general version we shall need an additional structure
on a monoidal category, namely that of contravariant functor ()∗. In the following
we shall recall the definition of monoidal ∗-categories from [ABP99]. Nevertheless,
note that our definition is different from that in [ABP99], as we do not require a
conjugation functor, and we demand stronger conditions on the functor ()∗. Cate-
gories such as these with further structure on the homsets (W ∗-categories) were first
introduced in [GLR85]. The idea there was to generalize the notions and machinery
of von Neumann algebras to a categorical setting. Later, similar categories (C∗-
categories) were defined in [DopR89] and studied in depth. The motivation in this
work was to present a new duality theory for compact groups, itself motivated by
the work in early seventies on superselection structure in quantum field theory.
Both [GLR85] and [DopR89] are excellent sources for examples of ∗-categories
we define here.

Definition 5.8.1 A symmetric monoidal ∗-category C is a symmetric monoidal cat-
egory with a strict symmetric monoidal functor ()∗ : Cop −→ C which is
strictly involutive and the identity on objects. Note that this in particular implies
that (f ⊗ g)∗ = f ∗ ⊗ g∗, and s∗A,B = sB,A where sA,B is the symmetry
morphism.

We say that a morphism f : A −→ A is Hermitian if f ∗ = f . A morphism f :
A −→ B is called a partial isometry if f ∗ f f ∗ = f ∗ or equivalently, if f f ∗ f = f .
A morphism f : A −→ A is called a partial symmetry if it is Hermitian and a
partial isometry. That is, if f ∗ = f and f 3 = f . Note that there is no underlying
Hilbert space structure on the homsets of C; the terminology here is borrowed from
operator algebras to account for the similar properties of such morphisms, which
can be expressed in the more general setting of ∗-categories.

An obvious example is the category Hilb⊗ of Hilbert spaces and bounded linear
maps with tensor product of Hilbert spaces as the monoidal product. Given f :
H −→ K , f ∗ : K −→ H is given by the adjoint of f , defined uniquely by
〈 f (x), y〉 = 〈x, f ∗(y)〉. It is not hard to see that all the required properties are
satisfied. Note that the category Hilb⊕ of Hilbert spaces and bounded linear maps
but with direct sum as the monoidal product is a ∗-category too, with the same
definition for the ()∗ functor.

Another example is the category Rel× of sets and relations with the cartesian
product of sets as the monoidal product. Given f : X −→ Y , f ∗ = f where f
is the converse relation. Again, note that the category Rel⊕ of sets and relations
with monoidal product, the disjoint union (categorical biproduct) is a monoidal ∗-
category too, with the same definition for the ()∗ functor.

Yet another example that shows up frequently in the context of GoI is the cate-
gory PInj� of sets and partial injective maps, with disjoint union as the monoidal
product. Given f : X −→ Y , f ∗ = f −1.

5 Geometry of Interaction 405

Other examples include Hilb f d of finite dimensional Hilbert spaces and bounded
linear maps, URep(G), finite representations of a compact group G, etc. For more
details, examples and the ways that such categories show up in logic and computer
science, see [ABP99].

Definition 5.8.2 A GoI category is a triple (C, T,⊥) where C is a partially traced
∗-category as in Section 5.7, T = (T, ψ,ψI) : C −→ C is a traced symmet-
ric monoidal functor, that is if f ∈ T

U
X,Y , then ψ−1

Y,U T (f)ψX,U ∈ T
T U
T X,T Y and

TrT U
T X,T Y (ψ−1

Y,U T (f)ψX,U) = T (TrU
X,Y (f)). Here ⊥ is an orthogonality relation on

C as in the above. Furthermore, we require that,

• The following natural retractions exist:

(i) KI � T (w,w∗), KI denotes the constant I functor.
(ii) I d � T (d, d∗)

(iii) T 2 � T (e, e∗)
(iv) T ⊗ T � T (c, c∗)

• The orthogonality relation must be GoI compatible, that is, it must satisfy the
following additional axioms:

(c1) For all f : V −→ U , g : U −→ V ,

f ⊥U,V g implies dU f d∗V ⊥T U,T V T g.

(c2) For all f : U −→ U and g : I −→ I ,

wU gw∗
U ⊥T U,T U T f.

(c3) For all f : T V ⊗ T V −→ T U ⊗ T U and g : U −→ V ,

f ⊥T U⊗T U,T V⊗T V T g ⊗ T g implies cU f c∗V ⊥T U,T V T g.

• The functor T commutes with ()∗, that is (T (f))∗ = T (f ∗). Moreover, ψ∗ =
ψ−1 and ψ∗

I = ψ−1
I .

Proposition 5.8.3 Suppose C is a partially traced ∗-category that is in addition
equipped with an endofunctor T and monoidal retractions as in Definition 5.8.2.
Then, the orthogonality relation ⊥ defined as in Example 5.7.10 is GoI compatible.

Proof We shall verify the compatibility axioms of Definition 5.8.2.
(c1) TrT V (T (g)dU f d∗V) = TrT V (dV g f d∗V) = TrV (g f).
(c2) TrT U (T (f)wU gw∗

U) = TrT U (wU gw∗
U) = TrI (g).

Recall that T
I
I,I = C(I, I).

(c3) TrT V(T (g)cU f c∗V) = TrT V(cV (Tg ⊗ Tg) f c∗V) = TrT V⊗T V ((Tg ⊗ Tg) f).
 "

406 E. Haghverdi and P. Scott

GoI categories are the main mathematical structures in our semantic interpretation
in the following section. Here are a few examples of GoI categories.

Examples 5.8.4 (a) (PInj�, T,⊥). This is a GoI situation (see Examples 5.6.2). We
define, f ⊥ g iff g f is nilpotent. It can be easily checked that this definition satisfies
the axioms for an orthogonality relation.

Let us verify the compatibility axioms:

• For f : V −→ U and g : U −→ V , suppose g f is nilpotent, say (g f)n = 0,
then (T (g)dU f d∗V)n = (dV g f d∗V)n by naturality of dU , but as d∗V dV = 1V we
have (dV g f d∗V)n = dV (g f)nd∗V = 0.

• As I = ∅ and wI = 0, we have that T (f)wU gw∗
U is nilpotent.

• For f : T V ⊗ T V −→ T U ⊗ T U and g : U −→ V , suppose (T g ⊗ T g) f is
nilpotent, say ((T g⊗T g) f)n = 0, Then (T (g)cU f c∗V)n = (cV (T g⊗T g) f c∗V)n ,
by naturality of cV , but as c∗V cV = 1T V⊗T V we have (cV (T g ⊗ T g) f c∗V)n =
cV ((T g ⊗ T g) f)nc∗V = 0.

Finally, for any f : X −→ Y , (T f)∗ = T (f ∗).

(b) (Hilb⊕, T,⊥), where Hilb is the category of Hilbert spaces and bounded
linear maps. The monoidal product is the direct sum of Hilbert spaces. By the above,
Hilb⊕ is a partially traced ∗-category. Define:

T (H) = �2 ⊗ H where �2 is the space of square summable sequences.
We define f ⊥ g iff (1−g f) is an invertible linear transformation. Compatibility

follows from Proposition 5.8.3, because for f : H −→ K , g : K −→ H , f ⊥ g
iff g f ∈ T

H . Finally, as Hilb⊗ is also a ∗-category with f ∗ the adjoint of f , we
have that for any f : H −→ K , (T f)∗ = T (f ∗).

(c) (Rel⊕, T,⊥) is a GoI-category with the same definitions for T and⊥ as in the
case of PInj. Note that disjoint union, denoted ⊕, is in fact the categorical biproduct
in Rel.

Multiobject Geometry of Interaction (MGoI) was introduced in [HS05a] and
was used to interpret MLL without units. It was later extended to exponentials in
[Hag06]. The main idea in [HS05a] was to keep the types of the formulas that were
defined by a denotational semantics map during the GoI interpretation. For the mul-
tiplicative case this also implies that the MGoI interpretation becomes “localized” to
different endomorphism monoids, rather than the endomorphisms of a fixed reflex-
ive object U as in usual GoI (described previously above). Now there is no need for
a reflexive object U and this makes the interpretation of MLL possible in categories
like finite dimensional vector spaces.

On the other hand, in the case of exponentials, we soon observe that infinity
forces itself into the framework: it is no longer possible to carry out the MGoI
interpretation in finite dimensions. This transition to infinity occurs, for example,
when we are forced to admit a retraction T T A�T A for any object A in the relevant
category. Note that, although in this way reflexive objects reappear, they are not used
to collapse types as in the GoI interpretation using a single object U .

5 Geometry of Interaction 407

5.8.1 MGoI Interpretation of Formulas

Given a GoI category (C, T,⊥), let A be an object of C and let f, g ∈ End(A). We
say that f is orthogonal to g, denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A)

we define

X⊥ = { f ∈ End(A) | ∀g ∈ X, f ⊥ g}.

We can define an operator on the objects of C as follows: given an object A, we
look at the subsets of End(A) which equal their bi-orthogonal: T (A) = {X ⊆
End(A) | X⊥⊥ = X}.

We wish to define the MGoI interpretation of formulas. First we define an inter-
pretation map − on the formulas of MELL as follows. Given the value of −
on the atomic propositions as objects of C, we extend it to all formulas by:

• A⊥ = A
• A

...
............
.................................... B = A ⊗ B = A ⊗ B .

• !A = ?A = T A .

The MGoI-interpretation for formulas is then defined as follows.

• θ(α) ∈ T (α), where α is an atomic formula.
• θ(α⊥) = θ(α)⊥, where α is an atomic formula.
• θ(A ⊗ B) = {a ⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥
• θ(A

...
............
.................................... B) = {a ⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

• θ(!A) = {T a | a ∈ θ(A)}⊥⊥
• θ(?A) = {T a | a ∈ θ(A⊥)}⊥

Easy consequences of the definition are: (i) for any formula A, (θ A)⊥ = θ A⊥,
(ii) θ(A) ⊆ End(A), and (iii) θ(A)⊥⊥ = θ(A).

5.8.2 MGoI Interpretation of Proofs

In this section we define the MGoI interpretation for proofs of MELL without units.
All references from now on refer to this MGoI interpretation unless stated otherwise.

As before, every MELL sequent will be of the form � [Δ], Γ where Γ is a
sequence of formulas and Δ is a sequence of cut formulas that have already been
made in the proof of � Γ . As before, this device is used to keep track of the cuts
in a proof of � Γ . As mentioned earlier, in MGoI proofs are interpreted locally
in endomorphism monoids. A proof π of � [Δ], Γ is represented by a morphism

π ∈ End(⊗ Γ ⊗ Δ). Here, if Γ = A1, · · · , An , ⊗ Γ stands for A1

⊗ · · · ⊗ An , and with Δ = B1, B⊥
1 , · · · Bm, B⊥

m , Δ = T k(B1 ⊗ · · · ⊗
Bm

⊥), for some non-negative integer k, with T 0 being the identity functor. We
drop the double brackets wherever there is no danger of confusion. We also define
σ = s⊗· · ·⊗ s (m-copies) where s is the symmetry map at different types (omitted

408 E. Haghverdi and P. Scott

for convenience), and |Δ| = 2m. The morphism σ represents the cuts in the proof
of � Γ , i.e. it models Δ. In the case where Δ is empty (that is for a cut-free proof),
we define σ : I −→ I to be 1I where I is the unit of the monoidal product in C.

Definition 5.8.5 (The MGoI Interpretation) Let π be a proof of
� [Δ], Γ . We define the MGoI interpretation of π , denoted by π , by induction on
the length of the proof as follows. As in ordinary GoI above, the reader is encouraged
to draw the diagrams representing the interpretation of each rule.

1. π is an axiom � A, A⊥, π := sV,V where A = A⊥ = V .
2. π is obtained using the cut rule on π ′ and π ′′ that is,

π ′
....

� [Δ′], Γ ′, A

π ′′
....

� [Δ′′], A⊥, Γ ′′

� [Δ′,Δ′′, A, A⊥], Γ ′, Γ ′′ cut

Define π = τ−1
(

π ′ ⊗ π ′′
)

τ , where τ is the permutation

Γ ′ ⊗ Γ ′′ ⊗Δ′ ⊗Δ′′ ⊗ A ⊗ A⊥ τ−→ Γ ′ ⊗ A ⊗Δ′ ⊗ A⊥ ⊗ Γ ′′ ⊗Δ′′.
(double brackets and ⊗ are dropped for the sake of readability).

3. π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ ′. That
is π is of the form

π ′
....

� [Δ], Γ ′
� [Δ], Γ exchange

where Γ ′ = Γ ′
1, Ai , Ai+1, Γ

′
2 and Γ = Γ ′

1, Ai+1, Ai , Γ
′

2. Then, π is obtained

from π ′ by interchanging the rows i and i + 1. So, π = τ−1 π ′ τ , where
τ = 1Γ ′

1
⊗ s ⊗ 1Γ ′

2⊗Δ.
4. π is obtained using an application of the par rule, that is π is of the form:

π ′
...

� [Δ], Γ ′, A, B
� [Δ], Γ ′, A

...
............
.................................... B

...
............
....................................

. Then π = π ′ .

5. π is obtained using an application of the times rule, that is π is of the form:

π ′
....

� [Δ′], Γ ′, A

π ′′
....

� [Δ′′], Γ ′′, B
� [Δ′,Δ′′], Γ ′, Γ ′′, A ⊗ B

⊗

5 Geometry of Interaction 409

Then π = τ−1
(

π ′ ⊗ π ′′
)

τ , where τ is the permutation

Γ ′ ⊗ Γ ′′ ⊗ A ⊗ B ⊗Δ′ ⊗Δ′′ τ−→ Γ ′ ⊗ A ⊗Δ′ ⊗ Γ ′′ ⊗ B ⊗Δ′′.
6. π is obtained from π ′ by an of course rule, that is π has the form :

π ′
.
.
.

� [Δ], ?Γ ′, A

� [Δ], ?Γ ′, !A of course

Then π = (
eΓ ′ ⊗ 1T A ⊗ 1Δ

)
ϕ−1T (π ′)ϕ(e∗

Γ ′ ⊗ 1T A ⊗ 1Δ), where T T �
T (e, e∗), with Γ ′ = A1, · · · , An , eΓ ′ = eA1⊗· · ·⊗eAn , similarly for e∗, and ϕ is
the canonical isomorphism T 2(Γ ′)⊗T A⊗T (Δ) −→ T (T (Γ ′)⊗A⊗Δ) defined
using the isomorphism ψX,Y : T X×T Y −→ T (X⊗Y). With Γ ′ = A1, · · · , An ,
T (Γ ′) is a short hand for T A1 ⊗ · · · ⊗ T An , similarly for T (Δ).

7. π is obtained from π ′ by the dereliction rule, that is, π is of the form :

π ′
.
.
.

� [Δ], Γ ′, A

� [Δ], Γ ′, ?A
dereliction

Then π = (1Γ ′ ⊗ dA ⊗ 1Δ) π ′ (1Γ ′ ⊗ d∗A ⊗ 1Δ) where I d � T (d, d∗).
8. π is obtained from π ′ by the weakening rule, that is, π is of the form:

π ′
.
.
.

� [Δ], Γ ′

� [Δ], Γ ′, ?A
weakening

Then π = (1Γ ′ ⊗ wA ⊗ 1Δ) π ′ (1Γ ′ ⊗ w∗
A ⊗ 1Δ), where KI � T (w,w∗).

9. π is obtained from π ′ by the contraction rule, that is, π is of the form :

π ′
.
.
.

� [Δ], Γ ′, ?A, ?A

� [Δ], Γ ′, ?A
contraction

Then π = (1Γ ′ ⊗ cA ⊗ 1Δ) π ′ (1Γ ′ ⊗ c∗A ⊗ 1Δ), where T ⊗ T � T (c, c∗).

Examples 5.8.6 (a) Let π be the following proof:

� A, A⊥ � A, A⊥

� [A⊥, A], A, A⊥
cut

410 E. Haghverdi and P. Scott

Then the MGoI interpretation of this proof is given by π = τ−1(s ⊗ s)τ =
sV⊗V,V⊗V where τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1) and A = A⊥ = V .

(b) Now consider the following proof

� A, A⊥

� A, ?A⊥

�!A, ?A⊥ � B, B⊥

�!A ⊗ B, ?A⊥ ...
............
.................................... B⊥

Given A = V and B = W , we have π = (1⊗ s ⊗ 1)(1 ⊗ e ⊗ 1 ⊗ 1)

(ψ−1T (h)ψ ⊗ s)(1 ⊗ e∗ ⊗ 1 ⊗ 1)(1 ⊗ s ⊗ 1) where h = (1 ⊗ dV)s(1 ⊗ d∗V).

Proposition 5.8.7 Let π be an MELL proof of � [Δ], Γ . Then π is a partial
symmetry.

Proof The proof follows by induction on the length of the proofs, noting that the
functor ()∗ is a strict symmetric monoidal functor, T (f)∗ = T (f ∗), ψ∗ = ψ−1,
and ψ∗

I = ψ−1
I . "

5.8.3 Interpretation of Cut-Elimination

As we saw previously, the mathematical model of cut-elimination is given by the
execution formula as in (5.8), defined as follows:

E X (π , σ) = Tr⊗Δ
⊗Γ,⊗Γ ((1 ⊗ σ) π)

where π is a proof of the sequent � [Δ], Γ , and σ = s⊗m models Δ, where |Δ| =
2m. Note that E X (π , σ) is a morphism from ⊗Γ −→ ⊗Γ , when it exists. We
shall prove below (see Theorem 5.8.12) that the execution formula always exists
for any MELL proof π . Informally, this means E X (f, σ) “converges” whenever
f = π , for some proof π in MELL.

Example 5.8.8 Consider the proof π in Example 5.6.6 above. Recall also that σ = s
in this case (m = 1). Then

E X (π , σ) = Tr((1 ⊗ sV,V)sV⊗V,V⊗V) = sV,V

5.8.4 Soundness of the Interpretation and Modelling Computation

In this section we discuss the soundness of the MGoI interpretation. We show that if
a proof π is reduced (via cut-elimination) to another proof π ′, then E X (π , σ) =
E X

(
π ′ , τ

)
; that is, E X (π , σ) is an invariant of reduction. In particular, if π ′

is cut-free (i.e. a normal form) we have E X (π , σ) = E X
(

π ′ , 1I

)
= π ′ .

Intuitively this says that if one thinks of cut-elimination as computation then
π can be thought of as an algorithm. The computation takes place as follows: if

5 Geometry of Interaction 411

E X (π , σ) exists then it yields a datum (cf. cut-free proof). This intuition will be
made precise below (Theorems 5.8.12 and 5.8.14).

We shall not give the proof of the soundness here, but will mention the main
lemmas used in this proof.

Lemma 5.8.9 (Associativity of cut) Let π be a proof of � [Γ,Δ],� and σ and τ

be the morphisms representing the cut-formulas in Γ and Δ respectively. Then

E X (π , σ ⊗ τ) = E X (E X (π , τ), σ) = E X (E X ((1⊗ s) π (1⊗ s), σ), τ),

whenever all traces exist.

Definition 5.8.10 Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗i Vi −→ ⊗i Vi such that for any
ai ∈ θ(A⊥i), ⊗i ai ⊥ M and

M .a1 := TrV1(s−1
⊗i �=1Vi ,V1

(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn)Ms⊗i �=1Vi ,V1)

and

M .̂(a2 ⊗ · · · ⊗ an) := TrV2⊗···⊗Vn ((1 ⊗ a2 ⊗ · · · ⊗ an)M)

both exist.
• An algorithm of type θΓ is a morphism M : ⊗i Vi ⊗ Δ −→ ⊗i Vi ⊗ Δ

for some Δ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 = B⊥
i

for i = 1, 3, · · · , 2m − 1, such that if σ : ⊗2m
i=1 Bi −→ ⊗2m

i=1 Bi is

⊗2m−1
i=1 ,odd s Bi , Bi+1

, E X (M, σ) exists and is a datum of type θΓ . (Here σ

is defined to be 1I for m = 0, that is when Δ is empty.)

Lemma 5.8.11 Let Γ̃ = A2, · · · , An and Γ = A1, Γ̃ . Let Vi = Ai , and M :
⊗i Vi −→ ⊗i Vi , for i = 1, · · · , n. Then, M is a datum of type θ(Γ) iff for all
ai ∈ θ(A⊥i), M .a1 and M .̂(a2 ⊗ · · · ⊗ an) (defined as above) exist and are in θ(Γ̃),
and θ(A1), respectively.

Theorem 5.8.12 (Proofs as algorithms) Let π be an MELL proof of a sequent
� [Δ], Γ . Then π is an algorithm of type θΓ .

Corollary 5.8.13 (Existence of Dynamics) Let π be an MELL proof of a sequent
� [Δ], Γ . Then E X (π , σ) exists.

Theorem 5.8.14 (EX is an invariant) Let π be an MELL proof of a sequent �
[Δ], Γ such that ?A does not occur in Γ for any formula A. Then,

• If π reduces to π ′ by any sequence of cut-elimination steps, then E X (π , σ) =
E X

(
π ′ , τ

)
. So E X (π , σ) is an invariant of reduction.

• In particular, if π ′ is any cut-free proof obtained from π by cut-elimination, then

E X (π , σ) = E X
(

π ′ , 1I

)
= π ′ .

412 E. Haghverdi and P. Scott

5.9 Concluding Remarks

We have mentioned several open questions in the tutorial, and the reader will be able
to find many interesting questions in following up the literature in the Bibliography.
Still, a few questions seem particularly apt.

(i) The GoI interpretation does not seem to deal well with units in LL. Thus, one
should formulate GoI taking into account *-autonomous categories without
units. One such study is in R. Houston’s thesis [Hou07].

(ii) The question of how to take into account the additives of LL in GoI and the
associated categorical analysis of [Gi95a], both along the style here, as well as
in the style of [AHS02], is still open.

(iii) Finding examples of our GoI situations in von Neumann algebras, and cate-
gorically analyzing Girard’s recent notions of GoI [Gi07, Gi08] is a challenge,
and presumably would need to accommodate categorical versions of Polarized
Linear Logics, as in [HaSc07].

Appendix 1: Graphical Representation of The Trace Axioms

X’ X’

1U

f f
g g

U U

YY

UU

X X

U

Naturality in X

1U

f
g

U U

YX Y’

U

f
X Y’

U U

Yg

Naturality in Y

1Y 1X

f

U

Y

U

X

U

Y

g

Y

U’

f
g

X

UU’

X

Dinaturality in U

5 Geometry of Interaction 413

ff

X Y

I I

X Y

Vanishing I

ff

U⊗V U⊗V V V

X Y

U U

YX

Vanishing II

f

g

U U

W

X

Z

Y

g

f

W Z

X Y

U U

Superposing

UU

UU

U U

Yanking

414 E. Haghverdi and P. Scott

Appendix 2: Comparing GoI Notation

Girard This Paper

1 ⊗ a uT (a)v

p, p∗ j1, k1

q, q∗ j2, k2

(1 ⊗ r), (1 ⊗ r∗) uc1v, uc′1v
(1 ⊗ s), (1 ⊗ s∗) uc2v, uc′2v
t, t∗ ueU (T v)v, u(T u)e′U v

d, d∗ udU , d ′U v

References

Abr93. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci. 111,
3–57 (1993) 368

Abr96. Abramsky, S.: Retracing some paths in process algebra. In: CONCUR 96, Springer
LNCS 1119, pp. 1–17 (1996) 358, 378, 379, 383, 384, 386, 400

Abr05. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed
categories. In: CALCO 2005, vol. 3629, pp. 1–31. Springer Lecture Notes in Computer
Science (2005) 360, 361

Abr07. Abramsky, S.: Temperley-Lieb algebra: From knot theory to logic and computation via
quantum mechanics. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) Mathematics
of Quantum Computing and Technology, pp. 515–558. Taylor and Francis, Abington
(2007) 358, 389

ABP99. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored
∗-categories. J. Pure Appl. Algebra 143, 3–47 (1999) 377, 398, 399, 404, 405

AbCo04. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS),
pp. 415–425. IEEE Computer Science Press (2004) 361, 365, 385

AHS02. Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of Interaction and Linear Combi-
natory Algebras. MSCS, vol. 12(5), pp. 625–665, CUP (2002) 358, 374, 376, 377, 378, 379, 380, 381,

AJ94a. Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf.
Comput. 111(1), 53–119 (1994) 385, 386, 389

Bail95. Baillot, P. (1995), Abramsky-Jagadeesan-Malacaria strategies and the geometry of
interaction, mémoire de DEA, p. 7. Universite Paris, Paris (1995)

BP01. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Funda-
menta Informaticae 45(1–2), 1–34 (2001) 389

Barr79. Barr, M.: ∗-Autonomous Categories. Springer Lecture Notes in Mathematics 752
(1979) 363, 364, 373

Barr92. Barr, M.: Algebraically Compact Functors. JPAA 82, 211–231 (1992) 383
BE93. Bloom, S.L., Esik, Z.: Iteration theories: Equational logic of iterative processes.

EATCS Monographs on Theoretical Computer Science. Springer, New York (1993) 377
Bl96. Blute, R.: Hopf algebras and linear logic. Math. Struct. Comput. Sci. 6, 189–212

(1996) 364
BCST96. Blute, R., Cockett, J.R.B., Seely, R.A.G., Trimble, T.: Natural deduction and coher-

ence for weakly distributive categories. J. Pure Appl. Algebra 13, 229–296 (1996) 366
BCS96. Blute, R., Cockett, J.R.B., Seely, R.A.G.: ! and ?: Storage as tensorial strength. Math.

Struct. Comput. Sci. 6, 313–351 (1996) 374
BCS00. Blute, R., Cockett, J.R.B., Seely, R.A.G.: Feedback for linearly distributive categories:

Traces and fixpoints, Bill (Lawvere) Fest. J. Pure Appl. Algebra 154, 27–69 (2000) 366, 398, 399

5 Geometry of Interaction 415

BS96. Blute, R., Scott, P.: Linear Lauchli semantics. Ann. Pure Appl. Logic 77, 101–142
(1996) 364

BS04. Blute, R., Scott, P.: Category Theory for Linear Logicians, in Linear Logic in Com-
puter Science, pp. 3–64. Cambridge University Press, Cambridge (2004) 359, 366, 371

Bor93. Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press, Cam-
bridge (1993) 359

CS97. Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. J. Pure Appl. Algebra
114, 133–173 (1997) 366

Dan90. Danos, V. La logique linéaire appliquée à l’étude de divers processus de normalisation
et principalement du ∗-calcul. PhD thesis, p. VII. Université Paris, Paris (1990) 388

DR95. Danos, V., Regnier, L.: Proof-nets and the Hilbert space. In: Advances in Linear Logic,
London Math. Soc. Notes, 222, CUP, pp. 307–328 (1995) 358, 388, 389

DopR89. Doplicher, S., Roberts, J.E.: A new duality for compact groups. Invent. Math. 98,
157–218 (1989) 404

FP07. Fuhrman, C., Pym, D.: On categorical models of classical logic and the geometry of
interaction. Mathematical Structures in Computer Science, pp. 957–1027. Cambridge
(2007) 389

Ger85. Geroch, R.: Mathematical Physics. University of Chicago Press, Chicago (1985) 364
GLR85. Ghez, P., Lima, R., Roberts, J.E.: W∗–categories. Pacific J. Math. 120, 79–109 (1985) 404

Gi87. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987) 358, 367, 374
Gi88. Girard, J.-Y.: Geometry of interaction II: Deadlock-free algorithms. In: Proceedings

of COLOG’88, LNCS 417, pp. 76–93. Springer, New York (1988) 386
Gi89. Girard, J-Y.: Towards a geometry of interaction. In: Gray, J.W., Scedrov, A. (eds.)

Categories in Computer Science and Logic. Contemp. Math, 92, pp. 69–108. AMS,
(1989) 358, 368, 386

Gi89a. Girard, J.-Y.: Geometry of interaction I: Interpretation of system F. In: Proceedings of
the Logic Colloquium 88, pp. 221–260. North Holland (1989a) 358, 385, 386, 388

Gi95a. Girard, J.-Y.: Geometry of interaction III: Accommodating the additives. In: Advances
in Linear Logic, LNS 222, CUP, pp. 329–389 (1995) 383, 386, 412

Gi07. Girard, J.-Y.: Le Point Aveugle I, II, Hermann Editeurs, Paris, 567 + pp (2007) 386, 412
Gi08. Girard, J.-Y.: Geometry of Interaction V: logic in the hyperfinite factor, manuscript

(2008) 358, 386, 412
GLT. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types, Cambridge Tracts in Theoretical

Computer Science 7 (1989) 366, 371, 374, 375
GSS. Girard, J.-Y., Scedrov, A., Scott, P.J.: Bounded linear logic. Theor. Comput. Sci. 97,

1–66 (1992) 368, 375, 389
GAL92. Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In:

Proceedings of Logic in Computer Science, vol. 9, pp. 15–26 (1992) 389
Hag00. Haghverdi, E.: A Categorical Approach to Linear Logic, Geometry of Proofs and Full

Completeness, PhD Thesis, University of Ottawa, Canada (2000) 378, 379, 380, 381, 382, 389, 403
Hag00a. Haghverdi, E.: Unique Decomposition Categories, Geometry of Interaction and com-

binatory logic. Math. Struct. Comput. Sci. 10, 205–231 (2000) 381
Hag06. Haghverdi, E.: Typed GoI for Exponentials. In: Bugliesi, M. et al. (eds.) Proceedings

of ICALP 2006, Part II, LNCS 4052, pp. 384–395. Springer, New York (2006) 386, 404, 406
HS04a. Haghverdi, E., Scott, P.J.: A categorical model for the Geometry of Interaction, The-

oretical Computer Science Volume 350, Issues 2–3, Feb 2006, pp. 252–274. (Prelimi-
nary Version in: Automata, Languages, Programming (ICALP 2004), Springer LNCS
3142, pp. 708–720) 358, 386, 388, 397, 400

HS04b. Haghverdi, E., Scott, P.J.: From Geometry of Interaction to Denotational Semantics.
Proceedings of CTCS2004. In ENTCS, vol. 122, pp. 67–87. Elsevier (2004) 386

HS05a. Haghverdi, E., Scott, P.J.: Towards a Typed Geometry of Interaction, CSL2005 (Com-
puter Science Logic), Luke Ong, Ed. SLNCS 3634, pp. 216–231 (2005) 386, 400, 402, 406

416 E. Haghverdi and P. Scott

HS09. Haghverdi, E., Scott, P.J.: Towards a Typed Geometry of Interaction, Full version of
[HS05a], in preparation 404

HaSc07. Hamano, M., Scott, P.: A categorical semantics for polarized MALL. Ann. Pure Appl.
Logic 145, 276–313 (2007) 365, 412

Has97. Hasegawa, M.: Recursion from Cyclic Sharing: Traced Monoidal Categories and Mod-
els of Cyclic Lambda Calculus. Springer LNCS 1210, pp. 196–213 (1997)

Has08. Hasegawa, M.: On traced monoidal closed categories. Math. Struct. Comput. Sci.
19(2), 217–244 (2009) 376, 377, 378, 385

HK09. Hasegawa, M., Katsumata, S.: A note on the biadjunction between 2- categories of
traced monoidal categories and tortile monoidal categories, Mathematical Proceedings
of the Cambridge Philosophical Society, to appear (2009) 385

Hi97. Hines, P.: The Algebra of Self-Similarity and its Applications. Thesis. University of
Wales (1997) 377, 378, 379, 380

Hi03. Hines, P.: A categorical framework for finite state machines. Math. Struct. Comput.
Sci. 13, 451–480 (2003) 377

Hou07. Houston, R.: Modelling Linear Logic without Units, PhD Thesis, Dept. of Computer
Science, Manchester University (2007) 366, 412

HylSc03. Hyland, M., Schalk, A.: Glueing and orthogonality for models of linear logic. Theor.
Comput. Sci. 294, 183–231 (2003) 365, 374, 387, 402, 403

JS91. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112 (1991) 361
JS93. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102 (1), 20–79 (1993) 361

JSV96. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Phil.
Soc. 119, 447–468 (1996) 358, 376, 378, 384, 385, 398, 399, 400

KRT97. Kassel, C., Rosso, M., Turaev, V.: Quantum Groups and Knot Invariants. Soc. Mathé-
matique de France (1997) 359, 361

KSW02. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics.
Theor. Inf. Appl. 36, 181–194 (2002) 377, 379

KL80. Kelly, G.M., Laplaza, M.: Coherence for compact closed categories. J. Pure Appl.
Algebra 19, 193–213 (1980) 360, 365

KR77. Kock, A., Reyes, G.: Doctrines in categorical logic. In: Barwise, J. (ed.) Handbook of
Mathematical Logic. North-Holland, Amsterdam (1977) 378

LS86. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic, Cambridge
Studies in Advanced Mathematics 7. Cambridge University Press, Cambridge (1986) 366, 371, 375

L89. Lambek, J.: Multicategories revisited. Contemp. Math. 92, 217–239 (1987) 367, 368
Lau01. Laurent, O.: A Token Machine for Full Geometry of Interaction. In TLCA ’01, SLNCS

2044, pp. 283–297 (2001), 388
Law69. Lawvere, F.W.: Adjointness in foundations. Dialectica 23, 281–296 (1969) 379
Law70. Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an adjoint

functor, Applications of Category Theory, Proceedings of A.M.S. Symposia on Pure
Math XVII, AMS, Providence, RI (1970) 379

Lef. Lefschetz, S.: Algebraic Topology, Am. Math. Soc. Colloquium Publications (1942) 364
Mac98. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New

York (1998) 359, 400
MR91. Malacaria, P., Regnier, L.: Some Results on the Interpretation of ∗-calculus in Operator

Algebras. Proceedings of Logic in Computer Science (LICS), pp. 63–72. IEEE Press
(1991) 388

MA86. Manes, E., Arbib, M.: Algebraic Approaches to Program Semantics. Springer, New
York (1986) 377, 381, 382, 383

Mel07. Melliès, P.-A.: Categorical semantics of linear logic: A survey, 132pp. (in preparation).
See website http://www.pps.jussieu.fr/mellies/ 359, 366, 372, 374

Pl03. Plotkin, G.: Trace Ideals, MFPS 2003 invited lecture, Montreal (unpublished) 377, 398
Reg92. Regnier, L.: Lambda-calcul et Réseaux, PhD Thesis, VII. Université Paris, Paris

(1992)

5 Geometry of Interaction 417

Sch07. Schöpp, U.: Stratified Bounded Affine Logic for Logarithmic Space. Proceedings of
Logic in Computer Science (LICS), pp. 411–420. IEEE (2007) 389

Sc00. Scott, P.: Some Aspects of Categories in Computer Science. In: Hazewinkel, M. (ed.)
Handbook of Algebra, vol. 2, pp. 3–77. Elsevier, Amsterdam (2000) 359, 366

See89. Seely, R.A.G.: Linear logic, ∗-autonomous categories and cofree coalgebras. Contem-
porary Mathematics, vol. 92. American Mathematical Society (1989) 372

Ste00. Stefanescu, G.: Network Algebra, Springer, New York (2000) 377
TrSc. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press,

Cambridge (1996) 374, 375

Part III More Example
Applications

Chapter 6
Dagger Categories and Formal Distributions

R. Blute and P. Panangaden

Abstract A nuclear ideal is an ideal contained in an ambient monoidal dagger
category which has all of the structure of a compact closed category, except that
it lacks identities. Intuitively, the identities are too “singular” to live in the ideal.
Typical examples include the ideal of Hilbert-Schmidt maps contained in the cate-
gory of Hilbert spaces, or the ideal of test functions contained in the category DRel
of tame distributions on Euclidean space.

In this paper, we construct a category of tame formal distributions with coef-
ficients in an associative algebra. We show that there is a formal analogue of the
nuclear ideal constructed in DRel, and hence there is a partial trace operation on the
category. By taking formal distributions with coefficients in the dual of a cocom-
mutative Hopf algebra, we obtain a categorical generalization of the Borcherds’
notion of elementary vertex group. Furthermore, when considering the algebra of
symmetric endomorphisms of an object in such a category, we obtain a vertex group
in Borcherds’ sense. The nuclear ideal structure induces a partial trace operator on
such vertex groups.

6.1 Introduction

The Abramsky-Coecke notion of abstract quantum mechanics [2] is a proposal
to abstract quantum theory away from the usual category of (possibly finite-
dimensional) Hilbert spaces and determine the underlying structures which should
be taken as primitive. Unlike more traditional quantum logic, which is based on lat-
tice theory, the Abramsky-Coecke approach is explicitly categorical in nature. The
authors argue that the minimal necessary structure for interpreting quantum theory

R. Blute (B)
Department of Mathematics, University of Ottawa, Ottawa, ON, Canada
e-mail: rblute@uottawa.ca

P. Panangaden (B)
School of Computer Science, McGill University, Montreal, QC, Canada
e-mail: prakash@cs.mcgill.ca

Blute, R., Panangaden, P.: Dagger Categories and Formal Distributions. Lect. Notes Phys. 813,
421–436 (2011)
DOI 10.1007/978-3-642-12821-9_6 c© Springer-Verlag Berlin Heidelberg 2011

422 R. Blute and P. Panangaden

is that of a (monoidal) dagger category, i.e. a category with a strict involution which
is the identity on objects.

They show that this framework provides a rich semantics for quantum computing
and quantum information theory. For example, the Born rule emerges naturally from
their axiomatization and one can express the correctness of various protocols, such
as teleportation [7], as the commutativity of certain diagrams.

In subsequent work [3], the authors provide a diagrammatic language which
simultaneously gives the free such category and provides a graphical language for
reasoning about quantum systems.

Since their initial papers, the subject of abstract quantum theory and dagger cat-
egories has become quite active, and has developed important results. We mention
in particular the work of Selinger [25]. Aside from developing another graphical
language, the author considers the construction of completely positive maps in a
general dagger category. CPMs are used, for example in the axiomatic description
of quantum operations as described in [10]. (We also note that we use Selinger’s
notation and terminology throughout.)

Also important is the work of Coecke and Pavlovic [11], where they show that
monoidal dagger categories even provide a framework for considering the existence
of classical objects in a quantum universe. This is the subject of enormous research
in quantum physics, see for example [15]. Furthermore, the description of classical
structure in this setting is extremely elegant. A classical object in such a category is
one with a compatible coalgebra structure. The comultiplication then models copy-
ing, and the counit models deleting, the two operations that define classical objects.
Thus traditional algebraic/categorical structures are brought into consideration. See
also [12] for further work in this direction.

Finally we mention Abramsky’s paper [5]. Aside from summarizing much of
the previous work discussed above, the author stresses the importance of abstract
scalars. In any monoidal category, the scalars are the endomorphisms of the ten-
sor unit. Traditionally, since quantum mechanics was carried out in the category
of Hilbert spaces, the scalars were the complex numbers, this being the base field.
But an abstract approach allows for considering other possibilities for scalars and
Abramsky emphasizes the importance of being able to consider dagger categories
with other choices for scalars. One of the interesting properties of the construction
in this paper is that we will consider formal distributions with coefficients in an
arbitrary commutative, associative algebra A, and the elements of A will act as our
scalars.

Monoidal dagger categories were considered by Abramsky, Blute and Panan-
gaden [1] under the guise of tensored ∗-categories, (using teminology of Doplicher
and Roberts [13]). We were interested in various extensions and elaborations of the
category Rel of sets and binary relations. In particular, we were interested in devel-
oping a category whose objects are “continuously varying relations”. So objects
would be open subsets of Euclidean space, and morphisms would be continuous
functions α : X × Y → C (where C is the field of complex numbers.) Similarly, we
wished to replace the usual relational composition:

a(R;S)c if and only if ∃b such that aRb and bSc

6 Dagger Categories and Formal Distributions 423

with the following “continuous analogue”:

(α;β)(x, z) =
∫

Y
α(x, y)β(y, z)dy

This idea led to the construction of the category DRel described below, and in [1].
Basically the objects of this category are open subsets of Euclidean space, and
morphisms are certain well-behaved distributions. Distributions were introduced
by Schwartz [24] to capture in a mathematically rigorous fashion the Dirac delta
“function”, which satisfied the relation

(α; δ)(x, y′) =
∫

Y
α(x, y)δ(y, y′)dy = α(x, y′)

and its symmetric variant. In fact, no such function exists [6], though physicists
made frequent use of such a δ. As a recent example, quantum fields are today fre-
quently modelled as operator-valued distributions in the Wightman axiomatization
[18]. Schwartz axiomatizes the above δ as a generalized function or function with
singularities. The distributions described in [1] are well-behaved in the sense that,
when viewed as generalized functions, they have only mild singularities.

In this paper, we introduce a “formal” analogue of the DRel construction. Formal
distributions, i.e. formal power series in both x and x−1, have played a fundamen-
tal role in algebraic and axiomatic approaches to quantum field theory. See, for
example, [18, 22]. Indeed, they are the basis for the axiomatization of the notion of
vertex algebra [18] and the notion of locality [18, 20], both of which figure in the
present work. In this paper, we consider formal distributions with coefficients in a
commutative algebra. We show that there is a formal notion of tameness inspired by
the construction of DRel.

Previous work on formal distributions has focused on algebras of distributions.
See for example the works [18, 19]. However, in this paper, we wish to build a
category of such distributions. In keeping with the passage from untyped to typed
λ-calculus, we obtain a category by considering typed distributions. Atomic types
are first assigned to the variables, and then a type for the distribution is inferred from
these atomic types. One thus obtains a monoidal category, which we call ARel. We
will see that the resulting category is a monoidal dagger category.

We also demonstrate that this category has a nuclear ideal, in the sense of [1]. In
that paper, the authors observed that one of the key aspects of the category of sets
and relations, the most elementary example of a monoidal dagger category, is that
one has “transfer of variables” i.e. one can use the closed structure and the invo-
lution to move variables from “input” to “output”. The category of Hilbert spaces
does not allow such transfer of variables arbitrarily. Instead, one has a large class of
morphisms which can be transposed in this fashion. These are the Hilbert-Schmidt
maps. The notion of nuclear ideal captures the idea of “partially defined transpose”.
This idea was suggested by the definition of a nuclear morphism between Banach
spaces, due to Grothendieck [16], and subsequent work of Higgs and Rowe [17].
Higgs and Rowe axiomatized the notion of nuclearity for a symmetric monoidal

424 R. Blute and P. Panangaden

closed category, and is appropriate for the analysis of nuclearity for Banach spaces.
The concept of nuclearity in analysis can be viewed as describing when one can
think of linear maps as matrices. In the case of a compact closed dagger category
such as Rel, all morphisms are nuclear, while in the category of Hilbert spaces, the
nuclear morphisms are precisely the Hilbert-Schmidt maps [21].

In the category DRel discussed above, the Schwartz kernel theorem provides an
inclusion of the space of test functions into the space of tame distributions, and such
distributions form a nuclear ideal. Thus, another way of viewing the axioms of the
definition of nuclear ideal is as an axiomitization of categories of (possibly) singular
functions, containing a class of nonsingular functions. We show here that a formal
analogue of this construction holds in our category ARel of formal distributions.

Another goal of this paper is to relate the notions arising in this paper and the
vertex groups of Borcherds [9, 26]. Both can be viewed as axiomatizing the notion
of singular map. In the former case, we have a category of singular maps, containing
an ideal of nonsingular maps. In Borcherds’ work, singular maps are viewed as an
algebra over an algebra of nonsingular maps defined on some “group”, (in fact,
a Hopf algebra.). We show that when one considers the category of tame formal
distributions with coefficients in the dual of a cocommutative Hopf algebra, one
obtains examples of vertex categories, i.e. “many-object vertex groups”.

The notion of (monoidal) dagger category has appeared in a number of guises.
They appeared as tensored ∗-categories in the work of Doplicher and Roberts
[13, 14]. Their work involved considering categories of unitary representations of
compact groups, one of the most significant examples of a monoidal dagger cate-
gory. They considered such categories intheir analysis of superselection sectors, and
proved a fundamental represnetation theorem. Any compact closed monoidal dag-
ger category with certain normed structure (making it a C∗-category), is equivalent
tothe category of representations of a compact group. Given the use of monoidal
dagger categories and formal distributions in several axiomatizations of quantum
field theory, it is our hope that the structures in this paper will be of use in extending
the Abramsky-Coecke framework to include QFT.

6.2 Dagger Categories and Nuclear Ideals

We here review the crucial definitions of monoidal dagger category and nuclear
ideal. See [2, 25, 1] for more details, such as the appropriate coherence conditions.

Definition 6.2.1 A category C is a †-category if it is equipped with a functor
(−)† : Cop → C, which is strictly involutive and the identity on objects. We will
also assume our †-categories are equipped with a conjugate functor () : C → C. A
†-category is †-monoidal if it is symmetric monoidal, (f ⊗ g)† = f † ⊗ g†, and the

conjugate functor has natural isomorphisms A ∼= A, A ⊗ B ∼= A ⊗ B, and I ∼= I .
(We will generally take these to be equalities.) These must satisfy evident equations,
see [25].

6 Dagger Categories and Formal Distributions 425

Definition 6.2.2 Let C be a monoidal †-category. A nuclear ideal for C consists of
the following structure:

• For all objects A, B ∈ C, a subset N (A, B) ⊆ Hom(A, B). We will refer to
the union of these subsets as N (C) or N . We will refer to the elements of N
as nuclear maps. The class N must be closed under composition with arbitrary
C-morphisms, closed under ⊗, closed under ()†, and the conjugate functor.

• A bijection θ : N (A, B) → Hom(I, A⊗ B). The bijection θ must be natural and
preserve the †-monoidal structure in an evident sense, see [1].

Examples

• The category Rel of sets and relations is a monoidal dagger category for which
the entire category forms a nuclear ideal. Indeed any compact monoidal dagger
category has this property.

• The category Hilb of Hilbert spaces and bounded linear maps maps is a well-
known monoidal dagger category , which, in fact, led to the axiomatization [13].
Then the Hilbert-Schmidt maps form a nuclear ideal [1]. (This is one of the only
examples where the conjugate functor is not merely the identity. Here it is the
conjugate Hilbert space.)

• The category DRel of tame distributions on Euclidean space is a monoidal dagger
category. The ideal of test functions (viewed as distributions) is a nuclear ideal.
See [1] or the next section.

• We will define a subcategory of Rel called the category of locally finite relations.
Let R : A → B be a binary relation and a ∈ A. Then let Ra = {b ∈ B|a Rb}.
Define Rb similarly for b ∈ B. Then we say that a relation is locally finite if, for
all a ∈ A, b ∈ B, Ra, Rb are finite sets. Then it is straightforward to verify that
we have a monoidal dagger category which is no longer compact closed. It is also
easy to verify that the finite relations form a nuclear ideal.

6.3 Distributions as Relations

In this section, we review the construction of the category of tame distributions,
denoted DRel [1]. We assume familiarity with basic notions from distribution the-
ory. Suitable references are [24, 27, 6].

The idea was to build a category where composition is given by the formula:

ϕ(x, y);ψ(y, z) =
∫

ϕ(x, y)ψ(y, z)dy.

The intuition that guided our original work was that integration should generalize
the existential quantification that appears in the definition of relational composition.
The proper framework for constructing such a category is the theory of distributions.
Recall that if Ω denotes a nonempty open subset of Rn , then DΩ denotes the smooth

426 R. Blute and P. Panangaden

(complex-valued) functions of compact support on Ω . We will refer to the elements
of DΩ as test functions. DΩ is given the structure of a topological vector space.
This structure is described for example in [6, 27]. Then we define a distribution
on Ω to be a continuous, linear (complex-valued) functional on DΩ . Let D′(Ω)

denote the space of all distributions on Ω , equipped with the topology of pointwise
convergence. We have a canonical inclusion

ι : DX ↪→ D′(X)

given as follows:

φ(x) �→ [ψ(x) ∈ DX �→
∫

φ(x)ψ(x)dx]

There is a canonical inclusion of DX ⊗ DY into DX × Y given by:

ϕ ⊗ ψ �→ [(x, y) �→ ϕ(x)ψ(y)]

Proposition 6.3.1 The space DX ⊗ DY is sequentially dense in DX × Y .

The construction of DRel makes essential use of the Schwartz kernel theorem, which
gives conditions under which maps from DX to D′(Y) can be realized as distribu-
tions on X × Y . We need the following notations to state the theorem. If f is a
distribution on X × Y and φ ∈ DX then f∗(φ) will be the function from DY to
the base field given by ψ ∈ DY �→ f (φ ⊗ ψ) and f ∗(ψ) is given by the evident
“transpose” formula. W The Schwartz kernel theorem states:

Theorem 6.3.2 Let X and Y be two open subsets of Rn and Rm.

1. Let f be a distribution on X ×Y . For all functions φ ∈ DX the linear map f∗(φ)

is a distribution on Y . Furthermore, the map φ �→ f∗(φ) from DX to D′(Y) is
continuous.

2. Let f∗ be a continuous linear map from DX to D′(Y). Then there exists a unique
distribution on X × Y such that for φ ∈ DX and ψ ∈ DY the following holds:

f (φ ⊗ ψ) = f∗(φ)(ψ)

Evidently, by symmetry, the same result applies for f ∗.

Definition 6.3.3 A tame distribution on X × Y is a distribution f on X × Y such
that each of f ∗ and f∗ factor continuously through the appropriate ι, where ι is the
inclusion of the space of test functions into the space of distributions. Explicitly,
there exist continuous linear maps

fL : DX → DY

fR : DY → DX

6 Dagger Categories and Formal Distributions 427

such that for every φ ∈ DX and ψ ∈ DY , we have:

f∗(φ)(ψ) = f ∗(ψ)(φ) = f (φ ⊗ ψ) =
∫

fL(φ)ψdy =
∫

φ fR(ψ)dx

Intuitively, tame distributions are allowed to be mildly singular, in that composing
with a test function “tames” the singularity.

6.3.1 Examples

• Let X be an open subset of Rn . The trace distribution on X × X is given by
T r(η) = ∫

η(x, x)dx where η(x, x ′) ∈ DX × X . From this definition it follows
that T r∗(φ)(ψ) = T r∗(ψ)(φ) = T r(φ ⊗ψ) = ∫

φ(x)ψ(x)dx . Thus we clearly
have T rL(φ) = T rR(φ) = φ, which shows that δ is tame. This tame distribution
will act as the identity in our category.

• Suppose that T is a regular distribution on X × Y with a test function β(x, y) as
its kernel, that is to say:

T (α(x, y)) =
∫

X×Y
β(x, y)α(x, y)

Then T is tame with its associated functions being given by:

TL(φ) =
∫

X
β(x, y)φ(x)

TR(ψ) =
∫

Y
β(x, y)ψ(y)

We write T X, Y for the tame distributions on X × Y .

Given tame distributions we can define the following operation which will serve as
composition. Suppose that f ∈ T X, Y , g ∈ T Y, Z . We define f ; g ∈ T X, Z as
follows. Given that f is tame, we have a continuous function fL : DX → DY .
Applying the first part of the Schwartz kernel theorem to g, we obtain a morphism
g∗ : DY → D′(Z). Composition gives a continuous map DX → D′(Z). By the
second part of the kernel theorem, we obtain a distribution on X × Z .

Definition 6.3.4 The category DRel has as objects open subsets on Rn , and, as mor-
phisms, tame distributions. Composition is as described above.

Theorem 6.3.5 DRel is a monoidal dagger category.

The tensor product is given as follows. Given objects X and Y we define X ⊗ Y
as the cartesian product space X × Y . Given morphisms in DRel f : X → Y and
g : X ′ → Y ′ we can define f ⊗ g : X ⊗ X ′ → Y ⊗ Y ′ as follows. We first define
f ⊗ g as a distribution on

DX ⊗ DX ′ ⊗ DY ⊗ DY ′

428 R. Blute and P. Panangaden

by the formula

(f ⊗ g)(φ(x) ⊗ φ′(x ′) ⊗ ψ(y) ⊗ ψ ′(y′)) = f (φ ⊗ ψ)g(φ′ ⊗ ψ ′) .

It is routine to verify that this is tame. We extend f ⊗ g to all of

DX × X ′ × Y × Y ′

as above. The one-point space, written I = {∗}, is the unit for the tensor (with
measure μ({∗}) = 1).

Finally the ∗-structure is the identity on objects. On morphisms, the only thing that
changes is the role of fL and fR . The conjugate functor is taken to be the identity.

Theorem 6.3.6 The sets N (Y, Z) form a nuclear ideal for DRel.

One can also show:

Theorem 6.3.7 The canonical nuclear ideal in DRel is traced.

There is a more succinct description of the trace operator in DRel. Since h = g f is
nuclear, it has a kernel, α(x, x ′). Recall from Theorem 6.3.6 that the formula for α

is given by:

α(x, x ′) = fR(βg(y, x ′)) =
∫

Y
β f (x, y)βg(y, x ′)

Hence we may conclude that:

trA(h) =
∫

X
α(x, x)

6.4 Categories of Formal Distributions

We now review the basic theory of formal distributions. Much of this theory was
developped by Kac. Suitable references are [18, 19]. In the following, A will always
denote a commutative, associative, unital algebra over some field k.

An expression of the form α(z) = Σn∈Z αnzn , where Z is the set of integers,
αn ∈ A and z is a variable, is called a formal distribution with coefficients in A.
Similarly, one can speak of formal distributions in several variables. The set of
formal distributions in a fixed set of variables forms an infinite dimensional vector
space, denoted A[[z, z−1, w,w−1, . . .]].

The space of distributions has a great deal of structure, much of which is analo-
gous to Schwartz’s original theory of distributions. The key to defining such struc-
ture is the residue operation, defined by Resz(α(z)) = α−1 ∈ A, i.e. the residue
of α is the coefficient of z−1. Similarly, if α(z, w) ∈ A[[z, z−1, w,w−1]], we can
define Resz(α(z, w)) ∈ A[[w,w−1]].

6 Dagger Categories and Formal Distributions 429

We now observe that the space of Laurent polynomials A[z, z−1] can be viewed
as the test functions for these formal distributions, with the evaluation A[[z, z−1]]×
A[z, z−1] → A being defined by

< α(z), f (z) >= Resz f (z)α(z)

There is a formal analogue of the injection DY → D′(Y) which is given simply
by the inclusion A[y, y−1] ⊆ A[[y, y−1]], and similarly in the multivariable case.
There is a corresponding version of the Shwartz kernel theorem as well.

The formal Dirac delta is given by the distribution:

δ(z, w) = z−1
∑

n∈Z

(z

w

)n

We have the fundamental property that for all f (z) ∈ A[z, z−1]

< δ(z, w), f (z) >= f (w)

Note that, in this equation, we are multiplying two distributions. In general, this
cannot be done even formally, due to the possibility of infinite coefficients. We must
have a notion of “tameness” to perform such multiplications. We will see that the
Dirac delta is indeed tame.

One can also reiterate the process of taking residues. If α is a distribution, and
x1, x2, . . . , xn are among its variables, then we define

Resx1,x2,...,xn α = Resx1(Resx2(. . . Resxn α)) . . .)

One can readily check that this is well-defined and independent of the order in which
the residues are taken.

We also note that the space of formal distributions allows formal differentiation,
i.e. we have operators:

∂ = ∂z : A[[z, z−1, w,w−1, . . .]] → A[[z, z−1, w,w−1, . . .]]

and that these satisfy equations analogous to those for differentiation of distribu-
tions, e.g.

Resz∂α(z)β(z) = −Reszα(z)∂β(z)

This is a formal analogue of integration by parts. Consult [18] for these and other
results, such as the representation of distributions in terms of derivatives of deltas.

430 R. Blute and P. Panangaden

6.4.1 Tameness for Formal Distributions

We will now define a category which will be the formal analogue of DRel, and this
category will have much of the same structure. We assume throughout the remainder
of this section that A is a fixed associative unital algebra over a field k.

We assume the existence of an infinite set of atomic types. These will be type
variables denoted A1, A2, B, Then the set of all types consists of all words of
the form A1 ⊗ A2 . . .⊗ An . We refer to n as the length of the word. We also assume
the existence of a unique word of length 0, denoted I . I is the tensor unit, and acts as
the identity in the monoid of words. (Thus we will be working in a strict monoidal
category). We also assume that we have an infinite stock of variables for each atomic
type. These will be denoted x : A, but we will generally not write the type, if there
is no danger of confusion.

Now we can talk about typed distributions. A formal distribution of type
A1 ⊗ A2 . . . ⊗ Am is an element of A[[x1, x−1

1 , . . . , xm, x−1
m]], where xi is of

type Ai . We say that a formal distribution α(x1, x2, . . . , xm, y1, y2, . . . , yn) of
type A1 ⊗ A2 . . . Am ⊗ B1 ⊗ . . . Bn is tame with respect to the type splitting
A1 ⊗ A2 . . . Am ||B1 ⊗ . . . Bn if, for all f ∈ A[x1, x−1

1 , . . . , xm, x−1
m],

Resx1,x2,...,xm (f α) ∈ A
[

y1, y−1
1 , . . . , yn, y−1

n

]

and dually for all g ∈ A[y1, y−1
1 , . . . , yn, y−1

n].
In other words, a tame distribution takes Laurent polynomials to Laurent poly-

nomials. This is the obvious analogue of the notion of tameness used in [1], given
that in the formal setting we are using Laurent polynomials as test functions.

Remark 6.4.1 We note that we consider two distributions (of the same type) equiv-
alent if they are identical up to α-conversion, i.e. up to change of variable name
(within the same type).

We are now ready to define the category ARel.

Definition 6.4.2 The category ARel is defined as follows. Objects are types. A mor-
phism
α : A1 ⊗ A2 ⊗ . . . ⊗ An → B1 ⊗ B2 . . . Bm is (the equivalence class of) a dis-
tribution of type A1 ⊗ A2 ⊗ . . . ⊗ An ⊗ B1 ⊗ B2 . . . Bm which is tame with respect
to the type splitting A1 ⊗ A2 ⊗ . . . ⊗ An||B1 ⊗ B2 . . . Bm Composition is defined
as follows. Suppose that α : A1 ⊗ A2 ⊗ . . . ⊗ An → B1 ⊗ B2 . . . Bm and that
β : B1 ⊗ B2 ⊗ . . . ⊗ Bm → C1 ⊗ C2 . . . ⊗ Cp . Then we have

βα(x1, x2, . . . , xn, y1, . . . , yp) =
Resz1,z2,...,zm [α(x1, . . . , xn, z1, . . . , zm)β(z1, . . . , zm, y1, . . . , yp)]

Note that one must always be careful to use distinct variables in the two distributions
being composed.

6 Dagger Categories and Formal Distributions 431

The identity is defined as:

id : A1 ⊗ A2 ⊗ . . . ⊗ An → A1 ⊗ A2 ⊗ . . . ⊗ An = �n
i=1δAi

Also note that we set Hom(I, I) = A, and more generally Hom(I, A) is the space
of Laurent polynomials on A. The justification for this is as in [1].

Theorem 6.4.3 ARel is a category.

Proof There are a number of things to check here, most are more or less straight-
forward. One must check that δ is tame, and that the product of δ’s does indeed
act as identity. One must check that the composite of two tame distributions is
again tame, and finally associativity of composition follows from the observation
that αReszβ = Reszαβ, when z is not among α’s variables. �
Theorem 6.4.4 ARel is a monoidal †–category.

Proof The tensor on objects is obvious. On morphisms, the tensor is given by mul-
tiplication. Again, when multiplying two distributions together, one must always
make sure that the two distributions use distinct variables. The conjugate functor
is taken to be the identity, and the †-functor reverses the order of variables. The
necessary equations are straightforward to verify. �

Finally, we may state the following result which is also straightforward.

Theorem 6.4.5 The Laurent polynomials form a nuclear ideal for ARel.

Proof The bijection θ : N (A, B) → Hom(I, A ⊗ B) is the obvious injection of the
test functions into the corresponding space of distributions. The necessary equations
are all evident. �

6.4.2 Locality for Formal Distributions

We now review one of the crucial topics in formal distribution theory, the notion of
locality of a formal distribution. This notion has been emphasized heavily by Kac
[18–20]. These are a fundamental class of distributions which were inspired by the
notion of locality in quantum field theory.

Definition 6.4.6 A formal distribution α(x, y) is local if there exists a positive inte-
ger N such that (x − y)N α(x, y) = 0.

The formal Dirac delta is local, as (x − y)δ(x, y) = 0. Similarly, any derivative
of the delta is local. We here collect some basic identities on derivatives of delta
which are useful in proving such results.

Lemma 6.4.7 ([18], p. 16)

• δ(x, y) = δ(y, x)

• ∂
j
x δ(x, y) = (−∂y)

jδ(x, y)

• (x − y) j+1∂
j
x δ(x, y) = 0

432 R. Blute and P. Panangaden

Now with the above formulas, one may characterize completely the local formal
distributions:

Theorem 6.4.8 (Kac [18], p.18) The local distributions are precisely those of the
form:

α(x, y) =
∑

j∈Z+
c j (y)∂

(j)
y δ(x, y)

where the above sum is finite and c j (y) = A[[y, y−1]]. The series c j (y) can be
calculated by the formula:

c j (y) = Resxα(x, y)(x − y) j

It is now straightforward to verify that the tame local distributions form a †-subcate-
gory. The only thing remaining to verify is the following:

Lemma 6.4.9 Suppose that α(x, y) and β(y, z) are tame local distributions. Then
Resy[α(x, y)β(y, z)] is local as well. (In particular, it is well-defined.)

Proof This follows from the above characterization of local distributions, and
repeated application of the “integration by parts” formula. �

Now we define a category Loc-ARel, whose objects are atomic formal types, and
morphisms are local distributions. Loc-ARel has an evident †-category structure.

6.4.3 Monoidal Structure for Loc-ARel

We now describe a tensor structure for the category Loc-ARel. This first requires
defining an n-ary version of locality:

Definition 6.4.10 We suppose that

α : A1 ⊗ A2 ⊗ . . . An → B1 ⊗ B2 ⊗ . . . Bn

is a tame distribution, and that the corresponding variables are x1, x2, . . . , xn ,
y1, y2, . . . , yn . Then we say that α is local if there is a permutation σ of the set
{1, 2, . . . , n} such that for all i ∈ {1, 2, . . . , n}, there exists a natural number Ni
such that:

(xi − yσ(i))
Ni α = 0

Lemma 6.4.11 Loc-ARel is a monoidal †-subcategory of ARel.

Note however that there is no longer a nuclear ideal. However a slight modifica-
tion of the notion of locality does yield a subcategory with a nuclear ideal. We say

6 Dagger Categories and Formal Distributions 433

that a tame distribution α : A → B is stable if it is of the form α = α1 + α2, where
α1 is (tame) local, and α2 is a Laurent polynomial. Thus the stable distributions only
fail slightly to be local. It is straightforward to verify that we indeed have a category.

Lemma 6.4.12 Let α(x, y) and β(y, z) be stable distributions. Then

Resy[α(x, y)β(y, z)]

is as well.

Proof One simply notes that the composition of two tame local distributions is tame
and local, the composition of two nuclear morphisms is nuclear, and the compostion
of a tame local distribution and a nuclear distribution is nuclear. The result now
follows from the bilinearity of composition. �

So we define a category S-ARel whose objects are formal types and morphisms
are stable distributions. It is evidently a monoidal †-subcategory of ARel. S-ARel
is essentially the smallest extension of Loc-ARel for which there is a nuclear ideal.

Theorem 6.4.13 The Laurent polynomials form a nuclear ideal in S-ARel.

6.5 Vertex Groups and Categories

In this section, we review Borcherds’ notion of an elementary vertex group [9], and
then give a minor generalization of this notion, that being the notion of a vertex
category, i.e. a many-object vertex group. We demonstrate that the category ARel
of the previous section gives an example of a vertex category, whenever A is taken
to be the dual of a cocommutative Hopf algebra H . We show further that when
considering the algebra determined by the endomorphisms of an object of a vertex
category, one obtains a vertex group in the Borcherds sense. We first review some
basic facts about duals of Hopf algebras.

Before getting into the technical details of vertex groups, we recall some facts
about duals of Hopf algebras. See [23] for details.

First recall that if H is a Hopf algebra, then H∗, the linear dual of H , is generally
not a Hopf algebra, unless H is finite-dimensional. However, we have:

Lemma 6.5.1 The dual of the comultiplication Δ : H → H ⊗H induces an algebra
structure on H∗, when composed with the canonical inclusion H∗ ⊗ H∗ → (H ⊗
H)∗. If H is cocommutative, then H∗ is a commutative algebra. Thus, if f, g ∈ H∗
and h ∈ H, then

(f g)(h) =
∑

h

f (h1)g(h2)

using the usual Sweedler notation, i.e.

Δ(h) =
∑

h

h1 ⊗ h2

434 R. Blute and P. Panangaden

We will also make use of the fact that H∗ has a canonical structure as a two-sided
H -module via the formulas:

(h f)(h′) = f (h′h) (f h)(h′) = f (hh′)

Remark 6.5.2 Finally we note that the existence of an involutive antipode gives a
second possible monoidal †-structure on ARel. If α(x, y) = ∑

αi j x i y j is a mor-
phism from A to B, then define

α =
∑

S∗(αi j)xi y j

and

α† =
∑

S∗(αi j)y j xi

In this section, we will always mean this monoidal †-structure.

The following definition is due to Borcherds [9]. It has been studied and elab-
orated on extensively by Snydal [26]. For examples, see either of these two refer-
ences.

Definition 6.5.3 Let H be a cocommutative Hopf algebra over a field k. A vertex
group on H consists of a k-vector space K , the ring of singular functions on H ,
with the following additional structure:

• K is an associative, unital algebra over the algebra H∗.
• K is a two-sided H -module. Further, the unit map η : H∗ → K is a map of

2-sided H -modules.
• The product map on K , μ : K ⊗ K → K is equivariant under the left and right

actions of H .
• There is a morphism SK : K → K such that SK ◦ η = η ◦ S∗.

We further require that SK be an antialgebra map, and that S2
K = id. If the algebra

K is also commutative, then we say that we have a commutative vertex group.

Borcherds and Snydal only consider the commutative case, but the present work
yields several natural noncommutative examples.

We now provide a categorical generalization of the previous definition by intro-
ducing the notion of a vertex category. This is the correct generalization in that a
one-object vertex category is indeed a vertex group.

Definition 6.5.4 Let H be a cocommutative Hopf algebra. An H -vertex category
consists of a †-category C such that:

• For all objects A, B in C, we have that Hom(A, B) is an H∗- module, a 2-sided
H -module, and composition is H∗-bilinear.

• Composition also satisfies the following H -invariance property: If f : A → B
and g : B → C , then we have (� and � denote the actions of H .)

6 Dagger Categories and Formal Distributions 435

h � (g f) = Σh(h1 � g)(h2 � f)

(g f) � h = Σh(g � h1)(f � h2)

• We must also have the following antipode condition. First note that there is a
canonical morphism η : H∗ → Hom(A, A) which takes f ∈ H∗ to f � id. We
require that η be a map of H -modules and that the following diagram commutes.

H∗ η� Hom(A, A)

H∗

S∗

�
η� Hom(A, A)

() †

�

The following results are all straightforward. All actions are defined by acting on
coefficients.

Theorem 6.5.5

• A one-object vertex category is a vertex group, with SK being given by the dagger
operation on Homsets.

• When A is the dual of a cocommutative Hopf algebra, then ARel is a vertex
category.

• In any vertex category C, if C ∈ C, then Hom(C, C) is a vertex group.

6.6 Conclusion

The primary goal of the theory of formal distributions is to develop a more purely
algebraic version of the Schwartz theory of distributions. Then the issue becomes the
extent to which the original theory lifts to the algebraic setting. This is for example
one of the goals of the monograph [18]. One is particularly interested in the many
applications of distribution theory in quantum physics. In this paper, we have shown
that the structure of the category DRel lifts to this formal setting in a straightforward
way. Thus one is able to view these formal distributions as generalized relations, as
discussed in [1]. We hope to explore this idea in the future.

Along the same lines, we have introduced the notion of a vertex category or
multiobject vertex algebra. Connecting this idea with the original work of Borcherds
[9] and Snydal [26] is also work we intend to explore.

References

1. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored ∗-categories.
J. Pure Appl. Algebra 143, 3–47(1999) 422, 423, 424, 425, 430, 431, 435

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, IEEE Com-
puter Society, pp. 415–425 (2004) 421, 424

436 R. Blute and P. Panangaden

3. Abramsky, S., Coecke, B.: Abstract physical traces. Theory Appl. Categories 14, 111–124
(2005) 422

4. Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf. Comput.
111(1), 53–119 (1994)

5. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories.
In: Proceedings of CALCO 2005, Springer Lecture Notes in Computer Science, vol. 3629,
pp. 1–31 (2005) 422

6. M.A. Al-Gwaiz: Theory of Distributions. Dekker Pure and Applied Mathematics. Dekker,
New York (1992) 423, 425, 426

7. Bennett, C., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev.
Lett. 70, 1895–1899 (1993) 422

8. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Feedback for linearly distributive categories:
Traces and fixpoints. J. Pure Appl. Algebra 154, 27–69 (2000)

9. Borcherds, R.: Vertex algebras. Preprint, q-alg/9706008. Also appeared in Topological field
theory, primitive forms and related topics (Kyoto, 1996) Progress in Mathematics, vol. 60.
Birkhäuser Boston, (1998) 424, 433, 434, 435

10. Chuang, I., Nielsen, M., Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000) 422

11. Coecke, B., Pavlovic, D.: Quantum measurements without sums. To appear in: Chen,
G., Kauffman, L., Lomonaco, S. (eds.) The Mathematics of Quantum Computation and Tech-
nology, Taylor and Francis, Hoboken (2006) 422

12. Coecke, B., Paquette, E., Pavlovic, D.: POVMs and Naimark’s theorem without sums, preprint
(2006) 422

13. Doplicher, S., Roberts, J.: A new duality theory for compact groups. Inventiones Math. 98,
157–218 (1989) 422, 424, 425

14. Ghez, P., Lima, R., Roberts, J.: w∗-categories. Pacific J. Math. 120, 79–109 (1985) 424
15. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and

the Appearance of a Classical World in Quantum Theory. Springer, New York (1996) 422
16. Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucleaires. AMS Memoirs.

American Mathematical Society (1955) 423
17. Higgs, D.A., Rowe, K.: Nuclearity in the category of complete semilattices. J. Pure Appl.

Algebra 57, 67–78 (1989) 423
18. Kac, V.: Vertex algebras for beginners. University Lecture Series, American Mathematical

Society (1997) 423, 428, 429, 431, 432, 435
19. Kac, V.: Formal distributions algebras and conformal algebras. In: Proceeding of te 12th Inter-

national Congress of Mathematical Physics, pp. 80–97 (1997). q-alg/9709027 423, 428, 431
20. Kac, V.: The idea of locality, preprint q-alg/9709008 423, 431
21. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras. Academic Press,

New York (1983) 424
22. Lian, B., Zuckerman, G.: Commutative quantum operator algebras. J. Pure Appl. Algebra 100,

117–141 (1995) 423
23. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge

(1995) 433
24. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1957) 423, 425
25. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceed-

ings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005),
Chicago. ENTCS 170, pp. 139–163 (2007) 422, 424

26. Snydal, C.: Equivalence of Borcherds G-vertex algebras and axiomatic vertex algebras,
preprint math.QA/9904104 424, 434, 435

27. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathe-
matics, vol. 25. Academic Press, New York (1967) 425, 426

Chapter 7
Proof Nets as Formal Feynman Diagrams

R. Blute and P. Panangaden

Abstract The introduction of linear logic and its associated proof theory has revo-
lutionized many semantical investigations, for example, the search for fully-abstract
models of PCF and the analysis of optimal reduction strategies for lambda calculi.
In the present paper we show how proof nets, a graph-theoretic syntax for linear
logic proofs, can be interpreted as operators in a simple calculus.

This calculus was inspired by Feynman diagrams in quantum field theory and
is accordingly called the φ-calculus. The ingredients are formal integrals, formal
power series, a derivative-like construct and analogues of the Dirac delta function.

Many of the manipulations of proof nets can be understood as manipulations
of formulas reminiscent of a beginning calculus course. In particular, the “box”
construct behaves like an exponential and the nesting of boxes phenomenon is the
analogue of an exponentiated derivative formula. We show that the equations for the
multiplicative-exponential fragment of linear logic hold.

7.1 Introduction

Girard’s geometry of interaction programme [Gir89a, Gir89b, Gir95a] gave shape
to the idea that computation is a branch of dynamical systems. The point is to give a
mathematical theory of the dynamics of computation and not just a static description
of the results as in denotational semantics.

The key intuition is that a proof net, a graphical representation of a proof,
is decorated with operators at the nodes which direct the flow of information
through the net. Now the process of normalization is not just described by a syn-
tactic rewriting of the net, as is usually done in proof theory, but by the action
of these operators. The operators are interpreted as linear operators on a suitable

R. Blute (B)
Department of Mathematics, University of Ottawa, Ottawa, UN, Canada
e-mail: rblute@uottawa.ca

P. Panangaden (B)
School of Computer Science, McGill University, Montreal, QC, Canada
e-mail: prakash@cs.mcgill.ca

Blute, R., Panangaden, P.: Proof Nets as Formal Feynman Diagrams. Lect. Notes Phys. 813,
437–466 (2011)
DOI 10.1007/978-3-642-12821-9_7 c© Springer-Verlag Berlin Heidelberg 2011

438 R. Blute and P. Panangaden

Hilbert space. In this framework normalizability corresponds to nilpotence of a
suitable operator. Given the correspondence between proof nets and the λ-calculus,
a significant shift has occurred. One now has a local, asynchronous algorithm for
β-reduction [DR93, ADLR94]. Abramsky and Jagadeesan [AJ94b] presented
geometry of interaction using dataflow nets using fixed point theory instead of the
apparatus of Hilbert spaces and operators. However, the information flow paradigm
is clear in both presentations of the geometry of interaction.

In the present paper we begin an investigation into the notion of information
flow. Our starting point is the notion of Feynman diagram in Quantum Field The-
ory [Fey49b, Fey49a, Fey62, IZ80]. These are graphical structures which can be
seen as visualizations of interactions between elementary particles. The particles
travel along the edges of the graph and interact at the vertices. Associated with these
graphs are integrals whose values are related to the observable scattering processes.
This intuitive picture can be justified from formal quantum field theory [Dys49].
Mathematically quantum field theory is about operators acting on Hilbert spaces,
which describe the flow of particles. One can seek a formal analogy then with the
framework of quantum field theory and the normalization process as described by
the geometry of interaction.

We have, however, not yet reached a full understanding of the geometry of inter-
action. We have, instead, made a correspondence between proof nets and terms
in a formal calculus, the φ-calculus, which closely mimics some of the ideas of
quantum field theory. In particular we have imitated some of the techniques, called
“functional methods” in the quantum field theory literature [IZ80], and shown how
to represent the exponential types in linear logic as an exponential power series. The
manipulations of boxes in linear logic amounts to certain simple exponential identi-
ties. Thus we have more than a pictorial correspondence; we have formal integrals
whose evaluation corresponds to normalization.

This work was originally presented at the Newton Institute Semantics of Com-
putation Seminar in December 1995. The publication of this edition provided an
excellent opportunity to revive the work. We thank Bob Coecke for giving us the
opportunity to do so.

7.2 Functional Integrals in Quantum Field Theory

Before we describe the φ-calculus in detail we will sketch the theory of functional
integrals as they are used in quantum field theory. This section should be skipped by
physicists. This section is very sketchy, but, it is hoped, it will provide an overview
of the method of functional integrals and, more importantly, it will give a context
for the φ-calculus to be introduced in the next section. It has been our experience
that computer scientists, categorists and logicians, who have typically never heard
of functional integrals tend to view the φ-calculus as an ad-hoc formalism “engi-
neered” to capture the combinatorics of proof nets. In fact, almost everything that
we introduce has an echo in quantum field theory.

There are numerous sources for functional integrals. The idea originated in Feyn-
man’s doctoral dissertation [Bro05] published in 1942, now available as a book. The

7 Proof Nets as Formal Feynman Diagrams 439

basic idea is simple. Usually in nonrelativistic quantum mechanics one associates a
wave function ψ(x, t) which obeys a partial differential equation govening its time
evolution, the Schrödinger equation. The physical interpretation is that the probabil-
ity density of finding the particle at location x at time t is given by |ψ(x, t)|2. The
wave function describes how the particle is “smeared out” over space; it is called a
probability amplitude function.

In the path integral approach, instead of associating a wave function with a parti-
cle one looks at all possible trajectories of the particle – whether dynamically possi-
ble or not according to classical mechanics – and associates a probability amplitude
with each trajectory. Then one sums over all paths to obtain the overall probability
amplitude function. This requires making sense of the “sum over all paths.” It is
well known that the naive integration theory cannot be used, since there are no non-
trivial translation-invariant measures on infinite-dimensional spaces, like the space
of all paths. However, Feynman made skillful use of approximation arguments and
showed how one could calculate many quantities of interest in quantum mechan-
ics [FH65]. Furthermore, this way of thinking inspired his later work on quantum
electrodynamics [Fey49b, Fey49a]. Since then the theory of path integrals has been
placed on a firm mathematical footing [GJ81, Sch81, Sim05].1

The functional integral is the extension of the path intgeral to infinite-
dimensional systems. Moving to infinite dimensional systems raises the mathemat-
ical stakes considerably and led to much controversy about whether this is actually
well-defined. In the past two decades a rigourous theory, due to Cartier and DeWitt-
Morette has appeared [CDM95] but not everyone accepts that this formalises what
physicists actually do when they make field-theoretic calculations.

What physicists do is to use a set of rules that make intuitive sense and which are
guided by analogy with the ordinary calculus. Some of the ingredients of this formal
calculus are entirely rigourous, for example, the variational derivative [GJ81]; but
the existence of the integrals remains troublesome.

In classical field theory one has a function, say φ defined on the spacetime M .
This function may be real or complex valued, and in addition, it may be vector or
tensor or spinor valued. Let us consider for simplicity a real-valued function; this is
called a scalar field. Thw field obeys a dynamical equation, for example the scalar
field may obey an equation like �φ + m2φ = 0 where � is the four-dimensional
laplacian.

In quantum field theory, the field is replaced by an operator acting on a Hilbert
space of states. The quantum field is required to obey certain algebraic properties
that capture aspects of causality, positivity of energy and relativistic invariance. The
Hilbert space is usually required to have a special structure to accomodate the pos-
sibility of multiple particles. There is a distinguished state called the vacuum and
one can vary the number of particles present by applying what are called creation
and annihilation operators. There is a close relation between these operators and

1 Actually a completely rigourous theory of path integration, due to Wiener, existed in the 1920s.
It was, however, for statistical mechanics and worked with a gaussian measure rather than the kind
of measure that Feynman needed.

440 R. Blute and P. Panangaden

the field operator: the field operator is required to be a sum of a creation and an
annihilation operator.

The main idea of the functional integral approach is that the fundamental quan-
tities of interest are transition amplitudes between states. These are usually states
of a quantum field theory and are often given in terms of how many particles of
each type and momentum are present in the field: this description of the states
of a quantum field is called the Fock representation. The most important quantity
is the vacuum-to-vacuum transition amplitude, written 〈0,− | 0,+〉, where 〈0,− |
represents the vacuum at early times and | 0,+〉 is the late vacuum. The idea of
the functional approach is this can be obtained by summing a certain quantity—the
action—over all field configurations interpolating between the initial and the final
field.

This can be written as

W =
∫

[dφ] exp [−
∫

d3x
(

1

2
φDφ

)

]

where D is some differential operator coming from the classical free field theory.
The [dφ] is supposed to be the measure over all field configurations. Though we do
not define it, we can do formal manipulations of this functional. In order to extract
interesting results, we want not just the vacuum-to-vacuum trnasition probabilities
but the expectation values for products of field operators, e.g. 〈0 | φ(x)φ(y) | 0〉
and other such combinations. In order to do this we add a “probe” to the field which
couples to the field and which can be varied. This is fictitious, of course, and will
be set to zero at the end. The probe (usually called a current) is typically written as
J (x). The form we now get for W is

W [J] =
∫

[dφ] exp [−
∫

d3x
(

1

2
φDφ

)

− Jφ].

Note that W is now a functional of J .
Before we can do any calculations we need to rewrite the term. Consider, for

the moment ordinary many-variable calculus. Suppose we write (,) for the inner
product on R

n we can write a form

Q(x) = 1

2
(x, Ax) + (b, x).

Now recall the gaussian integral in many variables is just

∫

dn x exp −1

2
(x, Ax) = [det (A)−

1
2]

where A is an ordinary n × n matrix with positive eigenvalues and we have ignored
factors involving 2π . To deal with Q we complete the square by setting y = A−1b
and get

7 Proof Nets as Formal Feynman Diagrams 441

Q(y) + 1

2
(x − y, A(x − y)) = Q(x).

Using this and changing variables appropriately, we get

∫

dn x exp −Q(x) = [detA]− 1
2 exp −Q(y).

Now in the functional case, the determinant of an operator does not make sense
naively, we will just ignore it here. In actual practice these divergent determinants
are made finite by a process called regularization and dealt with. It should be noted
that there is a fascinating mathematical theory of these determinants that we will not
pursue here.

Returning to our functional expression we get

W [J] = exp
1

2

∫

d4xd y J (x)D−1 J (y).

How are we to make sense of the inverse of a differential operator? It is well-known
in mathematics and physics as the Green’s function.2 It is well-defined as a dis-
tribution. In quantum field theory, the Green’s function with appropriately chosen
boundary conditions is called the Feynman propagator.

In order to obtain interesting quantities we “differentiate” W [J] with respect to
the function J (x). This is called the variational derivative and is well defined, see,
for example, [GJ81]. Roughly speaking, one should think of this as a directional
derivative in function space. The definition given in [GJ81] (page 202) is

(Dψ(A))(φ) = lim
ε→0

[A(φ + εψ) − A(φ)]/ε.

This is the derivative of the functional A of φ in the direction of the function φ.
Now we can consider the special case where ψ is the Dirac delta “function” δ(x)

and write is using the common notation as

δ

δφ(x)
A(φ) ≡ Dδ(x) A(φ).

A very useful formula is

δ

δφ(x)
φ(y) = δ(x, y).

Please note that some of the deltas are part of the variational derivative and some
are Dirac distributions: unfortunate, but this is the common convention.

2 The grammatically correct way to name this is a “Green function”, but it is too late to change
common practice.

442 R. Blute and P. Panangaden

How do we use these variational derivatives? If we consider the form of W [J]
before we rewrote it in terms of propagators we see that a variational derivative with
respect to J brings down a factor of φ and thus, if we do this twice, for example,
gives us 〈0 | φ(x1)φ(x2) | 0〉. If we look at the trnasformed version of W the same
derivatives tell us how to compte this quantity in terms of propagators. So in the end
one gets explicit rules for calculating quantities of interest.

For a given field theory, the set of rules are called the Feynman rules and give
explicit calculational prescriptions. The functional integral formalism is used to
derive these rules. The rules can also be obtained more rigourously from the Hamil-
tonian form of the field theory as was shown by Dyson [Dys49]. All this can be
made much more rigourous. The point is to show some of the calculational devices
that physicists use. It is not be expected that after reading this section one will be
able to calculate scattering cross-sections in quantum electrodynamics. The point is
to the see that the φ-calculus is closely based on the formalisms commonly in use
in quantum field theory.

7.3 Linear Realizability Algebra

This section is a summary of the theory of linear realizability algebras as developed
by Abramsky [Abr91]. The presentation here closely follows that of Abramsky and
Jagadeesan [AJ94a]. The basic idea is to take proofs in linear logic in sequent form
and to interpret them as processes. The first step is to introduce locations; which
one can think of as places through which information flows in or out of a proof.
Of course the diagrammatic form of proof nets carry all this information without,
in Girard’s phrase “the bureaucracy of syntax”. However, to make contact with an
algebraic notation we have to reintroduce the locations to indicate how things are
connected. In process terms these will correspond to ports or channels or names as
in the π -calculus [Mil89]. In our formal calculus, locations will be introduced with
roughly the same status. The set of locations L is ranged over by x, y, z,

The next important idea is that of located sequents, of the form

� x1 : A1, . . . , xk : Ak

where the xi are distinct locations, and the Ai are formulas of CLL2. These sequents
are to understood as unordered, i.e. as functions from {x1, . . . , xk}- the sort of the
sequent- to the set of CLL2 formulae.

A syntax of terms (Fig. 7.3) is introduced , which will be used as realizers for
sequent proofs in CLL2. The symbols P, Q, R are used to range over these terms,
and write FN(P) for the set of names occurring freely in P—its sort. With each
term-forming operation one gives a linearity constraint on how it can be applied,
and specifies its sort. In the very last case, the so-called “of course” modality, we
have imposed a restriction that if a location is introduced by an “of course” we
will require that all the other variables have been previously introduced by either

7 Proof Nets as Formal Feynman Diagrams 443

derelictions, weakenings or contractions. We are interested in terms that arise from
proof nets so we think of our terms as being typed; this is a major difference between
our LRAs and those introduced by Abramsky and Jagadeesan [AJ94b].

Fig. 7.1 Syntax: linear realizability algebra

There is an evident notion of renaming P[x/y] and of α-conversion P ≡α Q.
Terms are assigned to sequent proofs in CLL2 as in Fig. 7.3.
The rewrite rules for terms, corresponding to cut-elimination of sequent proofs,

can now be given. This is factored into two parts, in the style of [BB90]: a structural
congruence ≡ and a reduction relation →.

The structural congruence is the least congruence ≡ on terms such that:

(SC1) P ≡x Q⇒P ≡ Q
(SC2) P·x Q ≡ Q·x P
(SC3) ω(P1, . . . , Pk) ≡ ω(P1, . . . , Pi ·x Q, . . . , Pk), if x ∈ FN(Pi).

The reductions are as follows:

(R1) P·x Ix,y→P[y/x].
(R3) �

x,y
z (P)·z ⊗x,y

z (Q, R)→P·x Q·y R.
(R4) Lx

z (P)·z&x,y
z (Q, R)→P·x Q.

(R5) Rx
z (P)·z&x,y

z (Q, R)→P·x R.
(R6) Dx

z (P)·z ! x
z (Q)→P·x Q.

444 R. Blute and P. Panangaden

Fig. 7.2 Realizability semantics

(R7) Wz(P)·z ! x
z (Q)→Wx(P), where FN(Q) \ {x} = x.

(R8) Cz′,z′′
z (P)·z ! x

z (Q)→C x′,x′′
x (P·z′ ! x

z′(Q[x′/x])·z′′ ! x
z′′(Q[x′′/x])),

where FN(Q) \ {x} = x.
(R9) ! x

z (P)·u ! v
u(Q)→ ! x

z (P·u ! v
u(Q)), if u ∈ FN(P).

We are using the same numbering as in [AJ94b] and have left out R2, which talks
about units. We write bold face to stand for sequences of variables.

These reductions can be applied in any context.

P→Q
C[P]→C[Q]

and are performed modulo structural congruence.

P ′ ≡ P P→Q Q′ ≡ Q
P→Q

The basic theorem is that this algebra models cut elimination is classical linear logic.
The precise statement is

7 Proof Nets as Formal Feynman Diagrams 445

Proposition 7.3.1 (Abramsky) Let Π be a sequent proof of � Γ in CLL2 with
corresponding realizing term P. If P→Q, with Q cut-free (i.e. no occurrences
of ·α), then Π reduces under cut-elimination to a cut-free sequent proof Π ′ with
corresponding realizing term Q.

In order to verify that one correctly models the process of cut-elimination in
linear logic it suffices to verify the LRA equations R1 through R9. In fact we will
also check the following equation:

&x,y
z (P, Q)·u R→&x,y

z (P·u R, Q·u R) [u ∈ FN(P) ∩ FN(Q)]

This is the commutative with-reduction and is not satisfied in the extant examples
of LRA.

7.4 The φ-Calculus

In this section we spell out the rules of our formal calculus. Briefly the ingredients
are

Locations: which play the same role as the locations in the located sequents of
LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA terms.
Operators: Which act on basic terms and which play the role of terms in the full

LRA.

In order to define the basic terms we need locations, formal distributions, formal
integrals and simple rules obeyed by these. In order to define operators we need to
introduce a formal analogue of the variational derivative. This variational derivative
construct is very closely modelled on the derivation of Feynman diagrams from a
generating functional.

We assume that we are modelling a typed linear realizability algebra with given
propositional atoms. We first formalize locations. We assume further that axiom
links are only introduced for basic propositional atoms. We use the phrases “basic
types” and “basic propositional atoms” interchangeably.

Definition 1 We assume that there are countably many distinct symbols, called
locations for each basic type. We assume that there are the following operations
on locations: if x and y are locations of types A and B respectively, then 〈x, y〉 and
[x, y] are locations of type A ⊗ B and A�B respectively. We use the usual sequent
notation x : A, y : B � 〈x, y〉 : A ⊗ B and x : A, y : B � [x, y] : A�B to express
this.

Now we define expressions.

446 R. Blute and P. Panangaden

Definition 2 The collection of expressions is given by the following inductive def-
inition. We also define, at the same time, the notion of the sort of an expression,
which is the set of free locations, and their types, that appear in the expression.

1. Any real number r is an expression of sort ∅.
2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression of

sort {x : A, y : A⊥}.
3. Given any two expressions P and Q, P Q and P + Q are expressions of sort

S(P) ∪ S(Q).
4. Given any expression P and any location x : A in P , the expression

∫
Pdx is an

expression of sort S(P) \ {x : A}.
The expressions above look like the familiar expressions that one manipulates in
calculus. The sorts describe the free locations that occur in expressions. The inte-
gral symbol is the only binding operator and is purely formal. Indeed any suitable
notation for a binder will do, a more neutral one might be something like T r(e, x),
which is more suggestive of a trace operation.

The equations obeyed by these expressions mirror the familiar rules of calculus.
The only exotic ingredients are that the δ behaves like a Dirac delta “function”. We
will actually present a rewrite system rather than an equational system but one can
think of these as equations.

We use the familiar notation P(. . . , y/x, . . .) to mean the expression obtained
by replacing all free occurrences of x by y with appropriate renaming of bound
variables as needed to avoid capture; x and y must be of the same type of course.
We now define equations that the terms obey.

Definition 3

1. δ(x, y) = δ(y, x)

2.
∫
(
∫

Pdx)dy = ∫
(
∫

Pdy)dx
3. (P + Q) + R = P + (Q + R)

4. (P + Q) = (Q + P)

5. P · (Q · R) = (P · Q) · R
6. P · Q = Q · P
7. P · (Q1 + Q2) = P · Q1 + P · Q2
8. P + 0 = P .
9. P · 1 = P .

10. P · 0 = 0.
11.

∫
P(. . . , x, . . .)δ(x, y)dx = P(. . . , y/x, . . .).

12. δ([x, y], 〈u, v〉) = δ(x, u)δ(y, v).
13. If P = P ′ then P Q = P ′ Q.
14. If P = P ′ then P + Q = P ′ + Q.
15. If P = P ′ then

∫
Pdx = ∫

P ′dx .

These equations are very straightforward and can be viewed as basic properties
of functions and integration or about matrices and matrix multiplication. The only
point is that with ordinary functions one cannot obtain anything with the behaviour
of the δ-function; these are, however, easy to model with distributions or measures.

7 Proof Nets as Formal Feynman Diagrams 447

In order to model the exponentials and additives we need a rather more elabo-
rate calculus. We introduce operators which are inspired by the use of generating
functionals for Feynman diagrams in quantum field theory [IZ80, Ram81]. The two
ingredients are formal power series and variational derivatives. In order to model
pure linear logic the formal power series that arise as power-series expansions of
exponentials are the only ones that are needed. We introduce a formal analogue of
the variational derivative operator, commonly used in both classical and quantum
field theories [Ram81]. For us the variational derivative plays the role of a mecha-
nism that extracts a term from an exponential.

As before we have locations and expressions. We first introduce a new expression
constructor.

Definition 4 If x is a location of type A then αA(x) is an expression of sort {x : A}.
The point of α is to provide a “probe”, which can be detected as needed. For

each type and location there is a different α. We will usually not indicate the type
subscript on the αs unless they are necessary. The last ingredient that we need in the
world of expressions is an expression that plays the role of a “discarder”, used, of
course, for weakening.

Definition 5 If x is a location of type {x : A}, where A is a multiplicative type, then
WA(x) is an expression of sort {x : A}. This satisfies the equations

1. WA⊗B(〈x, y〉) = WA(x)WB(y),
2. WA�B([x, y]) = WA(x)WB(y).

We can think of W (x) intuitively as “grounding” in the sense of electrical circuits.
In effect it provides a socket into which x is plugged but which is in turn connected
to nothing else. So it is as if x were “grounded”. If such a W (x) is connected to a
wire,

∫
W (x)δ(x, y)dx the result will be the same as grounding y. The other two

equations express the fact that a complex W can be decomposed into simpler ones.
We will introduce another decomposition rule for W after we have described the
variational derivatives and a corresponding operator for weakening.

We introduce syntax for operators; these will be defined as maps from expres-
sions to expressions.

Definition 6 Operators are given by the following inductive definition.

1. If M is any expression M̂ is an operator of the same sort as M .
2. If x : A is a location then ([.]|α(x)=0) is an operator of sort x : A.
3. If x : A is a location then δ

δα(x)
is an operator of sort x : A.

4. If P and Q are operators then so are P + Q and P ◦ Q their sort is the union of
the individual sorts.

5. If P is an operator then so is
∫

Pdx ; its sort is S(P) \ {x}.
An operator of sort S acts on an expression of sort S′ if S ∩ S′ is not empty.

Operators map expressions to expressions. An important difference between the
algebra of expressions and that of operators is that the (commutative) multiplica-
tion of expressions has been replaced by the (non-commutative) composition of
operators.

448 R. Blute and P. Panangaden

The meaning of the operators above is given as follows. We use the meta-
variables M, N for expressions and P, Q for operators. We begin with the definition
of M̂ .

Definition 7 M̂(N) = M · N .

The notion of composition of operators is the standard one

Definition 8 [P ◦ Q](M) = P(Q(M)).

Clearly we have M̂ ◦ N̂ = M̂ N ; thus we have an extension of the algebra of
expressions. We will write 1 and 0 rather than, for example, 1̂ to denote the opera-
tors. The resulting ambiguity will rarely cause serious confusion.

The next set of rules define the operator ([.]|α(x)=0). Intuitively this is the opera-
tion of “setting α(x) to 0” in an algebraic expression.

Definition 9 If M is an expression then the operator ([.]|α(x)=0) acts as follows:

1. If α(x) does not appear in M then ([M]|α(x)=0) = M .
2. ([M N]|α(x)=0) = (([M]|α(x)=0))(([N]|α(x)=0)).
3. ([M + N]|α(x)=0) = (([M]|α(x)=0)) + (([N]|α(x)=0)).
4. ([Mα(x)]|α(x)=0) = 0.

The rules for the variational derivative formalize what one would expect from a
derivative, most notably the Leibniz rule, rule 5 below.

Definition 10 If M is an expression and x is a location we have the following equa-
tions:

1. If x and y are distinct locations then δ
δα(x)

α(y) = 0.

2. If α(x) does not occur in the expression M then δ
δα(x)

M = 0.

3. δ
δα(x)

α(x) = 1.

4. δ
δα(x)

(M + N) = (δ
δα(x)

M) + (δ
δα(x)

N).

5. δ
δα(x)

(M N) = (M δ
δα(x)

N) + ((δ
δα(x)

M)N).

Clause 1 is, of course, a special case of clause 2 but is added for emphasis. Intuitively
the variational derivative should be viewed as “probing for the presence of α”. The
reason that we use these variational derivatives rather than ordinary derivatives is
that the dependence on the location is crucial for our purposes. Typically we use the
combination of ([.]|α(x)=0) and δ

δα(x)
so that we are “inserting probes”, “testing for

their presence” and then “removing them”. The power of the formalism comes from
the interaction between variational derivatives and exponentials.

The remaining rules defining the algebra of operators are given in the next defi-
nition.

Definition 11 Operators obey the following equations:

1. 0̂(M) = 0.
2. 1̂(M) = M .

7 Proof Nets as Formal Feynman Diagrams 449

3. (P + Q)(M) = P(M) + Q(M).
4. [∫ Pdx](M) = ∫

P(M)dx , where x is not free in M .

One can prove the following easy lemma by structural induction on expressions.

Lemma 7.4.1 If x and y are distinct locations δ
δα(x)

◦ δ
δα(y)

(M) = δ
δα(y)

◦ δ
δα(x)

(M).

This if of course the familiar notion of commuting.

Definition 12 Two operators P and Q which satisfy P ◦ Q = Q ◦ P are said to
commute.

It will turn out that commuting operators satisfy some nice properties that will
be important in what follows.

The main mathematical gadget that we need is the notion of formal power series.
For our purposes we will only need exponential power series but we give fairly
general definitions.

Definition 13 If (Mi |i ∈ I) is an indexed family of expressions then ΣI Mi is an
expression. If (Pi |i ∈ I) is an indexed family of operators then ΣI Pi is an operator.
If I is a finite set, the result is the same as the ordinary sum; if I is infinite, the result
is called a formal power series.

One may question the use of the word “power” in “power series” since there is
nothing in the definition that says that we are working with powers of a single entity.
Nevertheless we use this suggestive term since the series we are interested really are
formal power series.

The meaning of a power series of operators is given in the evident way.

Definition 14 If Σi∈I Pi is a formal power series of operators and M is an expression
then (Σi∈I Pi)(M) = Σi∈I (Pi (M)).

The key power series that we use is the exponential. We first give a preliminary
account and then a more refined account.

Definition 15 If M is an expression then the exponential series is

Σk≥0 Mk/k!

and is written exp(M); here Mk means the k-fold product of M with itself.

What we are not making precise at the moment is the meaning of Mn .
A number of properties follow immediately from the preceding definition.

Lemma 7.4.2 If the expression M contains no occurrence of α(x) then:

1. δ
δα(x)

(M N) = M δ
δα(x)

(N);

2. (([.]|α(x)=0) ◦ δ
δα(x)

) exp(Mα(x)) = M ;

3. (([.]|α(x)=0) ◦ δ
δα(x)

◦ . . . n . . . ◦ δ
δα(x)

) exp(Mα(x)) = Mn .

450 R. Blute and P. Panangaden

The combination δ
δα(x)

◦ . . . n . . . ◦ δ
δα(x)

is often written δn

δα(x)n .
The following facts about exponentials recall the usual elementary ideas about

the exponential function from an introductory calculus course.

Lemma 7.4.3 Suppose that M is an expression, the following equations hold.

1. δ
δα(x)

exp(Mα(x)) = M · exp(Mα(x)).
2. ([exp(M)]|α(x)=0) = exp(([M]|α(x)=0)).
3. exp(0) = 1.

In fact the above definition of exponentials overlooks a subtlety which makes a
difference as soon as we exponentiate operators. The factors of the form 1/(n!) are
not just numerical factors, they indicate symmetrization. This is the key ingredient
needed to model contraction in linear logic. We introduce a new syntactic primitive
for symmetrization and give its rules.

Definition 16 If k is a positive integer and x1, . . . , xk and x are distinct locations
then Δk(x1, . . . , xk; x) is an expression, x is called the principal location. It has
the following behaviour; all differently-named locations are assumed distinct.

1.
∫

Δ(k)(x1, . . . , xk; x)M(x, y1, . . . , yl) dx =
∫ ∏k

i=1 M[xi/x, yi
1/y1, . . . , yi

l /yl] ∏l
j=1 Δ(k)(y1

j , . . . , yk
j ; y j) dy1

1 . . . dyk
l .

2.
∫

Δ(k)(x1, . . . , xk; x)Δ(m+1)(x, xk+1, . . . , xk+m; y) dx
= Δ(k+m)(x1, . . . , xk , xk+1, . . . , xk+m; y).

3.
∫

Δ(k)(u1, . . . , uk; x)Δ(k)(u1, . . . , uk; y) du1 . . . duk = δ(x, y).
4.

∫
Δ(k)(x1, . . . , xk; x)Δ(m)(y1, . . . , ym; x)dx =

Σι∈in j ({1,...,k},{1,...,m})δ(x1, yι(1)) . . . δ(xk, yι(k)),
where k ≤ m and if S and T are sets, in j (S, T) means injections from S to T .

The idea is that the Δ operators cause several previously distinct locations to
be identified. The ordinary δ allows renaming of one location of another but the Δ

allows, in effect, several locations to be renamed to the same one. The first rule says
that when a location in an expression is connected to a symmetrizer we can multiply
the expression k-fold using fresh locations. These locations are then symmetrized
on the output. In other words this tells you how to push expressions through sym-
metrizers. We often write just Δ for Δ2 and of course we never use Δ1 since it is the
ordinary δ. The important idea is the the Δs cause symmetrization of the locations
being identified. The last rule in the definition of Δ is what makes it a symmetrizer.
To see this more clearly, note the following special case which arises when k = m.

∫

Δ(k)(x1, . . . , xk; x)Δ(k)(y1, . . . , yk; x)dx

= Σσ∈perm{1,...,k}δ(x1, yσ(1)) . . . δ(xk, yσ(end)).

Before we continue we emphasize that the rule for the δ expression applies to oper-
ators as well. We formalize this as the following lemma.

7 Proof Nets as Formal Feynman Diagrams 451

Lemma 7.4.4 If P(x ′, y) is an operator then
∫

δ(x, x ′)Pdx ′ = P[x/x ′] in the
sense that for any expression M, with x not free in M, [∫ δ(x, x ′)Pdx ′](M) =
P[x/x ′](M[x/x ′]).
Proof We give a brief sketch. First note that we can prove, by structural induction
on M , for any expression M , that

∫

δ(x, x ′) δ
δα(x ′) (M)dx ′ = δ

δα(x)
(M[x/x ′])

which justifies the operator equation
∫

δ(x, x ′) δ
δα(x ′)dx ′ = δ

δα(x)
. Similarly one can

show that
∫

δ(x, x ′)([M]|α(x ′)=0) = ([M[x/x ′]]|α(x)=0). Now structural induction
on P establishes the result.

We record a useful but obvious fact about derivatives of operators.

Lemma 7.4.5 If α(x) does not occur in P then δ
δα(x)

(P Q) = P δ
δα(x)

(Q).

We are now ready to define the exponential of an operator.

Definition 17 Let Q(x1, . . . , xm) be an operator with its sort included in
{x1, . . . , xm}. The exponential of Q is the following power series, where we have
used juxtaposition to indicate composition of the Qs:

exp(Q) = 1 + Q(x1, . . . , xm)+
(1/2)

∫

Q(x ′
1, . . . , x ′

m)Q(x ′′
1 , . . . , x ′′

m)Δ(x ′
1, x ′′

1 ; x1) . . . Δ(x ′
m, x ′′

m; xm)

dx ′
1 . . . dx ′

mdx ′′
1 . . . dx ′′

m

+ . . .

+ (1/(k!))
∫

Q(x(1)
1 , . . . , x (k)

m) . . . Q(x (k)
1 , . . . , x(k)

m)

Δk(x (1)
1 , . . . , x(k)

1 ; x1) . . . Δk(x (1)
m , . . . , x (k)

m ; xm)

dx(1)
1 . . . dx (1)

m . . . dx (k)
1 . . . dx (k)

m + . . .

The above series is just the usual one for the exponential. What we have done
is introduce the Δ operators rather than just writing Qk for the k-fold compo-
sition of Q with itself. This makes precise the intuitive notation Qk and inter-
prets it as k-fold symmetrization of k distinct copies of Q. However, if we wish
to speak informally, we can just forget about the Δ operators and pretend that
we are working with the familiar notion of exponential power series of a single
variable.

We have an important lemma describing how the Δs interacts with differentiating
and evaluating at 0.

452 R. Blute and P. Panangaden

Lemma 7.4.6 If M is an expression then

[∫

Δk(x1, . . . , xk; x)
(
([.]|α(x1)=0) ◦ δ

δα(x1)

)
◦ . . .

◦
(
([.]|α(xk)=0) ◦ δ

δα(xk)

)
dx1 . . . dxk

]

(M)

= (1/(k!))
(∫

Δk(x1, . . . , xk; x)([.]|α(x)=0)
(

δ
δα(x1)

◦ . . . ◦ δ
δα(xk)

)
dx1 . . . dxk)(M).

Thus, we can remove the M and assert the evident operator equation.

Proof Note that the only terms that can survive the effect of the operator on the LHS
are those of the form M ′α(x1) . . . α(xk). If any α(x j) occurred to a higher power it
would be killed by the operator ([.]|α(x j)=0) that acts after the variational derivative.
If any of the αs do not occur the term would be killed by the variational derivative.
Now note that the ([.]|α(xi)=0) and the δ

δα(x j)
commute if xi and x j are distinct. Thus

we can move the ([.]|α(x j)=0) operators to the left. Now if we look at the kinds of
terms that survive and compute the derivatives we get the result desired.

Intuitively we can think of the symmetrizers as “multiplexers”. This is of course
part of the definition of symmetrizer for expressions. The following lemma makes
this precise. The proof is notationally tedious but is a routine structural induction,
which we omit. We use the phrase exponential-free to mean an operator constructed
out of ordinary expressions, and variational derivatives and setting α to 0, no expo-
nentials (or other power-series) occur.

Lemma 7.4.7 If P(x, y1, . . . , ym)) is an exponential-free operator then∫
Δ(k)(x1, . . . , xk; x)P dx =

∫ [∏m
j=1 Δ(k)(y1

j , . . . , yk
j ; y j)] ∏k

i=1[P(xi/x, yi
1, . . . , yi

m)]
dx1 . . . dxk dy1

1 . . . dyk
m.

What the lemma says is that when we have a k-fold symmetrized location in an
operator with m other locations we can make k copies of the operator with fresh
copies of all the locations. In the yl

j , the subscript (running from 1 to m) says which
location was copied and the superscript (running from 1 to k) which of the k copies
it is. The k fresh copies of the locations are each symmetrized to give the original
locations; this explains the product of all the Δ(k) terms.

We close this section by completing the definition of the weakening construct W
by giving the decomposition rules for W .

Definition 18 (Decomposition Rules for W)

1. Wφ(u)([.]|α(x)=0) ◦ δ
δα(x)

= W ? φ(x)

2.
∫

Δ(k)(x1, . . . , xk; x)Wφ(x1) . . . Wφ(xk) dx1 . . . dxk = Wφ(x)

7 Proof Nets as Formal Feynman Diagrams 453

Fig. 7.3 Syntax of expressions in the φ-calculus

Fig. 7.4 Syntax of operators in the φ-calculus

7.5 Exponential Identities for Operators

Much of the combinatorial complexity of proof nets can be concealed within the
formulas for derivatives of exponentials. In this section we collect these formulas in
one place for easy of reference. There are, of course, infinitely many identities that
one could write down, we will write only the ones that arise in the interpretation of
linear logic.

We typically have to assume that various operators commute. If the operators do
not commute one gets very complicated expressions, such as the Campbell-Baker
formula, occurring in the study of Lie algebras and in quantum mechanics, for prod-
ucts of exponentials of operators. In the case of linear logic the linearity conditions
will lead to operators that commute.

Proposition 7.5.1 If the operator P contains no occurrence of α(x) then:

1. (([.]|α(x)=0) ◦ δ
δα(x)

) exp(Pα(x)) = P;
2.

∫

(([.]|α(x)=0) ◦ δ
δα(x)

. . . n . . . ◦ δ
δα(x)

) exp(Pα(x))dx

=
∫

Δn(x1, . . . , xn; x)

m∏

k=1

[Δn(y1
k , . . . , yn

k ; yk)]

454 R. Blute and P. Panangaden

n∏

j=i

[P(y j
1 /y1, . . . , y j

k /yk, . . . , y j
m/ym)]

dy1
1 . . . dyn

1 . . . dy1
2 . . . dyn

2 dy1
m . . . dyn

m ,

where the RHS is essentially Pn .

In this formula the locations in P are {x, y1, . . . , ym} and there are n copies of
P with fresh copies of each of these locations and there are m + 1 symmetrizers,
one to identify each of the n copies of the m + 1 locations in P . Subscripts range
(from 1 to m) over the locations in P and superscripts range (from 1 to n) over the
different copies of the locations.

Proof The first part is just a special case of the second. One can just expand the
power series and carry out the indicated composition term by term on a given
expression using Lemma 7.4.6. There are three types of terms in the power-series
expansion of the exponential: (1) terms of power less than n, (2) the term of power
n and (3) terms of power greater than n. Terms of type (1) vanish when the vari-
ational derivative is carried out, terms of type (3) will have α(x) still present after
the differentiation is done and will vanish when we carry out ([.]|α(x)=0). The entire
contribution comes from terms of type (2). From the definition of the exponential
we get that the order n term is

(1/(n!)) ·
∫

P(x1/x, y1
1/y1, . . . , ym

1 /ym) . . . P(xn, yn
1 , . . . , xn

m)α(x1) . . . α(xn)

Δn(x1, . . . , xn; x)Δn(y1
1 , . . . , yn

1 ; x1) . . . Δn(y1
m, . . . , yn

m; ym)

dy1
1 . . . dy1

m . . . dyn
1 . . . dyn

m

where the free locations in P are {x, y1, . . . , ym}. The variational derivatives are all
of the form δ

δα(x)
and there are n of them. They can be written as

∫

Δn(u1, . . . , un; x)

n∏

j=1

δ
δα(u j)

du1 . . . dun.

Now when we do the x integral the only terms involving x are Δs. Thus using
the definition of symmetrization 16 part (3) we get the sum over n! combinations
of the form

∏n
i=1 δ(ui , xσ(i)) where σ is a permutation of {1, . . . , n}; the sum is

over all the permutations. Note however that the rest of the expression is completely
symmetric with respect to any permutation of {x1, . . . , xn}; thus we can replace
this sum over all permutations with n! times any one term, say

∏n
i=1 δ(ui , xi). Now

doing the ui integral with these δs replaces the δ
δα(ui)

with δ
δα(xi)

. The variational
derivatives are now exactly matched with the αs so we can carry out the indicated
differentiations by just deleting ([x]|α(.)=0), and all the δ

δα(.)
and all the αs. The n!

from the sum over permutations cancels the 1/(n!) in the expansion of the exponen-
tial giving the required result.

7 Proof Nets as Formal Feynman Diagrams 455

This proof is necessary to do once, to show that the symmetrizers interact in the
right way to make sense of the n! factors as permutations. Henceforth we will not
give the same level of detail, instead we will use the abbreviation δ

δα(x)

n
and revert

to the formal notation only after the intermediate steps are completed.
The following easy, but important, proposition can now be established. It is

essentially the “nesting of boxes” formula.

Proposition 7.5.2 Suppose that P and Q are operators not containing α(x) and
suppose that they commute, then exp(P ◦ δ

δα(x)
)◦exp(Qα(x)) is the same as exp(P ◦

δ
δα(x)

◦ exp(Qα(x))).

Proof We will outline the basic calculation which basically just uses Lemma 7.4.2
and Proposition 7.5.1. We will suppress the Δs in the following in order to
keep the notation more readable. We expand the LHS in a formal power series
to get

Σ∞
k=0(1/k!)Pk δk

δα(x)k ◦ exp(Qα(x)).

Because P, Q, δ
δα(x)

all commute we can Proposition 7.5.1 for the variational
derivatives of exponentials and rearrange the order of terms to get

Σ∞
k=0(1/k!)Pk ◦ Qk ◦ exp(Qα(x)).

Using the exponential formula to sum this series we get

exp(P ◦ Q) ◦ exp(Qα(x)).

But this is exactly what the RHS expands to if we use the exponential formula.

The last proposition is a general version of promotion, we do not really need it
but it shows the effect of multiply stacked exponentials.

Lemma 7.5.3 If the operators P and Q have no locations in common then

∫

Δ(x ′, x ′′; x)P(x ′, . . .) δ
δα(x ′′) exp(α(x)Q(x, u)dxdx ′dx ′′

=
∫

Q(x ′′/x, u′′/u)Δ(u, u′; u′′)P(x ′, . . .) exp(α(x ′)Q(x ′/x, u′/u)dx ′dx ′′.

The proof is omitted, it is a routine calculation done by expanding each side and
comparing terms. It allows us to finesse calculating the effect of multiply stacked
exponentials of operators.

Finally we need the following lemma when proving that contraction works prop-
erly in conjunction with exponentiation. We suppress the renaming and symmetriza-
tions to make the formula more readable, note that it is just a special case of a
multiplexing formula of the kind defined in Lemma 7.4.7, with an exponentiated
operator and k = 2.

456 R. Blute and P. Panangaden

Lemma 7.5.4

∫

Δ(y, z; u) exp(Q(u, x1, . . . , xk)) du =
∫

exp(Q(y/u, x ′
1, . . . , x ′

k)) exp(Q(z/u, x ′′
1 , . . . , x ′′

k))

⎡

⎣
k∏

j=1

Δ(x ′
j , x ′′

j ; x j)

⎤

⎦

dx ′
1 . . . dx ′

k dx ′′
1 . . . dx ′′

k .

Proof We proceed by induction on the exponential nesting depth. The base case is
just the multiplexing formula proved in Lemma 7.4.7. In this proof we start from
the right-hand side. Now we note that if we have two operators, A and B, which
commute with each other then we have

eA+B = eAeB .

This can easily be verified by the usual calculation which, of course, uses commu-
tativity crucially. Now on the rhs of the equation we have the exponentials of two
operators which commute because they have no variables in common. Using the
formula then we get

∫

exp(Q(y/u, x ′
1, . . . , x ′

k) + Q(z/u, x ′′
1 , . . . , x ′′

k))

⎡

⎣
k∏

j=1

Δ(x ′
j , x ′′

j ; x j)

⎤

⎦ dx ′
1 . . . dx ′

k dx ′′
1 . . . dx ′′

k .

The Δs symmetrize all the locations, it makes no difference if the power series is
first expanded and then symmetrized or vice-verse thus all the Δs can be promoted
to the exponential. Now using the inductive hypothesis we get the result.

Before we close this section we remark that if A and B do not commute we get
a more complicated formula called the Campbell-Baker-Hausdorff formula. This
formula does not arise in linear logic because of all the linearity constraints which
ensure that operators do commute.

7.6 Interpreting Proof Nets

We now interpret terms in the linear realizability algebra as terms of the φ-calculus
and show that the equations of the algebra are valid.
The translation is shown in Fig. 7.6. In the next section we show some example
calculations. In this section we prove that this interpretation is sound.

The intuition behind the translation is as follows. The axiom link is just the iden-
tity which is modelled by the Dirac delta; in short we use a trivial propagator. The
cut is modelled as an interaction, which means that we identify the common point

7 Proof Nets as Formal Feynman Diagrams 457

Fig. 7.5 Translation of LRA terms to the Φ-calculus

(the interaction is local) and we integrate over the possible interactions. The par and
tensor links are constructing composite objects. They are modelled by using pairing
of locations. The promotion corresponds to an exponentiation and dereliction is
a variational derivative which probes for the presence of the α in an exponential.
Weakening is like a dereliction, except that there is a W to perform discarding.
Finally contraction is effected by a symmetrizer; we think of it like multiplexing.

We proceed to the formal soundness argument.

Theorem 7.6.1 The interpretation of linear realizability algebra terms in the
φ-calculus obeys the equations R1,R3,R6,R7,R8,R9.

Proof The proof of R1 is immediate from the definition of the Dirac delta function.
For R3 we calculate as follows.

[[⊗x,y
z (P, Q)·z�u,v

z (M)]]
=

∫

δ(z, 〈x, y〉)δ(z, [u, v]) P QM dz dxyuv by definition

=
∫

δ(〈x, y〉, [u, v]) P QM dxyuv using δ to do the z integral

=
∫

δ(x, u)δ(y, v) P QM duvxy decomposition of δ

=
∫

P[u/x]M Q[v/y]dudv doing the x, y integrals

=[[P[u/x]·u M ·v Q[v/y]]] by definition.

For equation R6 we calculate as follows.

[[Dx
z (P)·z ! y

z (Q)]]
=

∫

P(x, . . .)δ(x, z)([.]|α(z)=0) ◦ δ
δα(z) δ(y, z) exp(α(z)Q) dzdxdy

by definition

458 R. Blute and P. Panangaden

=
∫

P(x, . . .)δ(x, z)([.]|α(z)=0) ◦ δ
δα(z) exp(α(z)Q[z/y]) dxdz

using δ(y, z) to do the z integral

=
∫

P(x, . . .)([.]|α(x)=0) ◦ δ
δα(x)

exp(α(x)Q[x/y]) dx

using Lemma 7.4.4 and δ(x, z)

=
∫

P Q[x/y] dx

using Lemma 7.5.1

=[[P·x Q[x/y]]]
by definition.

For R7 we have to show

[[Wz(P)·z ! y
z (Q)]] = [[Wu(P)]]

where u = {u1, . . . , uk} is the set of free locations in Q other than y and Wu is
shorthand for Wu1 . . . Wuk . The linearity constraints ensure that u ∩ S(P) = ∅. If
we use the translation and use the simple exponential identity Proposition 7.5.1,
part 1, we get the formula below, which does not mention P ,

∫

W (z)([.]|α(z)=0) ◦ δ
δα(z) exp(α(z)Q[z/y]) dz =

∫

W (z)Q[z/y] dz.

In fact P has nothing to do with this rule so we will ignore it in the rest of the
discussion of this case. Now in order to complete the argument we must prove the
following lemma:

Lemma 7.6.2
∫

Wφ(z)Q(z, u) dz =
∏

i

W (ui)([.]|α(ui)=0) ◦ δ
δα(ui)

.

We have explicitly shown the formula φ that is being weakened on the left-hand side
but not the subformulas of φ which are associated with the W s on the right-hand
side. We have implicitly used the decomposition formula for W that says

WB(z)([.]|α(z)=0) ◦ δ
δα(z) = W ? B(z).

Proof We begin with an induction on the complexity of the weakened formula φ.
In the base case we assume that φ is atomic, say A. Now we do an induction on the
structure of Q, which means that we look at the last rule used in the construction
of the proof Q. Since we have an atomic formula being cut the last rule used in the
construction of Q can only be a dereliction, or a weakening or a contraction. The

7 Proof Nets as Formal Feynman Diagrams 459

dereliction case corresponds to Q being of the form Q ′([.]|α(u)=0) ◦ δ
δα(u)

, where
u is one of the locations in u. Thus we have

∫
WA(z)Q ′(z, u, . . .)([.]|α(u)=0) ◦

δ
δα(u)

dz. Now since Q′ is a smaller proof by structural induction we have
the result for all the locations other than u and we explicitly have the operator
for u. The weakening case is exactly the same. For contraction we have the term∫

WA(z)Δ(z1, z2; z)Q ′(z1, z2, . . .) dzdz1dz2. Using the second decomposition rule
for weakening in definition 18 we get

∫
WA(z1)WA(z2)Q′(z1, z2, . . .)dz1dz2 and

now by the structural induction hypothesis we get the result. This completes the
base case in the outer structural induction. The rest of the proof is essentially a
use of the decomposition rules for W . We give one case. Suppose that φ is of the
form ? ψ . Then we have on the lhs

∫
Wψ(z)([◦]|α(z)=0)

δ
δα(z) Q(z, u) dz, where we

have used the decomposition formula 18, part 1. But by the typing of proof nets
Q itself must be exp(αψ Q′). Now using the usual calculation, from Formula 7.5.1,
part 1, gives the result.

The proofs of R8 and R9 follow from the exponential identities. For R8 we can
use Lemma 7.5.4 directly. While for R9 we can directly use the Lemma 7.5.2.

In this proof the most work went into analyzing weakening, the other rules really
follow very easily from the basic framework. The reason for this is that weakening
destroys a complex formula but the rest of the framework is local. Thus we have to
decompose a W into its elementary pieces in order to get the components annihilated
in atomic pieces.

7.7 Example Calculations

In this section we carry out some basic calculations that illustrate how the manipu-
lations of proof nets are mimicked by the algebra of our operators. In the first two
examples we will just use the formal terms needed for the multiplicatives and there-
after we use operators and illustrate them on examples using exponentials. It should
be clear, after reading these examples, that carrying out the calculation with half a
dozen contractions (the largest that we have tried by hand) is no more difficult than
the examples below, even the bookkeeping with the locations is not very tedious.
We do not explicitly give an example involving nested boxes because this would be
very close to what is already shown in the proof of the last section.

A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest possi-
ble example involves an axiom link cut with another axiom link shown in Fig. 7.6.

The LRA term is Ix,u ·u,v Iv,y . The expression in the φ-calculus is

∫

δ(x, u)δ(u, v)δ(v, y)dudv.

460 R. Blute and P. Panangaden

ux v y

CUT

Fig. 7.6 Two axiom links CUT together

Carrying out the v integration and getting rid of the δ we get
∫

δ(x, u)δ(u, y)du.
Using the convolution property of δ we get δ(x, y) which corresponds to the axiom
link Ix,y .

Tensor and Par

Consider the proof net constructed as follows. We start with two axiom links, one
for A and one for B. We form a single net by tensoring together the A⊥ and the
B⊥. Now consider a second proof net constructed in the same way. With the second
such net we introduce a par link connecting the A and the B. Now we cut the first
net with the second net in the evident way, shown in Fig. 7.7.

The φ-calculus term, with locations introduced as appropriate is

∫ [∫
δA(x, y)δB(u, v)δ(z, 〈y, v〉)dvdy

]

[∫
δA(p, q)δB(r, s)δ(t, 〈q, s〉)δ(w, [p, r])dpdqdrds

]

δ(w, z)dw dz.

CUT

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥ B⊥
t : A ⊗ B

Fig. 7.7 Cutting a
⊗

link with a � link

We first do the w integral and eliminate the term δ(w, z). This will cause z to replace
w. Now we do the z integral and eliminate the term δ(z, 〈y, v〉). This will yield the
term δ(〈y, v〉, [p, r]), which can be decomposed into δ(y, p)δ(v, r). The full term
is now

∫
δA(x, y)δB(u, v)δA(p, q)δB(r, s)δ(y, p)δ(v, r)δ(t, 〈q, s〉)dydvdpdrdsdq.

7 Proof Nets as Formal Feynman Diagrams 461

This is the φ-calculus term that arises by translating the result of the first step of the
cut-elimination process. Note that it has two cuts on the simpler formulas A and B.
Now, as in the previous example we can perform the integrations over y and v using
the formula for the δ and then we can perform the integrations over p and r using
the convolution formula. The result is

∫

δA(x, q)δB(u, s)δ(t, 〈q, s〉)dqds,

which is indeed the form of the φ-calculus term that results from the cut-free proof.

A Basic Exponential Example

We consider the simplest possible cut involving exponential types. Consider the an
axiom link for A, A⊥. We can perform dereliction on the A⊥. Now take another
copy of this net and exponentiate on A. Finally cut the ? A⊥ with the ! A. The
proof net is shown in Fig. 7.8.

The result of translating this into the φ-calculus is (after some obvious simplifi-
cations)

∫

δ(x, y)([.]|α(y)=0)
δ

δα(y)
exp[α(u)δ(u, v)([.]|α(v)=0)

δ
δα(v)

]δ(y, u)dy du.

CUT

x : A y : A⊥ u : A v : A⊥

y : ? A⊥ u : ! A v : ? A⊥

Fig. 7.8 The simplest possible example with exponentials

We can perform the u integration and eliminate the term δ(y, u). Then we can
take the variational derivative of the exponential term which will yield

∫

δ(x, y)δ(y, v)([.]|α(v)=0)
δ

δα(v)
dy.

Now the last integral can be done with the convolution property of δ and we get

δ(x, v)([.]|α(v)=0)
δ

δα(v)

which is what we expect from the cut-free proof.

462 R. Blute and P. Panangaden

u:!A

x1 : A y1 : A⊥ u : A v : A

y1 :?A v : ? A

CUT

y2 : A

y2 :?A

x2 : A

x : A ⊗ A

CONTRACT

y : ? A

Fig. 7.9 An example with contraction

An Example with Contraction

We take a pair of axiom links for A, A⊥ and derelict each one on the A⊥ formula.
We then combine them into a single net by tensoring the two A formulas. The two
derelicted formulas are combined by contraction. Finally we take the basic expo-
nentiated net, as in the last example and cut it with the proof net just constructed in
the evident way. The resulting φ-calculus term is:

∫
δ(x1, y1)δ(x2, y2)δ(x, 〈x1, x2〉)

δ
δα(y1)

δ
δα(y2)

Δ(y; y1, y2)δ(y, u)

exp(α(u)δ(u, v) δ
δα(v)

)dx1dx2dy1dy2dydu.

where we have written δ
δα(v)

rather than ([δ
δα(v)

(·)]|α(v)=0) to avoid cluttering up the
notation. We first get rid of the integration created by the cut so that u is replaced
by y in the exponential. Next we extract the quadratic term from the power-series
expansion of the exponential. All the other terms will vanish after taking derivatives.
The relevant part of the exponential series is the term

(1/2)Δ(y; y′, y′′)α(y′)α(y′′)δ(y′, v′)δ(y′′, v′′)Δ(v; v′, v′′) δ
δα(v′)

δ
δα(v′′) .

Now when we carry out the y integral the term Δ(y; y1, y2)Δ(y; y′, y′′) becomes
2[δ(y1, y′)δ(y2, y′′)]. The factor of 2 from the symmetrization cancels the factor of
1/2 from the power-series expansion. Now we can carry out the y1 and y2 integra-
tions to get

∫
δ(x1, y′)δ(x2, y′′)δ(x, 〈x1, x2〉)

δ
δα(y′)

δ
δα(y′′)α(y′)α(y′′)δ(y′, v′)δ(y′′, v′′)Δ(v; v′, v′′) δ

δα(v′)
δ

δα(v′′)
dv′dv′′dy′dy′′dx1dx2.

7 Proof Nets as Formal Feynman Diagrams 463

Now we can do the derivatives and the y′, y′′ integrals to get

∫

δ(x1, v
′)δ(x2, v

′′)δ(x, 〈x1, x2〉)Δ(v; v′, v′′) δ
δα(v′)

δ
δα(v′′) dv′dv′′dx1dx2.

this is what we expect after cut elimination. Notice how the argument to the expo-
nentiation has become duplicated and has picked up a contraction on its other vari-
ables.

An Example with Contraction and Weakening

We consider a minor variation of the last example. Instead of using the tensor to
obtain a pair of derelictions that need to be contracted we could have obtained a
? (A)⊥ by weakening. The φ-calculus term would then be

∫
δ(x, y1)W (y2)

δ
δα(y1)

δ
δα(y2)

Δ(y; y1, y2)

δ(y, u) exp(α(u)δ(u, v) δ
δα(v)

)dy1dy2dydu.

We can reproduce the calculations as before to get

∫
δ(x, y′)W (y′′)δ(y′, v′)δ(y′′, v′′)

Δ(v; v′, v′′) δ
δα(v′)

δ
δα(v′′)dv′dv′′dy′dy′′.

Carrying out the, by now routine, simplifications, we get∫
δ(x, v′)W (v′′)Δ(v; v′, v′′) δ

δα(v′)
δ

δα(v′′) dv′dv′′.
In this example note how the original weakening at the location y′′ has turned into
a weakening at the location v′′.

7.8 Conclusions

We feel that the most interesting feature of this work is that the subtle combinatorics
of proof nets is captured by the elementary rules of the φ-calculus. More specifically,
the formal devices of a variational derivative, formal power series, symmetrizers and
integrals. The fact that the equations of a linear realizability algebra are obeyed for
our fragment shows that the basic normalization behaviour of proof nets is captured.

But the main caveats are as follows. We have to posit quite a lot of rules to make
weakening behave correctly. This reflects the idea that we are using up resources
piece by piece, whereas weakening causes a “large” type to appear all at once. Thus,
in the reductions, we have to decompose this before throwing it away. We have not
addressed additives in the present paper. It turns out that the same kind of variational
derivative formalism works. There are some interesting features, we model additives
with superposition rather than choice and as a result one can push a cut inside a “with
box.”

464 R. Blute and P. Panangaden

Originally, we had sought to model the exponential type using the so called
Fock space construction of quantum field theory [Blu93]; this led to our present
investigations. Fock space—also known as the symmetric tensor algebra—can be
viewed as the space of analytic functions on a Banach space and, in a formal sense
can be viewed as an exponential. Our original work [RBS93] fell short of modelling
linear logic. Girard [Gir95b] later succeeded in modelling linear logic using analytic
functions on what he called coherent Banach spaces. A key idea in that work is that
the exponentials correspond to the Fock-space construction.

The connection with quantum field theory may be mere analogy but the use
of formal power series and variational derivatives is more than that. The technical
result of this paper is that the combinatorics of proof nets (at least for multiplicative-
exponential linear logic) have been captured by the mathematical structures that we
have introduced. Furthermore, these structures have an independent mathematical
existence that has nothing to do with proof nets or linear logic or quantum field
theory. They form the basis therefore of a research program to investigate several
topics that have recently been based on linear logic. Foremost among these are the
spectacular results of Abramsky, Jagadeesan and Malacaria [AJM00], and Hyland
and Ong [HO00] and Nickau [Nic94] which have led to semantically-presented
fully-abstract models of PCF [Mil77, Plo77]. These models are based on the intu-
itions of games and the flow of information between the players of the games. The
variational derivative, as we have used it, seems to embody the same ideas. It is used
to query a term for the presence of an exponential.

Since this work was first presented in 1995, there have been some interesting
developments. A categorical view of quantum computation[AC04], and indeed of
quantum mechanics, has taken hold and been vigourously pursued [Sel07].

Important work, in terms of the relevance to the present work, is found in the
investigations of Marcelo Fiore et al. where similar formal differential structure is
discussed in the context of bicategories, see, for example, recent papers and slides
available on Fiore’s web page [Fio06, FGHW07, Fio07]. There are close connec-
tions between the structure that he finds and the creation and annihilation operators
of quantum field theory which act on Fock space. There has also been independent
work by Jamie Vickary, so far unpublished, which develops a theory of creation and
annihilation operators on Fock space in the context of categorical quantum mechan-
ics [AC04].

Also clearly relevant is the work of Ehrhard and Regnier [ER03, ER06] in the
notion of differential λ-calculus and differential linear logic. These papers provide
an extension of the usual notions of λ-calculus and linear logic to include a differen-
tial combinator, and explore the syntactic consequences. The possible relationships
to the present work are striking. Ehrhard and Regnier’s work was subsequently cat-
egorified in [BCS06].

Finally it is possible to construct a mathematical model for the φ-calculus.
The manipulations that we have done with variational derivatives and expo-
nentials are very close to the calculations that one does to derive Feynman
diagrams from the generating functional of a quantum field theory [Ram81].
A precise calculus for these functional derivatives viewed as operators and for

7 Proof Nets as Formal Feynman Diagrams 465

propagators appears in the treatment of functional integration in “Quantum Physics”
by Glimm and Jaffe [GJ81].

Acknowledgments We would like to thank Samson Abramsky, Martin Hyland, Radha Jagadeesa
and Mikhail Gromov for interesting discussions.

References

Abr91. Abramsky, S.: Computational interpretations of linear logic. Lecture at Category The-
ory Meeting in Montreal (1991) 442

AC04. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS
2004, pp. 415–425. IEEE Computer Society (2004) 464

ADLR94. Asperti, A., Danos, V., Laneve, C., Regnier, L.: Paths in the ∗-calculus. In: Proceed-
ings of the 9th Annual IEEE Symposium On Logic In Computer Science, Paris,
France, July 1994 438

AJ94a. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear
logic. Symbolic J. Logic 59(2), 543–574 (1994) 442

AJ94b. Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf.
Comput. 111(1), 53–119 (May 1994) 438, 443, 444

AJM00. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput.
163, 409–470 (2000) 464

BB90. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th
Annual ACM Symposium on Principles of Programming Languages, pp. 81–94.
ACM (1990) 443

BCS06. Blute, R., Cockett, R., Seely, R.: Differential categories. Math. Struct. Comput. Sci.
16, 1049–1083 (2006) 464

Blu93. Blute, R.: Linear logic, coherence and dinaturality. Theor. Comput. Sci. 115, 3–41
(1993) 464

Bro05. Brown, L.M. (ed.): Feynman’s thesis. World Scientific, 2005. Book version of R.P.
Feynman’s PhD thesis from Princeton University (1942) 438

CDM95. Cartier, P., DeWitt-Morette, C.: A new perspective on functional integration. J. Math.
Phys. 36, 2237–2312 (1995) 439

DR93. Danos, V., Regnier, L.: Local and asynchronous ∗-reduction. In: Proceedings of the
8th IEEE Symposium on Logic in Computer Science, Montréal. IEEE Press, Canada,
June 1993 438

Dys49. Dyson, F.J.: The radiation theories of Tomanaga, Schwinger and Feynman. Phys. Rev.
75, 486–502 (1949) 438, 442

ER03. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci. 309,
1–41 (2003) 464

ER06. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364,
166–195 (2006) 464

Fey49a. Feynman, R.P.: The space-time approach to quantum electrodynamics. Phys. Rev. 76,
769–789 (1949) 438, 439

Fey49b. Feynman, R.P.: The theory of positrons. Phys. Rev. 76, 749–759 (1949) 438, 439
Fey62. Feynman, R.P.: Quantum Electrodynamics. Lecture Note and Preprint Series.

Benjamin, W.A. Inc. (1962) 438
FGHW07. Fiore, M.P., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicategory

of generalised species of structures. J. London Math. Soc. 77, 203–220 (2007) 464
FH65. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. McGraw Hill,

New York (1965) 439

466 R. Blute and P. Panangaden

Fio06. Fiore, M.P.: Adjoints and fock space in the context of profunctors. Talk given at the
Cats, Kets and Cloisters Workshop, Oxford University, Oxford. (July 2006) 464

Fio07. Fiore, M.P.: Differential structure in models of multiplicative biadditive intuitionistic
linear logic. In: Typed Lambda Calculi and Applications, Number 4583 in Lecture
Notes in Computer Science, pp. 163–177 (2007) 464

Gir89a. Girard, J.-Y.: Geometry of interaction I: Interpretation of system F. In: Ferro, R. et. al.
(eds.) Proceedings Logic Colloquium 88, pp. 221–260. North-Holland, Amsterdam
(1989) 437

Gir89b. Girard, J.-Y.: Geometry of interaction II: Deadlock free algorithms. In: Martin-Lof,
P., Mints, G. (eds.) Proceedings of COLOG 88, Number 417 in Lecture Notes In
Computer Science, pp. 76–93. Springer, New York 1989 437

Gir95a. Girard, J.-Y.: Geometry of interaction III: Accomodating the additives. In: Girard,
J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, Number 222 in London
Mathematics Society Lecture Note Series, pp. 329–389. Cambridge University Press,
Cambridge (1995) 437

Gir95b. Girard, J.-Y.: Linear logic: Its syntax and semantics. In: Girard, J.-Y., Lafont, Y., Reg-
nier, L. (eds.) Advances in Linear logic, Number 222 in London Mathematics Society
Lecture Note Series, pp. 1–42. Cambridge University Press, Cambridge (1995) 464

GJ81. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer,
New York (1981) 439, 441, 465

HO00. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for pcf: I. models, observables and
the full abstraction problem, II. dialogue games and innocent strategies, III. a fully
abstract and universal game model. Inf. Comput. 163, 285–408 (2000) 464

IZ80. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980) 438, 447
Mil77. Milner, R.: Fully abstract models of typed lambda-calculi. Theor. Comput. Sci. 4(1),

1–23 (1977) 464
Mil89. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River

(1989) 442
Nic94. Nickau, H.: Hereditarily sequential functionals. In: Nerode, A., Matiyasevich, Yu.V.

(eds.) In: Proceedings of the Symposium on Logical Foundations of Computer Sci-
ence: Logic at St. Petersburg, volume 813 of Lecture Notes in Computer Science,
pp. 253–264. Springer, New York (1994) 464

Plo77. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5(3),
223–256 (1977) 464

Ram81. Ramond, P.: Field Theory, A Modern Primer. Frontiers in Physics. Benjamin-
Cummings (1981) 447, 464

RBS93. Panangaden, P., Blute, R., Seely, R.: Holomorphic functions as a model of exponential
types in linear logic. In: Brookes, S. et al. (eds.) Proceedings of the 9th International
Conference on Mathematical Foundations of Programming Semantics, volume 802 of
Lecture Notes In Computer Science. Springer, New York (1993) 464

Sch81. Schulman, L.S.: Techniques and applications of path integrals. Wiley, New York
(1981) 439

Sel07. Selinger, P.: Dagger compact closed categories and completely positive maps. In:
Proceedings of the 3rd International Workshop on Quantum Programming Languages
(QPL 2005), Number 170 in ENTCS, pp. 139–163 (2007) 464

Sim05. Simon, B.: Functional Integration and Quantum Physics. AMS Chelsea, 2nd edn.
AMS Chelsea Publishing, Providence (2005) 439

Chapter 8
Compact Monoidal Categories
from Linguistics to Physics

J. Lambek

Abstract This is largely an expository paper, revisiting some ideas about compact
2-categories, in which each 1-cell has both a left and a right adjoint. In the special
case with only one 0-cell (where the 1-cells are usually called “objects”) we obtain a
compact strictly monoidal category. Assuming furthermore that the 2-cells describe
a partial order, we obtain a compact partially ordered monoid, which has been called
a pregroup. Indeed, a pregroup in which the left and right adjoints coincide is just a
partially ordered group (= pogroup).

A brief exposition of recent joint work with Preller and Lambek “Mathemati-
cal Structures in Computer Science”, 17, (2007) will be given here, investigating
free compact strictly monoidal categories, which may be said to describe compu-
tations in pregroups. Free pregroups lend themselves to the study of grammar in
natural languages such as English. While one would not expect to find a connection
between linguistics and physics, applications of (free) compact symmetric monoidal
categories to physics have been made by Coecke “The Logic of Entanglement”
(2004), Abramsky and Coecke “Proceedings of 19th IEEE Conference on Logic
in Computer Science”, pp. 415–425 (2004), Abramsky and Duncan “Mathematical
Structures in Computer Science”, 16, 469–489 (2006), Selinger “Electronic Notes
in Theoretical Computer Science”, 170, 139–163 (2007).

Compact symmetric monoidal categories had already been studied by Kelly and
Laplaza “Journal of Pure and Applied Algebra”, 19, 193–213 (1980), who called
them “compact closed” and by Barr “Lecture Notes in Mathematics”, 752 (1979),
“Journal of Pure and Applied Algebra”, 111, 1–20 (1996), “Theoretical Computer
Science”, 139, 115–130 (1995), who called them “compact star-autonomous”. I had
intended to show that Feynman diagrams for quantum electro-dynamics (QED)
could be described by certain compact Barr-autonomous categories, but was dis-
appointed to find that these reduced to a rather degenerate case, that of partially

J. Lambek (B)
Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
e-mail: lambek@math.mcgill.ca

Lambek, J.: Compact Monoidal Categories from Linguistics to Physics. Lect. Notes Phys. 813,
467–487 (2011)
DOI 10.1007/978-3-642-12821-9_8 c© Springer-Verlag Berlin Heidelberg 2011

468 J. Lambek

ordered groups (= pogroups). Still, I will reluctantly present an extension of this
idea from QED to the Standard Model. Finally, I will briefly review the transition
from 2-categories to the bicategories of Bénabou “Lecture Notes in Mathematics”
47, 1–77 (1967), using methods of Bourbaki “Algebre multilineaire” (1948) and
Gentzen (see Kleene “Introduction to metamathematics” (1952)), which may also
be of interest in physics.

8.1 Compact 2-Categories and Pregroups

A 2-category has 0-cells, 1-cells and 2-cells. A typical 2-category (Cat) is that of all
small categories with

• 0-cells = small categories,
• 1-cells = functors,
• 2-cells = natural transformations.

We recall that 2-cells have, in addition to the vertical composition (represented by a
small circle)

t : F → G u : G → H

u ◦ t : F → H

also a horizontal composition (represented by juxtaposition)

s : H → K t : F → G

st : H F → K G

defined by the diagonal of the commutative square:

H F
Ht � H G

K F

s F

�

K t
� K G

sG

�

st

�

The equations in a 2-category are described formally in Mac Lane’s “Categories
for the working mathematician” [23], but should be familiar from Cat.

The notion of adjoint functor is known in Cat, but exactly the same definition
works in any 2-category. Thus (F, U, η, ε) defines an adjoint pair if

η : 1 → FU and ε : U F → 1

8 Compact Monoidal Categories 469

are 2-cells such that the following triangular equations hold:

F
ηF� FU F

Fε� F = F
1F� F (8.1)

U
Uη� U FU

εU� U = U
1U� U (8.2)

Special cases of 2-categories are
strictly monoidal categories: with only one 0-cell;
partially ordered categories: with only one 2-cell from any 1-cell to another;
partially ordered monoids: both of the above.

A 2-category is said to be compact if every 1-cell G has both a left adjoint G�

and a right adjoint Gr . We describe the two adjoint pairs thus:

(G, Gr , ηG, εG), (G�, G, ηG� , εG�).

Of special interest are compact partially ordered monoids, which I have called
pregroups. In any pregroup we have

GGr → 1 → Gr G, G�G → 1 → GG�

and the triangular equations hold automatically, since the arrow denotes a partial
order. If G� = Gr for all 1-cells G, the pregroup is just a partially ordered group,
more precisely a partially ordered monoid in which each element has an inverse.

Pregroups that are not partially ordered groups are not easy to come by. My
favourite example is the monoid of all unbounded order-preserving mappings Z →
Z, with multiplication and order defined as follows:

(f g) (z) = f (g(z)), f → g ⇔ f (z) ≤ g(z)

for all z ∈ Z. Adjoints are defined thus:

g�(x) = inf{y ∈ Z|x ≤ g(y)}, gr (x) = sup{y ∈ Z|g(y) ≤ x}.

To see that this is not a group, consider g(x) = 2x , then

gr (x) = [x/2], g�(x) = [(x + 1)/2].

The following equations hold for the elements of any pregroup, or even for the
arrows (1-cells) in any compact partially ordered category:

1� = 1 = 1r , ar� = a = a�r , (ab)� = b�a�, (ab)r = br ar .

470 J. Lambek

Moreover, adjoints are unique and

a → b ⇒ b� → a� ⇒ a�� → b�� ⇒ · · · ,

a → b ⇒ br → ar ⇒ arr → brr ⇒ · · · .

8.2 Pregroups for Grammar

Pregroups freely generated by a partially ordered set have recently found an appli-
cation to the grammar of natural languages. To illustrate this with a tiny fragment of
English grammar, consider the poset of basic types:

q1 = yes-or-no question in present tense,
q = yes-or-no question in any tense,
q = question (including Wh-question),
i = infinitive of intransitive verb,
π3 = third person singular subject,
π2 = second person singular or any plural subject,
o = direct object,
p = plural noun phrase,

with basic arrows (partial orders)

q1 → q → q, p → π2, p → o.

Here are three sample questions with their associated types (elements of the free
pregroup):

does he go wi th her ?
(q1 i� π�

3)π3 i (ir i o�)o → q1

whom does he go wi th − ?
(q o�� q�)(q1 i� π�

3)π3 i (ir i o�) → q

wi th whom does he go ?
(q o��� q�)(q o�� q�)(q1 i� π�

3)π3 i → q

where

q�q1 → q�q → 1 .

8 Compact Monoidal Categories 471

The underlinks in a similar enterprise were first introduced by Zellig Harris [12].
They may be viewed as degenerate proofnets. The dash at the end of the second
question represents what Chomsky calls a trace, inserted here to facilitate compari-
son with mainstream linguistics.

The reader may wonder why the above calculations involve only contractions

a�a → 1 and aar → 1

and no expansions

1 → aa� or 1 → ar a .

The reason is the following:

Switching Lemma. Without loss of generality, one may assume that, in any calcula-
tion in a freely generated pregroup, all contractions precede all expansions.

This implies, of course, that, when the right hand side is a simple type (obtained
from a basic type by adjunctions), no expansions are needed. The proof of the lemma
[19] depends on the triangular equations.

Note that, already in the first sample question above, the contraction i�i → 1 was
postponed in order to ensure that the question does not end after go. Here the post-
ponement was obligatory, but often it is optional, allowing different interpretations.
For example, consider

old men and women
(p p�)p (pr p p�) p → p

versus

old men and women
(p p�) p (pr p p�) p → p

In the first noun phrase only the men are described as being old, in the second both
men and women are.

This suggests that we should think of the arrow not just as a partial order, but as
a derivation. In other words, we should replace the pregroup by a compact strictly
monoidal category, or even by a compact 2-category.

8.3 Free Compact 2-Categories

Free compact 2-categories were studied by Preller and Lambek [24]. To convey our
main ideas, let me sketch briefly here how to construct the compact 2-category with
one 0-cell freely generated by a given basic category.

472 J. Lambek

• basic 1-cells are objects of the basic category;
• simple 1-cells have the form A(z), where A is a basic 1-cell and z ∈ Z;
• 1-cells are strings of simple ones, the empty string to be denoted by 1;
• composition of 1-cells is concatenation of strings;
• adjoints of 1-cells are formed by reversing the order and decreasing the super-

script by one unit for left adjoints, increasing it by 1 for right adjoints, but the
empty string is its own left and right adjoint.

A description of 2-cells will be given presently. For this we need to introduce

(3.1) simple arrows of the form f (z) : A(z) → B(z), where

• either z is even and f : A → B is basic
• or z is odd and f : B → A is basic,

(3.2) contractions A(z) A(z+1) → 1 and expansions 1 → A(z+1) A(z).

For example, if f 0 = f : A → B is an arrow in the basic category, we obtain
f r : Br → Ar as follows:

Br → Ar ABr → Ar B Ar → Ar .

This assumes that we have already introduced contractions εB : B Br → 1 and
expansions ηA : 1 → Ar A when A and B are basic 1-cells. We may then also
define

ε(Ar) = (ηA)r , η(Br) = (εB)r .

Repeating this process, we obtain f rr : Arr → Brr as well as ε(Brr) and η(Arr), etc.
This will account for positive z, but negative z may be treated similarly.

The triangular equations for basic 1-cells must be postulated. But then we can
infer them also for simple 1-cells, provided we postulate that adjunction acts con-
travariently on both horizontal and vertical composition. For example,

ε(Ar) Ar ◦ Ar η(Ar) = (ηA)r Ar ◦ Ar (εA)r

= (AηA)r ◦ (εA A)r

= (εA A ◦ AηA)r

= (1A)r

= 1(Ar).

2-cells from one 1-cell to another are obtained by performing a sequence of
“deductions” with the help of simple arrows, contractions and expansions, as fol-
lows:

Γ A(z)Δ → Γ B(z)Δ, Γ A(z) A(z+1)Δ → Γ Δ, Γ Δ → Γ A(z+1) A(z)Δ,

8 Compact Monoidal Categories 473

where Γ and Δ are strings of 1-cells. However, these 2-cells are subject to the
triangular equations discussed earlier. To obtain a canonical representation of 2-
cells, it will be convenient to introduce generalized contractions and expansions,
which already absorb certain simple arrows.

(3.3) Generalized contractions have the form ε f , where f : A → B is a simple
arrow and ε f is the diagonal of the commutative square

ABr f Br
� B Br

AAr

A f r

�

εA

� 1

εB

�

ε
f

�

and generalized expansions have the form ηg , where g : C → B is a simple arrow
and ηg is the diagonal of the commutative square

1
ηB � Br B

Cr C

ηC

�

gr C
� Br C

Br g

�

η
g

�

The Switching Lemma mentioned earlier for free pregroups can be sharpened to
hold also for free compact 2-categories with one 0-cell.

Categorical Switching Lemma

Without loss of generality one may assume that a 2-cell consists of generalized
contractions followed by simple arrows followed by generalized expansions.

Here is an indication of a crucial step in the proof: Suppose a generalized expan-
sion immediately precedes a generalized contraction, as in

A
Aηg� ABr C

ε f C� C

where f : A → B and g : B → C are simple errors, then the compound arrow

(ε f C) ◦ (Aηg) = g ◦ f

may be replaced by the simple arrow g ◦ f : A → C .

474 J. Lambek

To see this look at the following commutative diagram:

ABr C
f Br C� B Br C

εBC � C

ABr B

ABr g

�

f Br B� B Br B

B Br g

�

εB B � B

g

�

A

AηB

�

f
� B

BηB

�

1 B

�

and note that the compound arrow on the top is ε f C and the compound arrow on
the left is Aηg .

To check the commutativity of the above squares, pretend you are in Cat, then
apply the naturality of f, εB and f again.

We have thus proved the generalized triangle equality

(ε f C) ◦ (Aηg) = g ◦ f

and can show similarly that

(Arεg) ◦ (η f Cr) = f r ◦ gr .

We may then represent 2-cells by geometric diagrams called transition systems
by Preller and Lambek [24]. For example, given simple arrows

f : A → F, g : C → D, � : B → E, i : G → H, j : I → J,

we obtain a 2-cell

ABC Dr Er → FGr H Ir J

as a vertical composition as follows:

(FGr Hη j) ◦ (Fηi) ◦ (f εh) ◦ (ABεg Er),

8 Compact Monoidal Categories 475

which is represented horizontally thus:

A B C D E

F

f

G H I J

ε
ε

η η

g

h

rr

r r

i j

When describing a transition system between two 1-cells Γ and Δ, we must ensure
that any simple 1-cell of Γ or Δ is at an endpoint of exactly one simple arrow,
underlink or overlink, and that these don’t cross.

The Switching Lemma ensures that the composition of two transition systems is
again a transition system, by a process we called “combing”, but which others have
called “yanking”. For example:

AA

F

f

G H =

K

l

K

l ◦ i ◦ k ◦ f

ε

η i

r

k

For more details see [24], where it is also shown that the free compact 2-category
thus constructed has the expected universal property.

Buszkowski [6] had shown that the original Switching Lemma for free pregroups
is essentially a cut-elimination theorem for compact bilinear logic. Our categorical
version shows that the composition of 2-cells in free compact 2-categories (with
one 0-cell) can be performed without mentioning vertical composition, except that
of basic arrows, from which other simple arrows are easily constructed. I believe
that this is the true rôle of cut-elimination also in other categorical contexts. (The
restriction that there is only one 0-cell was made for expository purposes and may
of course be removed.)

8.4 In Search of a Compact Feynman Category

From now on let us assume that we are in a compact 2-category with one 0-cell, also
known as a compact strictly monoidal category. Let U = Fr be the right adjoint of
F , hence F = U � the left adjoint of U . The triangular Eq. (8.1) may be represented
geometrically as an equation between diagrams:

476 J. Lambek

F � F �

F � F �

I

�

I

�
U

�

= F �

It is tempting to give a physical interpretation to this in quantum electro-dynamics
(QED):

• F = e− = electron,
• U = e+ = positron,
• I = γ = photon.

It does not seem profitable to distinguish between right and left adjoints here, so we
will assume from now on that G� = Gr for any 1-cell G.

The equation G� = Gr will hold automatically if the 2-category is symmetric,
that is, if composition of 1-cells is commutative, as we shall assume from now on.
This requires, in particular, that any two composable 1-cells must have the same
source and target, as is ensured by our assumption that there is only one 0-cell.
Our compact 2-category thus becomes what Kelly and Laplaza [15] call a compact
closed category (closure being a consequence of compactness, as defined here) and
what Barr calls a compact ∗-autonomous category (the star being the common sym-
bol for the superscripts � and r), although here the tensor product is assumed to be
associative on the nose. The second triangular Eq. (8.2) is now a consequence of the
first (8.1).

Diagrams such as (4.1) were introduced by Feynman as an aid to calculating
probabilities. For example, the probability of what happens at any vertex of (4.1) is
given by the (idealized) charge of the electron.

The equal sign in (4.1) must be taken with a grain of salt. What actually happens
is that the electron goes from point x to point y in space-time in many different ways.
Each of the ways has associated with it a certain complex number, its amplitude,
depending on the energy-momentum 4-vector. These amplitudes must be added up
and the square of the absolute value of their sum is interpreted as the probability for
an electron to go from x to y. Hence the equal sign really holds between equivalence
classes of alternative motions.

The easiest way to ensure the equality in (4.1) is to let the arrow stand for a partial
order. Then we would also predict

8 Compact Monoidal Categories 477

γ �

e
−

�

γ �

e −

�

e
−

�

e +
�

= γ �

in line with what physicists call “vacuum polarization”. Disappointingly, this will
imply that our compact 2-category degenerates into a partially ordered group, in
which adjoints are just inverses.

8.5 A Pogroup for Q E D

I had hoped to describe an interesting freely generated compact monoidal category
for application to quantum electro-dynamics. But, after all the i-s were dotted and
all the t-s were crossed, I realized that all I had was a partially ordered group. I will
now describe a provisional version of this pogroup, provisional because I have not
taken into account the spin of the electron and the polarization of light. These had
also been downplayed, if not ignored, by Feynman [9], whose beautiful exposition
I am relying on.

We take as 1-cells all finite multisets (to be explained presently) of fundamental
1-cells. These are pairs (x, a), where x = (x0, x1, x2, x3) ∈ R

4 is a point in space-
time and a = (a0, a1, a2, a3) ∈ {−1, 0,+1}4 represents a fundamental particle. For
expository purposes we will write (x, a) = xa , thus suggesting that x0 = 1 does
not depend on x .

A multiset is a string, liable to arbitrary permutations of its elements. The compo-
sition of 1-cells, usually called “tensor product” in monoidal categories, is obtained
by combining two multisets into one. The empty multiset is the unity element 1.
(Conceivably, these multisets should be replaced by sets, but this should only be
done after the spin of the electron has been taken into account.)

2-cells, that is arrows between multisets, are “made up” from the following:

• motions: xa → ya ,
• contractions: xa yb → xa+b,
• expansions: xa+b → xa xb.

The last two are subject to the condition that

ai = 0 or bi = 0 or ai + bi = 0

478 J. Lambek

for all i ∈ {0, 1, 2, 3}. We recall that the arrow represents a partial order (not a
pre-order) so that ↔ means equality.

We will leave the complete interpretation of the quadruple a until later. For the
moment let us only mention that

• e = (1,−1,−1,−1) represents the electron e−,
• −e = (−1, 1, 1, 1) represents the positron e+,
• 0 = (0, 0, 0, 0) represents the photon γ .

Hence the contraction

xex0 → xe

describes an electron at x absorbing a photon. If the arrow is reversed, the expansion
describes emission of a photon. The contraction

xex−e → x0 = 1

describes the annihilation of an electron-positron pair. If the arrow is reversed, the
expansion describes pair creation. This should suffice for QED.

What is meant by saying that 2-cells are “made up” from motions, contractions
and expansions? Without giving a tedious formal definition, let me illustrate this by
a calculation:

ue → ve → v0ve → w0ve → wew−eve → wex−exe → wex0 → ye y0 → ye → ze

which is furthermore illustrated by the Feynman diagram, the lefthand side of (4.1):

w
e−

� y
e−

� z

u
e− � v

e− �

γ

�

z

γ

�
e +

�

As another illustration, consider two motions xa → ya and ua → va . They gen-
erate a 2-cell xaua → yava . But, since yava = va ya , this 2-cell is also generated
by the motions xa → va and ua → ya . According to our interpretation, this should
imply that the amplitudes of the two processes are to be added before calculating
the probability of the transition xaua → yava . This is indeed the case, as Feynman
pointed out.

Although I had expected to find an interesting compact closed category, all we
ended up with was a partially ordered group with x0 = y0 = 1 and inverse
(xa)−1 = x−a . It is not the free pogroup generated by the xa , since we have addi-
tional equalities xa xb = xa+b, when one of ai , bi or ai + bi is 0 for each i .

8 Compact Monoidal Categories 479

We might have obtained a more interesting Feynman 2-category (with one 0-
cell), had we not assumed that the 2-cells describe a partial order, but that all “ways”
of going from one point in space-time to another count as 2-cells. However, the
resulting strictly monoidal category would not be compact and would not be relevant
for the present discussion. I have not investigated what happens if we assume that
the symmetry is not exact or if it is replaced by braiding, as in [13].

Already the ancient philosopher Parmenides believed that the flow of time is an
illusion, not shared by the gods. It is therefore of some interest to show formally that
xa → ya implies (and is implied by) y−a → x−a , meaning that any particle may
be viewed as the corresponding anti-particle moving backwards in time. Assuming
xa → ya , we calculate

y−a → y−a y0 → y−a x0 → y−a xa x−a → y−a ya x−a → y0x−a → x0x−a → x−a .

To avoid an overabundance of 2-cells, we will not allow xa → yb unless a = b and
we will postulate

xa = ya if and only if x = y or a = 0. (8.3)

The above treatment ignores the Pauli exclusion principle, which asserts that two
identical electrons (with the same spin direction) cannot occupy the same position in
space-time. We could have overcome this objection had we replaced “multisets” by
“sets” in our definition of 1-cells. But this would not do either, since two identical
photons or two electrons with opposite spin can be at the same place.

8.6 From Q E D to the Standard Model

Had we only been interested in QE D and weak interactions, we could have taken
a to be a pair (a0, a1) with a1 representing the electric charge, if the charge of the
electron is taken as −1. The minus sign here results from an arbitrary choice by
Benjamin Franklin as to what constitutes positive versus negative charge. We have
chosen a = (a0, a1, a2, a3) to account also for strong interactions, with

a1 + a2 + a3 = 3 × electric charge.

Other “colourless” particles in which a1 = a2 = a3 are the following:

• neutrino ν = (1, 0, 0, 0),
• anti-neutrino ν = (−1, 0, 0, 0),

and the weak vector bosons

• W + = (0, 1, 1, 1),
• W − = (0,−1,−1,−1),

480 J. Lambek

and

• Z0 = (0, 0, 0, 0)

unfortunately sharing the same quadruple with the photon.
To account for the strong forces, one requires some new fermions, called

“quarks”, and some new bosons called “gluons”, for which a1, a2 and a3 are no
longer equal. Thus we have the

• (red) up-quark u = (1, 0, 1, 1)

and the

• (red) down-quark d = (1,−1, 0, 0)

with two “colour” variants, depending on the position of the 0 and the −1 respec-
tively, as well as the corresponding anti-particles −u and −d. There are six gluons
to allow for changes of colour, e.g. (0, 1,−1, 0) permits

(1, 0, 1, 1) + (0, 1,−1, 0) → (1, 1, 0, 1),

combining with a red up-quark to yield, say, a blue one. Allegedly, there are also two
so-called “diagonal” gluons, which have not been described here. Altogether, our
quadruples represent 25 known fundamental particles and anti-particles: 4 leptons,
12 quarks, 3 weak vector bosons (not distinguishing Z0 from γ) and 6 gluons.

Let us illustrate this with just one Feynman diagram:

x ′ t ′

y
w+

�

�

d

z

v

�

x

u

�

t

�

e −

Showing how an up-quark decomposes into a down-quark of the same colour and
a positive weak vector boson, which then combines with an electron to form a neu-
trino. We calculate

x (1,0,1,1)t (1,−1,−1,−1) → y(1,0,1,1)t (1,−1,−1,−1) → x ′(1,−1,0,0)z(0,1,1,1)t (1,−1,−1,−1)

→ x ′(1,−1,0,0)t ′(1,0,0,0).

8 Compact Monoidal Categories 481

We have used a0 to represent the fermion number:

• a0 = 1 for fermions,
• a0 = −1 for anti-fermions,
• a0 = 0 for bosons.

Actually, only the number of leptons and the number of quarks are preserved sepa-
rately in known physical interactions. Having adopted the fermion number instead,
we allow in principle that quarks can be transformed into leptons with the help of
some not yet discovered bosons, e.g.

(1,−1, 0, 0) + (0, 1, 0, 0) → (1, 0, 0, 0).

As Feynman points out, this might predict the instability of the proton, which has
not yet been verified experimentally.

Our representation of fundamental fermions was inspired by the more concrete
representation proposed by Harari [11] and Shupe [26], but that of bosons departs
from theirs. Here is a rather “odd” observation, depending on Benjamin Franklin’s
arbitrary choice: out of a possible 34 = 81 quadruples with components −1, 0 and
+1, the number of +1s and the number of −1s in the quadruples occurring above
are both odd or zero. This would still be the case if we admitted six additional
bosons, variants of the hypothetical (0, 1, 0, 0) mentioned above, making a total
of 31. However, we have not accounted for the diagonal gluons and the conjec-
tured graviton and Higgs particle. If our “odd” observation is taken seriously, there
would still be six other potential elementary particles, represented by variants of
(1,−1, 1, 1), bringing the total up to 37.

I am indebted to Derek Wise for bringing to my attention a recent article by
Bilson-Thompson [3], which also offers an abstract development of the Harari-
Shupe model. Rather than invoking a fermion number, he represents a fermion by
a braided triple of “helons”, namely twists of a ribbon through ±2π or 0, and he
distinguishes fermions from their anti-particles by associating them with braids and
anti-braids respectively, thus bringing in the braid group B3. His ideas are further
developed in a joint article with Markopoulou and Smolin [4]. If braiding is not used
to distinguish electrons from positrons, could it be invoked to distinguish spin-up
from spin-down?

8.7 From 2-Categories to Bicategories

Bicategories were introduced by Jean Bénabou [2]. They are like 2-categories,
except that composition of 1-cells, usually called “tensor product”, is associated
only up to coherent isomorphism. Bicategories with a single 0-cell are better known
as monoidal categories. Symmetric monoidal categories, albeit with an additional
operation “dagger”, play a rôle in the categorical approach to quantum mechanics
by Abramsky, Coecke and Selinger [1, 25]. I would like to take a closer look at
bicategories, if only to remind people that the usual coherence and other properties

482 J. Lambek

need not be postulated, but can be proved if the right definition is adopted. I will
follow [18, 22].

A typical bicategory is that of bimodules:

• 0-cells = rings R, S, · · · ,
• 1-cells = bimodules R AS, S BT , · · · ,
• 2-cells = bimodule homomorphisms (= linear mappings).

Composition of 1-cells is the usual tensor product

(R AS, S BT) �→ R(A ⊗ B)T .

Its many properties can all be deduced from Bourbaki’s [5] definition, which
prescribes a bilinear mapping m AB : AB → A ⊗ B with the universal property:
given any bilinear mapping f : AB → C , there is a unique linear mapping f § :
A ⊗ B → C such that f §m AB = f .

Given elements a ∈ A and b ∈ B and abbreviating

m ABab = (a, b),

we may write the above equation as

f §(a, b) = f ab.

From this the usual properties of the tensor product are easily deduced.
For example, if f : A → A′ and g : B → B ′, we may define

f ⊗ g : A ⊗ B → A′ ⊗ B′

by putting f ⊗ g = h§, where h : AB → A′ ⊗ B ′ is given by

hab = (f a, gb),

hence

(f ⊗ g)(a, b) = (f a, gb).

To show that ⊗ is a bifunctor, we require e.g. that

(f ′ ⊗ g′)(f ⊗ g) = f ′ f ⊗ g′g,

when f ′ : A′ → A′′ and g′ : B ′ → B ′′. We prove this by calculating

(f ′ ⊗ g′)(f ⊗ g)(a, b) = (f ′ ⊗ g′)(f a, gb)

= (f ′ f a, g′gb)

= (f ′ f ⊗ g′g)(a, b).

8 Compact Monoidal Categories 483

The associative arrow

αABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

is defined by the equation

αABC ((a, b), c) = (a, (b, c)).

It is easily checked that α is a natural transformation. Similarly one defines

α−1
ABC : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C

and checks that αα−1 = 1 and α−1α = 1 (omitting subscripts). Mac Lane’s famous
pentagonal coherence condition asserts the commutativity of the following diagram:

((A ⊗ B) ⊗ C) ⊗ D
α� (A ⊗ B) ⊗ (C ⊗ D)

α� A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ (B ⊗ C)) ⊗ D

α ⊗ D

�

α
� A ⊗ ((B ⊗ C) ⊗ D)

A ⊗ α

�

This is proved by pointing out that there is a unique arrow

f : (((A ⊗ B) ⊗ C) ⊗ D) → A ⊗ (B ⊗ (C ⊗ D))

such that

f (((a, b), c), d) = (a, (b, (c, d))).

The identity 1-cell IS : S → S for the tensor product is of course the bimodule
S SS obtained from the ring S.

Passing from the concrete bicategory of bimodules to arbitrary bicategories, we
need to treat multilinear maps abstractly. This was done with the help of multicate-
gories (see e.g. [18]), called “operads” by some people.

A multicategory, as viewed most recently [22], is essentially a 2-category, except
that 1-cells are freely generated from basic 1-cells, and 2-cells are restricted to intu-
itionistic Gentzen sequents (see e.g. Kleene [16]), which are composed by cuts:

• Given basic 1-cells R
A← S, S

B← T, T
C← U, . . ., we form (compound) 1-cells

R
AB← T, R

ABC← U , etc.

• We must also admit the empty 1-cells R
∅R← R, S

∅S← S, etc.
• The only 2-cells we retain are of the form Γ → G, where Γ is any 1-cell and G

is a basic one. A cut has the form

484 J. Lambek

f : Λ → A g : Γ AΔ → B

g〈 f 〉 : Γ ΛΔ → B

where

g〈 f 〉 = g ◦ Γ f Δ.

The equations holding in a multicategory are all inherited from those of the encom-
passing 2-category, even though we have discarded all 2-cells except those whose
targets are basic 1-cells.

A tensor product of 1-cells can be introduced by a 2-cell

mAB : AB → A ⊗ B

together with a rule

f : Γ ABΔ → C

f § : Γ (A ⊗ B)Δ → C
,

which associates to any f : Γ ABΔ → C a unique f § : Γ (A⊗ B)Δ → C such that

f §〈mAB〉 = f.

The uniqueness may also be expressed equationally by saying that, for any g :
Γ (A ⊗ B)Δ → C ,

(g〈mAB〉)§ = g.

With any 0-cell R there is associated an identity 1-cell IR , introduced by the
2-cell

iR : ∅R → IR

and a rule

f : Γ Δ → C

f # : Γ IRΔ → C
,

which associates to any f : Γ Δ → C a unique f # : Γ IRΔ → C such that

f #〈iR〉 = f.

The uniqueness amounts to the equation

(g〈iR〉)# = g

for any g : Γ IRΔ → C .

8 Compact Monoidal Categories 485

The arguments we employed for bimodules carry over to any multicategory, pro-
vided we replace elements a ∈ A by indeterminate arrows a : Λ → A, or better by
variables of type A. This can be done formally by invoking the internal language
of a multicategory, see [18] for details of this approach.

8.8 Other Operations in Bilinear Logic

It may be of interest to point out that other operations occurring in bilinear (= non-
commutative linear) logic can be introduced in the same way (see e.g. [19]). For
example, the operation “over” whose dual operation “under” is represented by a
lollipop by Girard (see e.g. Troelstra [27]), is introduced as follows:

eD A : (D/A)A → D,

the rule

f : Γ A → D

f ∗ : Γ → D/A
,

which associates to every 1-cell f : Γ A → D a unique 1-cell f ∗ : Γ → D/A such
that

eD A〈 f ∗〉 = f.

The uniqueness can be expressed by the equation

(eD A〈g〉)∗ = g

for any g : Γ → D/A.
The logical conjunction (= categorical direct product) can be introduced by two

1-cells

pAB : A ∧ B → A, qAB : A ∧ B → B

and the rule

f : Λ → A g : Λ → B

〈 f, g〉 : Λ → A ∧ B
,

which associates to any pair of 1-cells f : Λ → A and g : Λ → B a unique 1-cell
〈 f, g〉 : Λ → A ∧ B such that

pAB〈 f, g〉 = f, qAB〈 f, g〉 = g,

486 J. Lambek

The uniqueness can be expressed by the equation

〈pAB , qAB〉 = 1A∧B .

For a discussion of these and other operations see e.g. [19]. It was there assumed
that there is only one 0-cell, but the arguments carry over to the general case.

Adjoints of 1-cells can be defined in any bicategory. Thus (F, U, η, ε) is an
adjoint pair if

F : R → S, U : S → R, η : IS → F ⊗ U, ε : U ⊗ F → IR

such that

U
∼� U⊗IS

1U ⊗η� U⊗(F⊗U)
α−1
� (U⊗F)⊗U

ε� IR⊗U
∼� U = U

1U� U

and a similar equation holds for F .
A bicategory is said to be compact if every 1-cell has both a left and a right

adjoint. To exhibit a concrete example of a compact bicategory, I find myself turning
to the exercises in [17]. It is shown there that a right module AS has a left adjoint
S A� if and only if it is finitely generated and projective. The left module S A� is
again finitely generated and may be identified with SS/AS . If S is a division ring, all
one-sided S-modules are automatically projective. Similar considerations apply to
left modules R A and their right adjoints Ar

R = R A\R R. We infer that the following
concrete bicategory is compact:

• 0-cells = division rings,
• 1-cells = bimodules finitely generated on both sides,
• 2-cells = bimodule homomorphisms.

A compact monoidal category of possible interest in Physics is the category of all
H − H-bimodules finitely generated on both sides, where H is the division ring of
quaternions. A special object of this monoidal category is the ring of all 4 × 4 real
matrices, which is known to be isomorphic to H ⊗ Hop.

8.9 Postscript

After writing this paper, I became aware of the article by Joyal and Street [19].
They carried out something resembling what I have been trying to do in Sect. 8.3,
but for monoidal categories which are not strictly monoidal. They also constructed
free monoidal, symmetric monoidal and braided monoidal categories. They had in
mind an (as yet unpublished) application to Feynman diagrams. Their work involves
many technical details and definitions, which I admit not having had the patience to
absorb.

I wish to thank Anne Preller for her careful reading of the manuscript.

8 Compact Monoidal Categories 487

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols, In: Proceedings of
19th IEEE conference on Logic in Computer Science, pp. 415–425. IEEE Press Washington,
DC (2004) 481

2. Bénabou, J.: Introduction to bicategories. Lect. Notes Math. 47, 1–77 (1967) 481
3. Bilson-Thompson, S.O.: A topological model of composite preons, Preprint 2006. arXiv:hep-

ph/0503213 481
4. Bilson-Thompson, S.O., Markopoulou, F., Smolin, L.: Quantum Gravity and the Standard

Model, Preprint 2006. arXiv:hep-th/0603022 481
5. Bourbaki, N.: Algèbre multilinéaire, Hermann, Paris (1948) 482
6. Buszkowski, W.: Cut elimination for the Lambek calculus of adjoints. In: Abrusci, V.M. et al.

(eds.) Papers in formal linguistics and logic. Bulzoni, Rome (2002) 475
7. Doşen, K.: Cut elimination in categories, Kluwer, Dordrecht (1999)
8. Doşen, K., Petrić, Z.: Proof-net categories, Project 1650. Math. Institute, Belgrade (2005)
9. Feynman, R.P.: QED: The Strange Theory of Light and Matter. Princeton University Press,

Princeton (1985) 477
10. Glass, A.: Partially ordered groups, World Scientific, Singapore (1998)
11. Harari, H.: Phys. Lett. 86B, 83–86 (1979) 481
12. Harris, Z.: A cyclic cancellation automaton for sentence well-formedness. Int. Comput. Centre

Bull. 5, 69–94 (1966) 471
13. Joyal, A., Street, R.: Braided monoidal categories, Macquarrie University Report No. 800081

(1986) 479
14. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112 (1991)
15. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra

19, 193–213 (1980) 476
16. Kleene, S.C.: Introduction to metamathematics, Van Nostrand (1952) 483
17. Lambek, J.: Lectures on Rings and Modules, pp. 1976. Waltham, Mass (1986) 486
18. Lambek, J.: Multicategories revisited. Contem. Math. 92, 217–239 (1989) 482, 483, 485
19. Lambek, J.: Logic without structural rules. (Another look at cut elimination). In: Doşen, K.

et al, (eds.) Substructural Logic, Studies in Logic and Computation 2, pp. 129–206. Oxford
Science Publications, Oxford (1993) 471, 485, 486

20. Lambek, J.: Type grammar revisited. In: Lecomte, A. et al. (eds.) Logical Aspects of Compu-
tational Linguistics, Springer LNAI 1582, 1–27 (1999)

21. Lambek, J.: Four-vector representation of fundamental particles. Int. J. Theor. Phys. 39
(2253)–2258 (2000)

22. Lambek, J.: Bicategories in algebra and linguistics. In: Ehrhard, T. et al. (eds.) Linear Logic
in Computer Science. LondonMathematical Society Lecture Note Series 316, pp. 325–245.
Cambridge University Press, Cambridge (2004) 482, 483

23. Mac Lane S.: Categories for the working mathematician, Springer, New York (1971) 468
24. Preller, A., Lambek, J.: Free compact 2-categories. Math. Struct. Comput. Sci. 17, 309–340

(2007) 471, 474, 475
25. Selinger, P.: Dagger compact closed categories and completely positive maps. Electron. Notes

Theor. Comput. Sci. 170, 139–163 (2007) 481
26. Shupe, M.A.: Phys. Lett. 86B, 87–92 (1979) 481
27. Troelstra, A.S.: Lectures on linear logic, CSLI Lecture Notes 29, Stanford (1992) 485

Part IV Informatic
Geometry

Chapter 9
Domain Theory and Measurement

K. Martin

Abstract Lecture notes on domain theory and measurement, driven by applications
to physics, computer science and information theory, with a hint of provocation.

9.1 Introduction

9.1.1 History

I loved everything about being a graduate student except going to class, doing home-
work, taking exams, fulfilling requirements associated with earning a degree and
being severely underpaid. What I especially loved was being able to do mathematics.
One semester I signed up for a course on domain theory. I went to the first lecture
and heard about dcpo’s and the fixed point theorem: every Scott continuous map
f : D → D on a dcpo D with a least element ⊥ has a least fixed point given by

fix(f) :=
⊔

n≥0

f n(⊥)

I thought it was neat, so I skipped the rest of my classes that day and immediately
went home to try it out and see how it worked. I wrote down an example of a function
on the interval domain D = IR, this one: for a continuous f : R → R on the real
line, define

split f : C(f) → C(f)

split f [a, b] =
{

left[a, b] if left[a, b] ∈ C(f);
right[a, b] otherwise,

K. Martin (B)
Naval Research Laboratory, Washington, DC, USA
e-mail: keye.martin@nrl.navy.mil

Martin, K.: Domain Theory and Measurement. Lect. Notes Phys. 813, 491–591 (2011)
DOI 10.1007/978-3-642-12821-9_9 c© Springer-Verlag Berlin Heidelberg 2011

492 K. Martin

where C(f) is the subset of IR where f changes sign,

C(f) = {[a, b] : f (a) · f (b) ≤ 0},

and left[a, b] = [a, (a + b)/2] and right[a, b] = [(a + b)/2, b]. If we begin from
any interval [a, b] ∈ C(f) on which f changes sign, then

⊔

n≥0

splitnf [a, b]

is a fixed point of split f , just like the fixed point theorem says it should be. Because
fix(split f) = {x ∈ IR : split f (x) = x} = {[r] : f (r) = 0}, iterating split f is a
scheme for calculating a solution of the equation f (x) = 0.

The problem was: split f was not Scott continuous, so the fixed point theorem
could not be used to explain its behavior on IR. And there was an especially easy
way to see it: plenty of functions f have more than one zero on a given interval
x – but if split f is Scott continuous, its least fixed point on ↑ x is unique (being
maximal), implying that f has only one zero on x . So then the question became:
why did this function behave as though it were continuous? I set about to find an
answer. In the process, I became so interested in domain theory that I never went
back to class again.

What I learned was that there was a reason that this function behaved as though it
were continuous: it wasn’t, but its measure was. Its measure was an important thing:
the length function μ[a, b] = b−a was different from other functions. I later learned
that all recursive functions could be modeled in this way and that the measurement
μ was intertwined with the structure of the domain itself. It provided a measure of
information content and one could use this idea to measure the ‘rate’ at which a
process on a domain manipulated information and to do more things than should be
mentioned in an introduction.

I was never really able to finish telling the story in my doctoral thesis the way
I thought it should have been told. Nevertheless, at two hundred pages, I decided
to stop typing and go to sunny England, where the theory advanced, with the same
structure found in computation (domains and measurements) also being found in
quantum mechanics and general relativity. Later, it was realized that the same struc-
ture was also present in information theory: there was a domain of binary channels,
for instance, with capacity as a measurement. In all these cases, there are neat appli-
cations and new perspectives offered on ideas we previously misled ourselves into
believing we understood. The interaction between these areas is what makes the
study of domains and measurements very exciting.

That brings us to now. This is a “tutorial” on domain theory and measurement. It
is about what we believe we know today. It’s also about what we believe we don’t
know today. There are also new results and ideas here never published before.

9 Domain Theory and Measurement 493

9.1.2 Overview

In Sect. 9.2, the basic elements of domains and measurements are introduced where
our goal is to explain partiality and content as concepts and to explain how one
models them with domains and measurements in practice so that new problems
can be solved. In essence, the goal is to teach “the method” of finding domains
and measurements in nature. A dozen or so basic examples are given. In Sect. 9.3,
we give an important example of what one does with domains and measurements:
applies fixed point theorems. Applications include numerical methods and fractals.
In Sect. 9.4, we give more advanced examples of partiality and content: the domain
of real analytic mappings, the domain of finite probability distributions, the domain
of quantum mixed states and from general relativity, the domain of spacetime inter-
vals. Applications of these domains are to the computation of real analytic map-
pings, the maximum entropy state in statistical mechanics, classical and quantum
communication and to the reconstruction of spacetime from a countable set, includ-
ing its geometry.

In Sect. 9.5, we discuss the informatic derivative: when an operator on a domain
iterates to a fixed point, its informatic derivative measures the rate at which the
iterates converge. Applications are to numerical analysis, to the computation of the
Holevo capacity in quantum information theory and to the complexity of list algo-
rithms. The informatic derivative applies to both continuous and discrete data. In
Sect. 9.6, we discuss additional models of “process” that have proven themselves
useful in the measurement formalism: the renee equation, trajectories, vectors.
Applications include showing that each order on a domain gives rise to a natural
notion of computability, such as the primitive and partial recursive functions; the
analysis of algorithms as trajectories on domains, such as Grover’s algorithm for
quantum searching, whose complexity is the amount of time it takes a trajectory
to reach its maximum in the information order; an analysis of how noise affects
communication with qubits; the derivation of lower bounds on the complexity of
algorithms such as sorting and searching and the fixed point theorem: entropy is the
least fixed point of the copying operator that is above algorithmic complexity.

In Sect. 9.7, we give a brief overview of where things currently stand in the study
of domains and measurements, and try to persuade domain theorists in search of a
decent job to send us an email.

9.1.3 To the Student

A student is any person young enough at heart to be open to new ideas. This paper
is written for students. We have tried to strike a balance between philosophy, mathe-
matics and applicability. Philosophy: what is the big picture? Mathematics: how do
we learn about the big picture? Applicability: what can the big picture teach us about
the world we live in? Philosophy is good because thinking is good. Mathematics is

494 K. Martin

good because knowing what you are thinking about is good. Applicability is good
because knowing why you are thinking what you are thinking about is good. It is
pretty rare that a set of ideas starts off with all three of these in equal measure.
Sometimes there is only philosophy, sometimes only math, sometimes only a ques-
tion. But as a set of ideas evolves, one hopes to see the appearance of all three.

9.2 The Basic Elements

Most newcomers to domain theory stop reading when they see domains presented
as a seemingly endless list of axioms satisfied by partial orders. If this is your
first time reading about domain theory, perhaps you should consider a different
approach. Try first reading Sect. 9.2.1 to understand the ideas intuitively. Then go
to Sect. 9.2.2, but ignore the technical definitions and just look at the dozen or so
examples given instead. After those examples, have a look at Sect. 9.4, where there
are more involved examples. Then ask yourself a question: given the intuitions on
partiality and information content combined with the numerous instances of the idea
that you have seen, how would you formally capture those ideas?

If you find a formal mathematical definition of domain and measurement that
captures all of the examples, compare it to the formalizations given in Sects. 9.2.2
and 9.2.3. If your formalization differs, it might be time to stop reading these
notes and to pursue your own direction. If it is the same, then you will understand
the basic definitions of domain theory and measurement in a way few people do.
And if you are unable to come up with a formalization that captures the basic
examples, then you will better appreciate definitions like “continuous dcpo” and
“measurement”—you will see them for what they are: a significant step toward a
mathematical definition of “information”.

Major references: [1, 15].

9.2.1 Intuition

A domain (D,) is a set of objects D together with a partial order 	 that has
certain intrinsic notions of completeness and approximation defined by the order.
The order 	 is thought of as an information order. Intuitively, x 	 y means “x
contains information about y” or that “x carries information about y.” We might
also say y is at least as informative as x—though this is really just mathematical
uptightness that obscures the essence of the idea: when talking to one’s friends,
people always just say that x 	 y means y is more informative than x . Elements
that compare in the information order are comparable and the thing to remember
about comparable elements is that one of them carries information about the other.

The completeness in a domain refers to the fact that certain results generated
by processes have “limits”. For instance, if a process generates a sequence (xn) of
elements that increase with respect to the information order, xn 	 xn+1 for all n,
then it should ‘go somewhere’ i.e.

9 Domain Theory and Measurement 495

x1 	 x2 	 . . .
⇒
⊔

n∈N

xn ∈ D

The element
⊔

n≥N
xn is not only above each xn in the information order, it is the

“best” such object. Intuitively, if the process generating (xn) is an algorithm repeat-
edly producing iterates xn , then

⊔
n≥N

xn is the final answer.
The notion of approximation is a special case of the information order. If x

approximates y, we write x � y. What it means intuitively is that x carries essential
information about y. But what does “essential” mean? One view of essential is that
any process that produces a sequence (xn) of values with

⊔
xn = y must satisfy

x 	 xn for all but a finite number of the xn . That is, we cannot compute y without
first computing in finite time an object that x carries information about. Thus, x can
also be thought of as a finite approximation of y. Put yet another way, x � y means
that all informatic paths to y must pass through x .

An ideal (or total) object x in a domain D is one that we can only get to using a
process that constructs a sequence of finite approximations. For example, a maximal
element x ∈ D is an object that cannot be improved upon i.e.

(∀y ∈ D) x 	 y ⇒ x = y.

Each maximal element is an example of an ideal element. Any object that is not
ideal (or total) is called partial. Let us give several intuitive examples of ideal and
partial objects.

A compact interval [a, b] of the real line provides a partial description of a real
number; a one point interval [x, x] is total. The uniform probability distribution
⊥ = (1/n, . . . , 1/n) provides incomplete information on the expected outcome of
an experiment, while the finite probability distribution (1, 0, . . . , 0) predicts the out-
come with certainty. The polynomial 1 + x is a finite approximation of the analytic
mapping ex . A pure state |ψ〉〈ψ | in quantum mechanics is total; a mixed state like
⊥ = I/n is partial. An infinite set of natural numbers is total while a finite subset
of it provides a finite approximation.

A measurement μ : D → [0, ∞) is a function on a domain D that to each
informative object x ∈ D assigns a number μx that measures the amount of par-
tiality in x . The amount of partiality, or uncertainty, in an object is also called its
information content. For instance, we would expect uncertainty to decrease as we
move up in the information order,

x 	 y ⇒ μx ≥ μy.

If a process calculates x = ⊔
xn , we would expect

μ

(
⊔

n∈N

xn

)

= lim
n→∞ μxn.

496 K. Martin

If x and y are comparable and μx = μy, then this means that one carries informa-
tion about the other and that they have the same information content, so we would
expect x = y. In particular, if μx = 0, so that x is an object with no uncertainty,
then we would expect that x cannot be improved upon. That is, we would expect x
to be maximal in the information order.

9.2.2 Domains

In this section, we give several basic examples of domains, including the formal
definition of a continuous dcpo. At no point in this section will we define “domain,”
though we will quite frequently make statements like “such and such is an example
of a domain.” There is a good reason for our vagueness, but at this point in time, we
intend to remain vague about it.

The intrinsic notion of completeness in a domain is at least partially captured by
the fact that it forms a dcpo:

Definition 1 Let (P,) be a partially ordered set or poset. A nonempty subset S ⊆
P is directed if (∀x, y ∈ S)(∃z ∈ S) x, y 	 z. The supremum

⊔
S of S ⊆ P is the

least of its upper bounds when it exists. A dcpo is a poset in which every directed
set has a supremum.

One way to formalize the intrinsic notion of approximation possessed by a
domain is continuity:

Definition 2 Let (D,) be a dcpo. For elements x, y ∈ D, we write x � y iff for
every directed subset S with y 	 ⊔

S, we have x 	 s, for some s ∈ S. We set

• ↓↓x := {y ∈ D : y � x} and ↑↑x := {y ∈ D : x � y}
• ↓x := {y ∈ D : y 	 x} and ↑x := {y ∈ D : x 	 y}
A set B ⊆ D is a basis when B ∩ ↓↓x is directed with supremum x for each x ∈ D.
A dcpo is continuous when it has a basis and ω-continuous when it has a countable
basis.

Remark Any continuous dcpo is an example of a domain.

Example 1 The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] 	 [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:

• For directed S ⊆ IR,
⊔

S = ⋂
S,

• I � J ⇔ J ⊆ int(I), and
• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

9 Domain Theory and Measurement 497

The domain IR is called the interval domain. If we replace R by [0, 1], then we
obtain the interval domain I[0, 1] over the unit interval.

A binary channel has two inputs (“0” and “1”) and two outputs (“0” and “1”).
An input is sent through the channel to a receiver. Because of noise in the channel,
what arrives may not necessarily be what the sender intended. The effect of noise
on input data is modelled by a noise matrix u. If data is sent through the channel
according to the distribution x , then the output is distributed as y = x · u. The noise
matrix u is given by

u =
(

a ā
b b̄

)

where a = P(0|0) is the probability of receiving 0 when 0 is sent and b = P(0|1)

is the probability of receiving 0 when 1 is sent and x̄ := 1 − x for x ∈ [0, 1]. Thus,
the noise matrix of a binary channel can be represented by a point (a, b) in the unit
square [0, 1]2 and all points in the unit square represent the noise matrix of some
binary channel.

Example 2 Binary channels. The set of nonnegative noise matrices

N =
{

(a, b) =
(

a ā
b b̄

)

: a ≥ b & a, b ∈ [0, 1]
}

is in bijective correspondence with I[0, 1] via (a, b) �→ [b, a]. With the order it
inherits from I[0, 1], N is called the domain of binary channels.

Example 3 Let X be a locally compact Hausdorff space. Its upper space

UX = {∅ �= K ⊆ X : K is compact}

ordered under reverse inclusion

A 	 B ⇔ B ⊆ A

is a continuous dcpo:

• For directed S ⊆ UX,
⊔

S = ⋂
S, and

• A � B ⇔ B ⊆ int(A).

Example 4 Given a metric space (X, d), the formal ball model [6]

BX = X × [0, ∞)

is a poset when ordered via

(x, r) 	 (y, s) ⇔ d(x, y) ≤ r − s.

498 K. Martin

The approximation relation is characterized by

(x, r) � (y, s) ⇔ d(x, y) < r − s.

The poset BX is continuous. However, BX is a dcpo iff the metric d is complete. In
addition, BX has a countable basis iff X is a separable metric space.

Definition 3 An element x of a poset is compact if x � x . A poset is algebraic if
its compact elements form a basis; it is ω-algebraic if it has a countable basis of
compact elements.

Example 5 The powerset of the naturals

Pω = {x : x ⊆ ω}

ordered by inclusion x 	 y ⇔ x ⊆ y is an ω-algebraic dcpo:

• For directed set S ⊆ Pω,
⊔

S = ⋃
S,

• x � y ⇔ x 	 y & x is finite, and
• {x ∈ Pω : x is finite} is a countable basis for Pω.

Example 6 Binary strings. The collection of functions

Σ∞ = { s | s : {1, . . . , n} → {0, 1}, 0 ≤ n ≤ ∞ }

ordered by extension

s 	 t ⇔ |s| ≤ |t | & (∀ 1 ≤ i ≤ |s|) s(i) = t (i),

where |s| is the cardinality of dom(s), is an ω-algebraic dcpo:

• For directed S ⊆ Σ∞,
⊔

S = ⋃
S,

• s � t ⇔ s 	 t & |s| < ∞,
• {s ∈ Σ∞ : |s| < ∞} is a countable basis for Σ∞,
• The least element ⊥ is the unique s with |s| = 0.

A partial function (or partial map) on a set X is a function f : A → X where
A ⊆ X . We write dom(f) = A and denote partial maps as f : X ⇀ X . They are
equivalent to functions of the form f : X → X ∪{⊥}. The next domain is of central
importance in recursion theory:

Example 7 The set of partial mappings on the naturals

[N ⇀ N] = { f | f : N ⇀ N is a partial map}

ordered by extension

f 	 g ⇔ dom(f) ⊆ dom(g) & f = g on dom(f)

9 Domain Theory and Measurement 499

is an ω-algebraic dcpo:

• For directed set S ⊆ [N ⇀ N], ⊔ S = ⋃
S,

• f � g ⇔ f 	 g & dom(f) is finite, and
• { f ∈ [N ⇀ N] : dom(f) finite} is a countable basis for [N ⇀ N].

Algebraic domains may seem “discrete” in some sense, or at least more discrete
than domains that are continuous but not algebraic, such as IR. However, the reader
should not go around believing that the continuous and the discrete are irreversibly
divided—they are not. In domain theory and measurement, it is often possible to
take a unified view of the two. To partially illustrate this point, let us now consider
a continuous extension of the finite powerset P{1, . . . , n} to the set of finite proba-
bility distributions

Δn :=
{

x ∈ [0, 1]n :
∑

xi = 1
}

.

Each set A ∈ P{1, . . . , n} has a characteristic map χA : {1, . . . , n} → {0, 1}
defined by

χA(i) :=
{

1 if i ∈ A;
0 otherwise.

for which we have

A ⊇ B ⇐⇒ χA ≥ χB

where ≥ is the pointwise order on functions of type {1, . . . , n} → {0, 1} and 1 ≥ 0.
But each A ∈ P{1, . . . , n} \ {∅} corresponds to a canonical x ∈ Δn given by

xi :=
{

x+ if i ∈ A;
0 otherwise,

where x+ refers to the largest probability in x . Thus, we can think of any x ∈ Δn as
having a characteristic function χx : {1, . . . , n} → [0, 1] given by

χx (i) :=
{

1 if xi = x+;
xi otherwise.

Example 8 The set of classical states

Δn :=
{

x ∈ [0, 1]n :
∑

xi = 1
}

is a continuous dcpo in its implicative order [23]

x 	 y ≡ χx ≥ χy .

500 K. Martin

The implicative order can also be characterized as

x 	 y ≡ (∀i) xi < yi ⇒ xi = x+

where again x+ refers to the largest probability in x . Thus, only a maximum prob-
ability is allowed to increase as we move up in the information order on Δn . If the
maximum probability refers to a solution of a problem, then moving up in this order
ensures that we are getting closer to the answer.

Example 9 The set of decreasing classical states

Λn := {x ∈ Δn : (∀1 ≤ i < n) xi ≥ xi+1}

with the majorization relation ≤ given by

x ≤ y ≡ (∀k < n)

k∑

i=1

xi ≤
k∑

i=1

yi

is a continuous dcpo (Λn, ≤). If the implicative 	 order is restricted to Λn , then we
have (Λn,) ⊆ (Λn, ≤), and this inclusion is strict.

A list over S is a function x : {1, . . . , n} → S for n ≥ 0 and the set of all
such x is denoted [S]. The length of a list x is |dom x |. A list x can be written as
[x(1), . . . , x(n)], where the empty list (the list of length 0) is written []. We can also
write lists as a :: x , where a ∈ S is the first element of the list a :: x and x ∈ [S] is
the rest of the list a :: x . For example, the list [1, 2, 3] can be written 1 :: [2, 3].

A set K ⊆ N is convex if a, b ∈ K & a ≤ x ≤ b ⇒ x ∈ K . Given a finite
convex set K ⊆ N, the map scale(K) : {1, . . . , |K |} → K given by

scale(K)(i) = min K + i − 1

relabels the elements of K so that they begin with one.

Example 10 The domain of finite lists. The set of finite lists [S] with 	 given by
reverse convex containment

x 	 y ≡ (∃ convex K ⊆ {1, . . . , length(y)}) y ◦ scale(K) = x .

is an algebraic dcpo in which all elements are compact. If x 	 y, we say that y is a
sublist of x .

For instance, if L = [1, 2, 3, 4, 5, 6], then [1, 2, 3], [4, 5, 6], [3, 4, 5], [2, 3, 4],
[3, 4], [5] and [] are all sublists of L , while [1, 4, 5, 6], [1, 3] and [2, 4] are not
sublists of L . The set [S] is also called the free monoid over S.

9 Domain Theory and Measurement 501

Example 11 Products of domains. If D and E are dcpo’s then

D × E := {(d, e) : d ∈ D & e ∈ E}

is a dcpo in the pointwise order

(x1, y1) 	 (x2, y2) ≡ x1 	 x2 & y1 	 y2.

If D and E are both continuous, then so is D × E , where

(x1, y1) � (x2, y2) ≡ x1 � x2 & y1 � y2.

Having discussed the information order, let us turn now to the question of informa-
tion content.

9.2.3 Measurement

From Sect. 9.2.1, a measurement μ : D → [0, ∞) should satisfy:

1. For all x, y ∈ D, x 	 y ⇒ μx ≥ μy, and
2. If (xn) is an increasing sequence in D, then

μ

⎛

⎝
⊔

n≥1

xn

⎞

⎠ = lim
n→∞ μxn.

On all the domains that we will work with, a mapping will have these two properties
exactly when it is Scott continuous.

Definition 4 For a subset X ⊆ D of a dcpo D, define

↑X :=
⋃

x∈X

↑x & ↓X :=
⋃

x∈X

↓x

A subset U ⊆ D of a dcpo D is Scott open when it is an upper set U = ↑U that is
inaccessible by directed suprema:

⊔
S ∈ U ⇒ S ∩ U �= ∅

for all directed S ⊆ D.

The Scott open sets on a dcpo form a topology. A subset C ⊆ D is Scott closed
when it is a lower set C = ↓C that contains the supremum of every directed set it
contains. Of particular importance for us is that the Scott topology on a continuous

502 K. Martin

dcpo has the collection {↑↑x : x ∈ D} as a basis. That is, it is a topology determined
by approximation.

Example 12 A basic Scott open set in I[0, 1] is

↑↑[a, b] = {x ∈ I[0, 1] : x ⊆ int([a, b])}.

In the domain of binary channels N = {(a, b) : a ≥ b & a, b ∈ [0, 1]}, drawn
with a on the x-axis and b on the y-axis, such a set forms a right triangle whose
hypotenuse lies along the diagonal, but whose other two sides are removed.

Definition 5 A function f : D → E between dcpo’s is Scott continuous if the
inverse image of a Scott open set in E is Scott open in D.

Scott continuity can be characterized order theoretically [1]:

Theorem 1 A function f : D → E is Scott continuous iff f is monotone,

(∀x, y ∈ D) x 	 y ⇒ f (x) 	 f (y),

and preserves directed suprema:

f
(⊔

S
)

=
⊔

f (S),

for all directed S ⊆ D.

Thus, on the very reasonable assumption that the domains which arise in practice
always allow us to replace directed sets with increasing sequences, a measurement
should at least be a Scott continuous function μ : D → [0, ∞)∗, where [0, ∞)∗ is
the domain of nonnegative reals in its dual order:

x 	 y ≡ y ≤ x

and ≤ refers to the usual way of ordering real numbers. But there is more to the
story of content than just continuity.

Imagine that we would like to compute an ideal element x ∈ D in some domain
D that cannot be computed exactly. How accurately would we like to calculate it?
We wish to calculate it to within an accuracy of a � x . Now we proceed to cal-
culate, using some process to determine a sequence of values x1, . . . , xn . . . each
xi containing information about x , that is, xi 	 x . When do we stop? We stop
when some measure of information content μ says that we are ‘close enough’ to the
answer x . How does μ say this?

It tells us that if xn contains information about x and if x and xn are close enough
in information content, then we have succeeded in calculating x to within the desired
accuracy. That is, we have found an xn such that a � xn . In symbols,

(∃ε > 0)(∀n)(xn 	 x & |μx − μxn| < ε ⇒ a � xn)

9 Domain Theory and Measurement 503

Now the thing to realize is that other computations may take other paths (xn) to x
and that we may also be interested in other levels of accuracy a. Since we want μ

to guarantee accuracy for these processes too, we want μ to satisfy

(∀a � x)(∃ε > 0)(∀y ∈ D)(y 	 x & |μx − μy| < ε ⇒ a � y)

If μ can provide this for the element x ∈ D, then μ must be measuring the informa-
tion content of x . If the last statement holds, then it also holds when we can quantify
over all Scott open sets U since sets of the form ↑↑a are a basis for the Scott topology
at x . For a dcpo D, we arrive at the following:

Definition 6 A Scott continuous μ : D → [0, ∞)∗ is said to measure the content
of x ∈ D if for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ε > 0) x ∈ με(x) ⊆ U

where

με(x) := {y ∈ D : y 	 x & |μx − μy| < ε}

are called the ε-approximations of x .

We often refer to μ as simply “measuring” x ∈ D or as measuring X ⊆ D
when it measures each element of X . Minimally, a measurement should measure
the content of its kernel:

Definition 7 A measurement μ : D → [0, ∞)∗ is a Scott continuous map that
measures the content of ker(μ) := {x ∈ D : μx = 0}.

The order on a domain D defines a clear sense in which one object has “more
information” than another: a qualitative view of information content. The definition
of measurement attempts to identify those monotone mappings μ which offer a
quantitative measure of information content in the sense specified by the order. The
essential point in the definition of measurement is that μ measure content in a man-
ner that is consistent with the particular view offered by the order. There are plenty
of monotone mappings that are not measurements—and while some of them may
measure information content in some other sense, each sense must first be specified
by a different information order. The definition of measurement is then a minimal
test that a function μ must pass if we are to regard it as providing a measure of
information content.

Lemma 1 Let μ : D → [0, ∞)∗ be a measurement.

(i) If x ∈ ker(μ), then x ∈ max(D) = {x ∈ D : ↑x = {x}}.
(ii) If μ measures the content of y ∈ D, then

(∀x ∈ D) x 	 y & μx = μy ⇒ x = y.

504 K. Martin

These results say (i) elements with no uncertainty are maximal in the information
order and (ii) comparable elements with the same information content are equal.
The converse of (i) is not true and there are many important cases (see Sect. 9.3.4
for instance) where the applicability of measurement is greatly heightened by the
fact that ker μ need not consist of all maximal elements.

Example 13 Canonical measurements

(i) (IR, μ) the interval domain with the length measurement μ[a, b] = b − a.
(ii) (Pω, | · |) the powerset of the naturals with | · | : Pω → [0, ∞)∗ given by

|x | = 1 −
∑

n∈x

1

2n+1
.

(iii) ([N ⇀ N], μ) the partial functions on the naturals with

μ f = |dom(f)|

where | · | is the previous measurement on Pω.
(iv) (Σ∞, 1/2|·|) the binary strings where | · | : Σ∞ → [0, ∞] is the length of a

string.
(v) (UX, diam) the upper space of a locally compact metric space (X, d) with

diam K = sup{d(x, y) : x, y ∈ K }.

(vi) (BX, π) the formal ball model of a complete metric space (X, d) with

π(x, r) = r

(vii) (Δn, μ) the classical states in their implicative order with μx = 1 − x+. Shan-
non entropy

H(x) = −
n∑

i=1

xi log2(xi)

is also a measurement on Δn .
(viii) (N, c) the nonnegative binary channels with capacity from information theory

(Shannon)

c(a, b) = log2

(

2
āH(b)−b̄H(a)

a−b + 2
bH(a)−aH(b)

a−b

)

where c(a, a) := 0 and H(x) = −x log2(x)−(1−x) log2(1−x) is the binary
entropy.

9 Domain Theory and Measurement 505

(ix) ([S], length) lists with length as a measurement
(x) Products: if (D, μ) and (E, λ), are domains with measurements, then D × E

is a domain with max{μ, λ} and μ + λ as measurements.1

In each case, we have ker μ = max(D).

We will see other examples in Sect. 9.4, including the domains of analytic map-
pings, quantum states and spacetime intervals. The reader who is impatient to find
out what one does with a measurement can skip ahead to any of the other sections
as long as they promise to eventually return. The reader interested in understanding
the ideas should continue reading.

The view of information content taken in the study of measurement is that of
a structural relationship between two classes of objects which, generally speaking,
arises when one class may be viewed as a simplification of the other. The process by
which a member of one class is simplified and thereby “reduced” to an element of
the other is what we mean by “the measurement process” in domain theory [16]. One
of the classes may well be a subset of real numbers, but the ‘structural relationship’
underlying content should not be forgotten. Here is the definition of measurement
in this more general case:

Definition 8 A Scott continuous map μ : D → E between dcpo’s is said to measure
the content of x ∈ D if

x ∈ U ⇒ (∃ε ∈ σE) x ∈ με(x) ⊆ U,

whenever U ∈ σD is Scott open and

με(x) := μ−1(ε) ∩ ↓x

are the elements ε close to x in content. The map μ measures X if it measures the
content of each x ∈ X .

Definition 9 A measurement is a Scott continuous map μ : D → E between dcpo’s
that measures ker μ := {x ∈ D : μx ∈ max(E)}.

In the case E = [0, ∞)∗, the new definition of “measures the content of x” is
equivalent to the one given earlier, so we reserve the right to denote the set μ[0,ε)(x)

by με(x) in contrast to how we first defined με(x), though we will always be clear
about how we are using this notation. In addition, Lemma 1 remains valid in this
more general case; the ‘reflective’ nature of measurement is covered in more detail
in [15]. In addition, with the more abstract formulation of measurement, it becomes
clear that measurements compose. That, for example, is why it was easy to measure
the domain [N ⇀ N] of partial functions in the last example.

1 In principle, it is possible to measure the dcpo of Scott continuous maps [D → E]. In practice,
though, the question is how to do so simply. See [21, 43] for more.

506 K. Martin

9.2.4 Distance, Content and Topology

Why should there be any relation between topology and information content? To
answer this, we have to remember that we are not just talking about any topology,
but rather, the Scott topology, which as we have seen is the topology of approxima-
tion. Second, we have to recall the subtle relation between information content and
the desire to obtain accurate approximations of ideal elements discussed in the last
section.

As it turns out, one way to think of a measurement is essentially as being the
informatic analogue of ‘metric’ for domain theory. There are several senses in which
this is true. Let us consider one by returning to the elements ε close to x ∈ D,
abbreviated to

με(x) := μ[0,ε)(x) = {y ∈ D : y 	 x & μy < ε},

for ε > 0.

Theorem 2 Let D be a continuous dcpo. If μ : D → [0, ∞)∗ measures X ⊆ D,
then

{↑με(x) ∩ X : x ∈ X, ε > 0}

is a basis for the relative Scott topology on X.

Thus, in the presence of a measurement, we can understand the Scott topology
as being derived from ε-approximations of points, similar to the way the topology
of a metric space is specified.

To further develop the analogy between metric and measurement hinted at in the
last result, suppose that a continuous dcpo D has the property that for any x, y ∈ D
there is z ∈ D with z 	 x, y. Notice that in Example 13, domains (i)–(ix) all have
this property. If we encounter a continuous dcpo that does not have this property, we
can always adjoin a bottom element ⊥, and scale the measurement so that μ⊥ = 1.
See chapter five of [15] for more. Then we can define d : D2 → [0, ∞)∗ given by

d(x, y) = inf{μz : z � x, y} = inf{μz : z 	 x, y}

Because μ is monotone, d is Scott continuous. Because μ is Scott continuous, we
have d(x, y) = μx when x 	 y. The distance function d associated to μ is some-
times denoted d(μ).

Definition 10 For a monotone map μ : D → [0, ∞)∗ on a continuous dcpo D with
d = d(μ) defined,

Bε(x) := {y ∈ D : d(x, y) < ε}

for all x ∈ D, ε > 0.

Happily, distance and content are related as follows.

9 Domain Theory and Measurement 507

Theorem 3 If μ : D → [0, ∞)∗ is Scott continuous on a continuous dcpo D with
d = d(μ) defined, then

Bε(x) = ↑με(x),

for each x ∈ D and ε > 0. Consequently,

{Bε(x) ∩ X : x ∈ X, ε > 0}

is a basis for the relative Scott topology on X whenever μ measures X.

Example 14 For (IR, μ),

d([a], [b]) = |a − b|,

for all a, b ∈ R. Because d is the Euclidean metric on R, we can conclude that
max(IR) in its relative Scott topology is homeomorphic to R.

The last example is also true for I[0, 1]. But now something interesting happens,
because Theorem 3 says that any measurement on I[0, 1] induces the Euclidean
topology on its kernel. Recalling that the capacity c : N → [0, 1]∗ of a binary chan-
nel

c(a, b) = log2

(

2
āH(b)−b̄H(a)

a−b + 2
bH(a)−aH(b)

a−b

)

is a measurement on the domain of binary channels N � I[0, 1] from Exam-
ple 13(viii), its associated distance function on ker(c) = max(N) is

ρ([a], [b]) = c(a, b) = c(b, a)

Then, just like Euclidean distance, capacity c : [0, 1]2 → [0, 1] also has the follow-
ing three properties:

(i) c(a, b) = c(b, a),
(ii) c(a, b) = 0 iff a = b,

(iii) The sets {y ∈ [0, 1] : c(x, y) < ε} for ε > 0 form a basis for the Euclidean
topology on [0, 1].

Capacity does not satisfy the triangle inequality, so it is not a priori obvious that the
sets in (iii) form a basis for any topology, let alone the Euclidean topology. Let us
state this another way: the topology of certain spaces can be derived from a notion of
distance that is defined in terms of the amount of information that can be transmitted
between two points [29].

Now we consider another sense in which measurements are the domain theoretic
counterpart to metrics.

508 K. Martin

Definition 11 A measurement μ : D → [0, ∞)∗ on a continuous dcpo D satisfies
the triangle inequality if for all consistent pairs x, y ∈ D, there is an element z 	
x, y such that μz ≤ μx + μy.

When a measurement satisfies the triangle inequality, its corresponding notion of
distance is a metric on the set of elements with measure zero.

Theorem 4 Let (D, μ) be a domain with a measurement satisfying the triangle
inequality. Then d(μ) : ker(μ) × ker(μ) → [0, ∞) is a metric which yields the
relative Scott topology on ker(μ).

For instance, many of the measurements in Example 13 satisfy the triangle
inequality, including (i)–(v) and (xi). More generally, the class of Lebesgue mea-
surements, discussed in Sect. 9.3.4, allows one to conclude that ker(μ) is metriz-
able. In fact, in most cases, we can construct a metric from μ, though the construc-
tion is more involved. One such case is when there is an element z 	 x, y with
μz ≤ 2 · max{μx, μy}, see chapter five of [15] for more on this.

The relation between measurement and topology does not end with the observa-
tion that they are like metrics. It turns out that measuring a domain is equivalent to
being able to generate a certain topology.

Definition 12 The μ topology on a continuous dcpo D has

{↑↑a ∩ ↓x : a, x ∈ D}

as a basis.

Unexpectedly, the μ topology is always zero dimensional and Hausdorff.

Theorem 5 Let D be a continuous dcpo. A Scott continuous μ : D → [0, ∞)∗
measures D iff {με(x) : x ∈ D & ε > 0} is a basis for the μ topology.

In the above result, με(x) = μ[0,ε) is defined as it was earlier in this section. We
pause for a moment now to look at a few of the things one does with domains and
measurements.

9.3 Fixed Points

A least element in a dcpo D is an element ⊥ such that ⊥ 	 x for all x ∈ D. The
first theorem I ever heard about in domain theory is:

Theorem 6 Let D be a dcpo with a least element ⊥. If f : D → D is Scott contin-
uous, it has a least fixed point given by

fix(f) :=
⊔

n≥0

f n(⊥)

9 Domain Theory and Measurement 509

A useful corollary is that f has a least fixed point on ↑x if x 	 f (x).
Exercise: Prove that split f from the introduction is not Scott continuous by

showing that it is not monotone. (Hint: Cheat, by reading this section).
Major references: [15]

9.3.1 Fixed Points of Nonmonotonic Mappings

Ordinarily, this discussion would be deferred to the section “forms of process evo-
lution” but we include it here so that the reader gets some quick examples of what
one does with measurement.

Definition 13 A splitting on a dcpo D is a function s : D → D with x 	 s(x) for
all x ∈ D.

Theorem 7 Let D be a dcpo with a measurement μ that measures D. If I ⊆ D is
closed under directed suprema and s : I → I is a splitting whose measure

μ ◦ s : I → [0, ∞)∗

is Scott continuous, then

(∀x ∈ I)
⊔

n≥0

sn(x) is a fixed point of s.

Moreover, the set of fixed points fix(s) = {x ∈ I : s(x) = x} is a dcpo.

In applications, a slightly weaker formulation can be useful: if for every increas-
ing sequence (xn) in I we have

μs
(⊔

xn

)
= lim

n→∞ μs(xn),

then

⊔

n≥0

sn(x) ∈ fix(s),

for every x ∈ I . In addition, fix(s) = I ∩ ker(μ) iff μs(x) < μx for all x ∈ I with
μx > 0. The point being: we do not need to check that μ ◦ s is monotone in order
to establish the existence of fixed points.

Example 15 Let f : R → R be a continuous map on the real line. Denote by C(f)

the subset of IR where f changes sign, that is,

C(f) = {[a, b] : f (a) · f (b) ≤ 0}.

510 K. Martin

The continuity of f ensures that this set is closed under directed suprema, and the
mapping

split f : C(f) → C(f)

given by

split f [a, b] =
{

left[a, b] if left[a, b] ∈ C(f);
right[a, b] otherwise,

is a splitting where left[a, b] = [a, (a + b)/2] and right[a, b] = [(a + b)/2, b]. The
measure of this mapping

μ split f [a, b] = μ[a, b]
2

is Scott continuous, so Theorem 7 implies that

⊔

n≥0

splitnf [a, b] ∈ fix(split f).

However, fix(split f) = {[r] : f (r) = 0}, which means that iterating split f is a
scheme for calculating a solution of the equation f (x) = 0. This numerical tech-
nique is called the bisection method.

Proposition 1 For a continuous selfmap f : R → R which has at least one zero,
the following are equivalent:

(i) The map split f is monotone.
(ii) The map f has a unique zero r and

C(f) = {[a, r] : a ≤ r} ∪ {[r, b] : r ≤ b}.

That is, if split f is monotone, then in order to calculate the solution r of f (x) = 0
using the bisection method, we must first know the solution r .

Example 16 A function f : [a, b] → R is unimodal if it has a maximum value
assumed at a unique point x∗ ∈ [a, b] such that

(i) f is strictly increasing on [a, x∗], and
(ii) f is strictly decreasing on [x∗, b].

Unimodal functions have the important property that

x1 < x2 ⇒
{

x1 ≤ x∗ ≤ b if f (x1) < f (x2),

a ≤ x∗ ≤ x2 otherwise.

9 Domain Theory and Measurement 511

This observation leads to an algorithm for computing x∗. For a unimodal map f :
[a, b] → R with maximizer x� ∈ [a, b] and a constant 1/2 < r < 1, define a dcpo
by

Ix∗ = {x̄ ∈ IR : [a, b] 	 x̄ 	 [x∗]},

and a splitting by

max f : Ix∗ → Ix∗

max f [a, b] =
{ [l(a, b), b] if f (l(a, b)) < f (r(a, b));

[a, r(a, b)] otherwise,

where l(a, b) = (b−a)(1−r)+a and r(a, b) = (b−a)r +a. The measure of max f

is Scott continuous since μ max f (x̄) = r · μ(x̄), for all x̄ ∈ Ix∗ . By Theorem 7,

⊔

n≥0

maxn
f (x̄) ∈ fix(max f),

for any x̄ ∈ Ix∗ . However, any fixed point of max f has measure zero, and the only
element of Ix∗ with measure zero is [x∗]. Thus,

⊔
maxn

f [a, b] = [x∗], which means
that iterating max f yields a method for calculating x∗. This technique is called the
r-section search.

Finally, observe that max f is not monotone. Let -1 < α < 1 and f (x) =
1 − x2. The function f is unimodal on any compact interval. Since max f [-1, 1] =
[-1, 2r − 1], we see that

max f [-1, 1] 	 max f [α, 1] ⇒ 1 ≤ 2r − 1 or r(α, 1) ≤ 2r − 1

⇒ 1 ≤ r or α + 1 ≤ r(α + 1)

⇒ r ≥ 1,

which contradicts r < 1. Thus, for no value of r is the algorithm monotone.

The previous examples make it clear that there are natural and important exam-
ples of processes on domains that are fundamentally nonmonotonic but which never-
theless have fixed points whose existence can be easily established by measurement
based results. Moreover, the previous fixed point theorem is a strict generalization
of the usual fixed point theorem in domain theory:

Example 17 If f : D → D is a Scott continuous map on a dcpo D with a measure-
ment μ that measures D, then we consider its restriction to the set of points where
it improves

I (f) = {x ∈ D : x 	 f (x)}.

This yields a splitting f : I (f) → I (f) on a dcpo with continuous measure. By
Theorem 7,

512 K. Martin

(∀x ∈ I (f))
⊔

n≥0

f n(x) is a fixed point of f.

For instance, if D is ω-continuous with basis {bn : n ∈ N}, then

μx = |{n : bn � x}|

defines such a measurement. Notice, however, that with this construction we nor-
mally have ker μ = ∅.

9.3.2 Numerical Methods

Numerical methods provide an interesting application of domains and measure-
ments. The two examples in the last section, the bisection and the golden section
search, really only scratch the surface of what is possible in this regard. So in this
section, we take a closer look.

9.3.2.1 A Topological Question: What the **** are We Computing?

By Theorem 2, a measurement μ allows one to derive the Scott topology on ker(μ).
This fundamental fact ensures that what appears to be computation actually is com-
putation.

Example 18 Recall the bisection method split f : C(f) → C(f) from Example 15.
By Theorem 7,

⊔

n≥0

splitnf (x) ∈ fix(split f),

for all x ∈ C(f). But fix(split f) = {[r] : f (r) = 0}, which means that iterating
split f is a scheme for calculating a zero of f . Right?

Well, almost. Let’s take a closer look at things. In the zero finding problem, the
desired result is a number that approximates the zero r , not an interval. In practice,
we calculate a small enough interval x , and then choose a point within it as an
approximation of r . The true reason that split f is an algorithm for computing r is
that if we begin with any x ∈ C(f), and then choose any sequence xn ∈ splitnf (x),
we always have

|xn − r | ≤ μ splitnf (x) ≤ μx

2n ,

and hence xn → r in the usual topology on the real line.
Then what we need to know is that computation on a domain actually corre-

sponds to computation in reality. For the splittings of Prop. 7, the following result
confirms exactly this.

9 Domain Theory and Measurement 513

Proposition 2 Let D be a continuous dcpo with a map μ that measures D, I ⊆ D
a set closed under suprema of increasing sequences and s : I → I a splitting with
μs ≤ c · μ for a constant 0 ≤ c < 1. Then for all x ∈ I , if xn ∈ ↑sn(x) ∩ ker μ, we
have

xn →
⊔

n≥0

sn(x) ∈ fix(s) ⊆ ker μ,

in the relative Scott topology on ker μ.

For instance, in the case of the interval domain IR, we have

ker μ = max(IR) = {[x] : x ∈ R} � R

where the homemorphism is between the relative Scott topology on ker μ and the
usual topology on the real line. Thus, to say that

⊔
n≥0 splitnf (x) computes a zero of

f means exactly the same thing as it does in numerical analysis.

9.3.2.2 Numerical Methods and the Information Order

Some numerical methods manipulate information in a manner that is fundamentally
different than a bracketing method, such as the bisection, or a one point method, like
Newton’s method. Each way of manipulating information corresponds to a different
information order.

Example 19 Let D = [0, 1] be the unit interval in its usual order. Then

PC (D) = {[a, b] : a, b ∈ [0, 1] & a ≤ b}

is called the convex powerdomain over D and its order is given by

[a, b] 	 [x, y] ⇔ a ≤ x & b ≤ y.

We can measure this object by

μ[a, b] = (1 − a) + (1 − b).

Note that ker μ = max(PC (D)) = {[1]}.
The measurement above has a natural explanation [19].

9.3.2.3 One Point Methods

A one point method amounts to iterating a continuous f : [a, b] → [a, b] until we
reach a fixed point, so it should come as no surprise that we can model them domain
theoretically with a copy of [a, b] � [0, 1] in its usual order. However, there is
another way. We can exploit the fact that

514 K. Martin

[0, 1] � {[x] : x ∈ [0, 1]} ⊆ PC [0, 1].

This subset we name the total reals and for this reason we refer to the other elements
of PC [0, 1] as partial reals.

Example 20 Let f be concave increasing on [a, b] with f (a) < 0 and f (b) > 0.
Then consider the partial function I f : PC [a, r] ⇀ PC [a, r] given by

[x] �→ [x − f (x)/ f ′(x)],

which is defined only on the subset of total reals. By Theorem 7,

⊔

n≥0

I n
f [x] ∈ fix(I f) = {[r]},

and so Newton’s method converges for any initial guess x ∈ dom(I f).

One of the standard reasons for avoiding Newton’s method is that it requires
the calculation of a derivative. A common method for overcoming this difficulty
is to approximate the derivative by calculating a difference quotient using two val-
ueswhich simultaneously also serve to approximate the zero r . The most famous of
the interpolation methods, as they are called, is probably the secant method.

9.3.2.4 An Analysis of the Secant Method

One point methods are nothing more than iterating a function on some part of the
real line, so domain theory is not necessary for describing them. However, with
multi-point or interpolation methods, i.e., those which use more than one point to
determine the next approximation in an iterative scheme, we arrive at our first exam-
ple where pursuit of the uniformity ideal mandates a domain theoretic approach.

Example 21 The secant method. If we have a real valued function f , the following
scheme is very useful for zero finding: choose two initial guesses x0 and x1 and then
proceed inductively according to

xn+1 = xn − f (xn) · xn − xn−1

f (xn) − f (xn−1)

for n ≥ 1. The hope is that this sequence converges to a zero of f .

At each iteration of this algorithm, instead of one value, as with Newton’s
method, there are two values to be used in calculating the next approximation. We
visualize it as a sequence of intervals:

[x0, x1] → [x1, x2] → [x2, x3] → · · ·

9 Domain Theory and Measurement 515

The arrow indicates that we are moving up in the information order. These intervals
are almost never nested. Happily, though, they often form an increasing sequence in
the domain PC [a, b] of partial reals.

If we have a function f , its derivative d f [x] = f ′(x) can be extended from the
total reals to the set of all partial reals PC [a, b] by

d f [x, y] = f (y) − f (x)

y − x
if y > x .

And just like that, we can model the secant method.

Theorem 8 Let f be concave and increasing on [a, b] with a zero r ∈ (a, b). Then
iterating the splitting sec f : PC [a, r] → PC [a, r] given by

sec f [x, y] =
[

y, y − f (y)

d f [x, y]
]

is an algorithm for calcuating r . That is,

⊔

n≥0

secn
f (x) = [r],

for any x ∈ PC [a, r].
For a total real [x], we have sec f [x] = [x, x − f (x)/ f ′(x)], which says that

the secant method arises as the extension of a reversible formulation of Newton’s
method from the set of total reals to the set of all partial reals.

An interesting consequence here is that if we are able to compute the value of
f ′ at just one x ∈ [a, r), then the problem of generating two initial guesses for the
secant method is eliminated: given such an [x], we are then assured that we have
enough information to calculate the partial real sec f [x], and from there, Theorem 8
ensures that the iterates secn

f [x] converge to [r].
So we have seen enough to find it plausible that the one point methods, the

bracketing methods and the interpolation methods all have natural domain theoretic
models and that the question of their correctness amounts in all cases to proving
that some operator has a fixed point. Notice that numerical analysis only uses the
fixed point approach for one point methods. This provides a nice uniform approach.
But to really be able to believe in it, we need domain theory to teach us something
new and significant about zero finding—perhaps something that someone other than
a domain theorist would care about.

9.3.2.5 A New Method for Zero Finding

The zero finding problem really is one of the great problems in the history of math-
ematics: given a real valued function f on an interval [a, b], find a zero of f , that
is, a number x such that f (x) = 0. Evariste Galois proved that one must resort to

516 K. Martin

algorithms in solving this problem by showing that polynomials of degree five and
higher have no solution by radicals, i.e., their zeroes are not in general expressible
by a formula.

If one assumes nothing about f except continuity, then there are many senses
in which the bisection method is the optimal algorithm for zero finding ([3, 12]).
However, for a class of Lipschitz mappings [4], the bisection method is no longer
optimal. But Lipschitz mappings have derivatives almost everywhere [38]. In addi-
tion, the optimal algorithm makes use of the Lipschitz constant [4], which is a bound
on its derivative. Another case in which bisection is not optimal is the class of convex
mappings [8]. But there again, one finds that convex mappings are differentiable
everywhere except on a countable set [38]. These two examples raise the following
question: If we have a nontrivial class C of functions and a zero finding algorithm
which is better than the bisection for the members of C, must the functions in C
possess some amount of differentiability? In short, is differentiability in some form
necessary in order to beat the bisection method?

We are going to prove that the answer to this question is no. For the class
of Hölder continuous mappings, which contains all of the well-known examples
of nowhere differentiable functions, including those arising in the analysis of
Brownian motion and fractals [7], we use domain theory and measurement to design
and analyze a new algorithm for zero finding which is better than the bisection
method at every iteration.

We will design the method for Hölder continuous functions which have a simple
zero on a compact interval [a, b].
Definition 14 A map f : [a, b] → R is Hölder continuous if there are positive
constants c > 0 and α > 0 such that

| f (x) − f (y)| ≤ c · |x − y|α

for all x, y ∈ [a, b].
Example 22 Weierstrass’s function. The function introduced in 1872 by Weierstrass,

f (x) =
∞∑

n=0

an cos (bnπx),

is nowhere differentiable for 0 < a < 1 and b an odd integer with ab > 1 + 3π/2.
It is Hölder continuous [46] with α = log(1/a)/ log b.

Definition 15 A function f : [a, b] → R has a simple zero r ∈ [a, b] if

sgn f (x) = sgn(x − r)

for x ∈ [a, b], where sgn(x) = x/|x | for x �= 0, and sgn(0) = 0. Write

� f := {x ∈ IR : [a, b] 	 x 	 [r]}

for the set of intervals where f changes sign.

9 Domain Theory and Measurement 517

Then a function has a simple zero r if it is positive to the right of r and negative
to the left of r . We will make use of the following operators on IR:

Definition 16

• l : IR → R :: [a, b] �→ a
• m : IR → R :: [a, b] �→ (a + b)/2
• r : IR → R :: [a, b] �→ b

These are abbreviated lx := l(x), rx := r(x) and mx := m(x).

For instance, if f : [a, b] → R has a simple zero r on [a, b], then the bisection
split f : � f → � f can be written compactly as

split f (x) =
{ [lx , mx] if f (mx) > 0;

[mx , rx] otherwise.

This formulation of the bisection will help us understand its relation to the new
method:

Theorem 9 Let f : [a, b] → R be a Hölder continuous map with a simple zero r .
Then iterating the splitting s f : � f → � f given by

s f (x) =
⎧
⎨

⎩

[
lx , mx − (f (mx)/c)1/α

]
if f (mx) > 0;

[
mx + (| f (mx)|/c)1/α , rx

]
otherwise;

is an algorithm for computing r . That is,

⊔

n≥0

sn
f (x) = [r],

for all x ∈ � f . Thus, for all x ∈ � f , if xn ∈ sn
f (x) for each n, then xn → r .

The method also easily extends to the case where | f x − f y| ≤ c · g(|x − y|), for a
left invertible g : [0, ∞) → [0, ∞) satisfying g(0) = 0.

9.3.2.6 A Comparison with the Bisection

If s1 and s2 are two algorithms, then a natural intuition stemming from domain
theory is to say that s2 is a better algorithm than s1 if

s1 	 s2 ≡ (∀x) s1(x) 	 s2(x).

However, in the analysis of numerical techniques, one should not expect to be able
to make absolute statements such as “Algorithm 1 is better than Algorithm 2 always
and there is nothing more to be said.” For instance, sometimes the bisection method
is better than Newton’s method, if the derivatives of a function are difficult (or

518 K. Martin

impossible) to calculate, while an advantage of Newton’s method is its quadratic
convergence when close enough to the root. Aside from the fact that our method
requires one to determine the constants α and c – which is not necessarily a simple
matter – we can in a lot of cases say that s f is simply better than the bisection:

Proposition 3 Let f : [a, b] → R be a Hölder continuous map with a simple zero r .
Then split f 	 s f and for any x ∈ � f ,

μs f (x) = μ split f (x) −
(| f (mx)|

c

)1/α

≤ μ split f (x),

with equality only in the unlikely event that mx = r .

For instance, if r is a computable irrational and we begin with an input x having
rational endpoints, then s f is a strict improvement over the bisection.

Corollary 1 Let f : [a, b] → R be a Hölder continuous map with a simple irra-
tional zero r . Then for any x ∈ � f with rational endpoints lx , rx ∈ Q,

μsn
f (x) < μ splitnf (x),

for all iterations n ≥ 1.

And in general we can see the same is true anytime the input interval does not
contain r as its midpoint: once s f gains an advantage over the bisection, it keeps
this advantage forever. While the qualitative statement split f 	 s f is certainly a
strong one for numerical methods, when taken on its own, it leaves something to be
desired: how are we to know the inputs where they are equal? Even if we know that
split f 	 s f and split f �= s f , they may only differ on a single input, which doesn’t
say very much.

But when we incorporate the quantitative as well, then the clarity of what we are
saying improves greatly: split f and s f are equal iff their measures are iff one can
magically choose an input whose midpoint is the zero (which amounts to guessing
the answer). This provides a simple and clear example of the “extra something” that
measurement adds to the standard order theoretic setting and illustrates how precise
an analysis is possible when the qualitative and quantitative are united.

To summarize, domain theory and measurement provides a language for express-
ing zero finding algorithms which renders the verification process systematic and
uniform: it enables us to turn the question of correctness into one about fixed points
for all zero finding methods, whereas this is only normally achieved in numerical
analysis for one point schemes like Newton’s method. And because it also produced
something new, it is okay to believe in it now if you want to.

9 Domain Theory and Measurement 519

9.3.3 Unique Fixed Points

So measurement can be used to generalize the Scott fixed point theorem so as to
include important nonmonotonic processes. But it can also improve upon it for
monotone maps as well, by giving a technique that guarantees unique fixed points.

Definition 17 Let D be a continuous dcpo with a measurement μ. A monotone map
f : D → D is a contraction if there is a constant c < 1 with

μ f (x) ≤ c · μx

for all x ∈ D.

Theorem 10 Let D be a continuous dcpo with a measurement μ such that

(∀ x, y ∈ ker μ)(∃ z ∈ D) z 	 x, y.

If f : D → D is a contraction and there is a point x ∈ D with x 	 f (x), then

x� =
⊔

n≥0

f n(x) ∈ max(D)

is the unique fixed point of f on D. Furthermore, x� is an attractor in two different
senses:

(i) For all x ∈ ker μ, f n(x) → x� in the Scott topology on ker μ, and
(ii) For all x 	 x�,

⊔
n≥0 f n(x) = x�, and this supremum is a limit in the Scott

topology on D.

When a domain has a least element, the last result is easier to state.

Corollary 2 Let D be a domain with least element ⊥ and measurement μ. If f :
D → D is a contraction, then

x� =
⊔

n≥0

f n(⊥) ∈ max D

is the unique fixed point of f on D. In addition, the other conclusions of Theorem 10
hold as well.

Example 23 Let f : X → X be a contraction on a complete metric space X with
Lipschitz constant c < 1. The mapping f : X → X extends to a monotone map on
the formal ball model f̄ : BX → BX given by

f̄ (x, r) = (f x, c · r),

520 K. Martin

which satisfies

π f̄ (x, r) = c · π(x, r),

where π : BX → [0, ∞)∗ is the standard measurement on BX , π(x, r) = r . Now
choose r so that (x, r) 	 f̄ (x, r). By Theorem 10, f̄ has a unique attractor which
implies that f does also because X � ker π .

We can also use the upper space (UX, diam) to prove the Banach contraction
theorem for compact metric spaces by applying the technique of the last example.
In [17], a domain theoretic result is given which generalizes the Banach contraction
theorem. Next up: probably the most overused example of a Scott continuous map
in domain theory. Here is something new about it:

Example 24 Consider the well-known functional

φ : [N ⇀ N] → [N ⇀ N]
φ(f)(k) =

{
1 if k = 0,

k f (k − 1) if k ≥ 1 & k − 1 ∈ dom f.

which is easily seen to be monotone. Applying μ : [N ⇀ N] → [0, ∞)∗, we
compute

μφ(f) = |dom(φ(f))|
= 1 −

∑

k∈dom(φ(f))

1

2k+1

= 1 −
⎛

⎝ 1

20+1 +
∑

k−1∈dom(f)

1

2k+1

⎞

⎠

= 1 −
⎛

⎝1

2
+

∑

k∈dom(f)

1

2k+2

⎞

⎠

= 1

2

⎛

⎝1 −
∑

k∈dom(f)

1

2k+1

⎞

⎠

= μ f

2

which means φ is a contraction on the domain [N ⇀ N]. By the contraction
principle,

⊔

n∈N

φn(⊥) = fac

is the unique fixed point of φ on [N ⇀ N], where ⊥ is the function defined nowhere.

9 Domain Theory and Measurement 521

9.3.4 Fractals

We now consider certain nontrivial examples of contractions and some of their fixed
points: fractals. By induction, a continuous map μ : D → [0, ∞)∗ is a measurement
iff for all finite F ⊆ ker μ and all open sets U ⊆ D,

F ⊆ U ⇒ (∃ ε > 0)(∀x ∈ F) με(x) ⊆ U.

If we require this to hold, not only for finite sets F , but for all compact sets K , we
have exactly a Lebesgue measurement.

Definition 18 A Lebesgue measurement μ : D → [0, ∞)∗ is a continuous map
such that for all compact sets K ⊆ ker μ and all open sets U ⊆ D,

K ⊆ U ⇒ (∃ ε > 0)(∀x ∈ K) με(x) ⊆ U.

Not all measurements are Lebesgue (Example 5.3.2 of [15]). The existence of a
Lebesgue measurement on a domain implies an important relationship between the
Scott topology and the Vietoris topology:

Definition 19 The Vietoris hyperspace of a Hausdorff space X is the set of all
nonempty compact subsets Pcom(X) with the Vietoris topology: it has a basis given
by all sets of the form

σ(U1, · · · , Un) := {K ∈ Pcom(X) : K ⊆
n⋃

i=1

Ui and K ∩ Ui �= ∅, 1 ≤ i ≤ n},

where Ui is a nonempty open subset of X , for each 1 ≤ i ≤ n.

Given a finite number of contractions on a domain (D, μ) with a Lebesgue mea-
surement μ, their union is modelled by a contraction on the convex powerdomain
which then has a unique fixed point and yields the following result from [24]:

Theorem 11 Let D be a continuous dcpo such that

(∀ x, y ∈ D)(∃ z ∈ D) z 	 x, y.

If f : D → D and g : D → D are contractions for which

(∃ x ∈ D) x 	 f (x) & x 	 g(x),

then there is a unique K ∈ Pcom(ker μ) such that f (K) ∪ g(K) = K . In addition,
it is an attractor:

(∀C ∈ Pcom(ker μ)) (f ∪ g)n(C) → K ,

in the Vietoris topology on Pcom(ker μ).

522 K. Martin

In order to apply these results, we need a simple and clear way to recognize
Lebesgue measurements. Let f : [0, ∞)2 → [0, ∞) be a function such that
f (xn, yn) → 0 whenever xn, yn → 0.

Theorem 12 If μ : D → [0, ∞)∗ is a measurement such that for all pairs x, y ∈ D
with an upper bound,

(∃ z 	 x, y) μz ≤ f (μx, μy),

then μ is a Lebesgue measurement.

The value of this result is that it identifies a condition satisfied by many of the
Lebesgue measurements encountered in practice. For instance, just consider the
number of examples covered by f (s, t) = 2 · max{s, t}.
Example 25 Lebesgue measurements.

(i) The domain of streams (Σ∞, 1/2|·|).
(ii) The powerset of the naturals (Pω, | · |).

(iii) The domain of partial maps ([N ⇀ N], |dom|).
(iv) The interval domain (IR, μ).
(v) The upper space (UX, diam) of a locally compact metric space (X, d).

(vi) The formal ball model (BX, π) of a complete metric space (X, d).

In fact, f (s, t) = s + t applies to (i)–(v), the triangle inequality.
We are now going to apply Theorem 11 to obtain the classical result of [11] for

hyperbolic iterated function systems on complete metric spaces.

Definition 20 An iterated function system (IFS) on a space X is a nonempty finite
collection of continuous selfmaps on X . We write an IFS as (X; f1, . . . , fn).

Definition 21 An IFS (X; f1, . . . , fn) is hyperbolic if X is a complete metric space
and fi is a contraction for all 1 ≤ i ≤ n.

Definition 22 Let (X, d) be a metric space. The Hausdorff metric on Pcom(X) is

dH (A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A), }

for A, B ∈ Pcom(X).

Hyperbolic iterated function systems are used to model fractals: Given a fractal
image, one searches for a hyperbolic IFS which models it. But what does it mean to
model an image? The answer is given by Hutchinson’s fundamental result [11].

Theorem 13 (Hutchinson) If (X; f1, . . . , fn) is a hyperbolic IFS on a complete
metric space X, then there is a unique nonempty compact subset K ⊆ X such that

K =
n⋃

i=1

fi (K).

9 Domain Theory and Measurement 523

Moreover, for any nonempty compact set C ⊆ X,
(⋃n

i=1 fi
)k

(C) → K in the
Hausdorff metric dH as k → ∞.

At this stage, we can see that what will be most difficult in proving such a result is
the convergence in the Hausdorff metric. Luckily, this topology is independent of
the metric d on X .

Theorem 14 Let (X, d) be a metric space. Then the topology induced by the Haus-
dorff metric dH on Pcom(X) is the Vietoris topology on Pcom(X).

In [6], the formal ball model BX is used to give a domain theoretic proof of the
existence and uniqueness of the set K in Theorem 13 for any complete metric space
(X, d). What is missing from that discussion is the important issue that K is also an
attractor with respect to the Hausdorff metric dH .

Example 26 If we have two contractions f, g : X → X on a complete metric
space X , they have Scott continuous extensions

f̄ , ḡ : BX → BX

which are contractions on BX with respect to π(x, r) = r . But π is a Lebesgue
measurement on a domain which has the property that for all (x, r), (y, s) ∈ BX ,
there is an element z = (x, r + s + d(x, y)) ∈ BX with z 	 (x, r), (y, s). In
addition, for any x ∈ X , choosing r so that

r ≥ d(x, f x)

1 − c f
and r ≥ d(x, gx)

1 − cg
,

where c f , cg < 1 are the Lipschitz constants for f and g, respectively, gives a point
(x, r) 	 f̄ (x, r), ḡ(x, r). By Theorem 11,

(∃!K ∈ Pcom(ker π)) f̄ (K) ∪ ḡ(K) = K .

However, because ker π � X and the mappings f̄ , ḡ extend f and g, it is clear that

(∃!K ∈ Pcom(X)) f (K) ∪ g(K) = K

Finally, by Theorems 11 and 14, K is an attractor for f ∪ g on Pcom(X).

If a space may be realized as the kernel of a Lebesgue measurement on a contin-
uous dcpo D, then Theorem 11 implies that Hutchinson’s result holds for any finite
family of contractions which extend to D. Necessarily, two questions arise:

• Which spaces arise as the kernel of a Lebesgue measurement?
• When does a domain admit a Lebesgue measurement?

The answer to the first question is that a space is completely metrizable iff it is the
kernel of a Lebesgue measurement on a continuous dcpo, and metrizable iff it is the

524 K. Martin

kernel of a Lebesgue measurement on a continuous poset. The answer to the second
question, for an ω continuous dcpo D, is that the set of maximal elements max(D)

is regular iff it is metrizable iff it is the kernel of a Lebesgue measurement on D.
All of this is explained in more detail in [24]. Such results also have interesting

implications for general relativity [27].

9.4 Instances of Partiality

We now consider four examples of domains whose descriptions are nontrivial. Our
first example is from analysis: the domain of real analytic mappings. The basic idea
is to be able to write things like

1 	 1 + x 	 1 + x + x2

2! 	 . . . 	
⊔

n≥0

(

1 + . . . + xn

n!
)

= ex

Here the polynomials (1 + . . . + xn/n!) in a Taylor expansion are partial, while the
analytic map ex is total. On this domain, we see that analytic mappings arise as fixed
points of monotone operators which provide schemes for how to compute them as a
limit of ‘finite approximations’ (polynomials).

Our second example concerns finite probability distributions or classical states:
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1) are total, while
all others are partial; in particular, the least informative distribution is ⊥ =
(1/n, . . . , 1/n), which we expect to be a least element in the “domain” of clas-
sical states. On this domain, the maximum entropy state of statistical mechanics
arises as the least fixed point of a Scott continuous operator that gives a scheme for
calculating it.

Our third example is the quantum analogue of the second: the domain of quantum
states. In it, pure states |ψ〉〈ψ | are total, while all others (the mixed states) are
partial; in particular, its least element is the completely mixed state ⊥ = I/n. On
this domain, unital quantum channels will be seen to have the same domain theoretic
properties as binary symmetric channels from classical information theory: they
are Scott continuous and have a Scott closed set of fixed points. Later, after we have
studied the informatic derivative, we will see that this domain enables us to calculate
the Holevo capacity of a unital qubit channel. The domain of quantum states can also
be used to recover classical and quantum logic in a unified manner.

Our fourth example is from general relativity: the domain of spacetime intervals.
In it, single events [x, x] are total, while nontrivial intervals [p, q] are partial, in a
manner completely analogous to the interval domain IR. In fact, these two domains
have the exact same formal structure, as we will see. The domain of spacetime inter-
vals is used to explain how spacetime, including its geometry, can be reconstructed
in a purely order theoretic manner beginning from only a countable dense set. This
result may be of interest to those concerned with the causal set approach to quantum
gravity.

9 Domain Theory and Measurement 525

References: The results in this section are from the following sources:
Section 3.1 is from some of the author’s unpublished notes (1998), Sect. 3.2 is
from [5, 31], Sect.3.3 is from [5, 30] and Sect. 3.4 is from [26, 32, 27].

9.4.1 Analytic Mappings

Real analytic mappings will be represented as infinite lists of rational numbers.

Definition 23 A list over Q is a function x : {0 . . . , n} → Q for n ∈ N ∪ {∞}. The
length of a list x is |dom(x)|. Q

∞ is the set of both finite and infinite lists over Q.

A finite list x is usually written as a vector [x0, . . . , xn], where xi = x(i). The
empty list has been excluded above because there is no empty polynomial.

Definition 24 The prefix order 	 on Q
∞ is given by

x 	 y ≡ dom(x) ⊆ dom(y) and (∀i ∈ dom(x)) xi = yi .

In this way, Q
∞ is an ω-algebraic Scott domain whose compact elements are exactly

Qfin.

Definition 25 The norm of a power series

f (x) =
∞∑

n=0

an xn

is

‖ f ‖(x) =
∞∑

n=0

|an xn |

provided that this sum exists.

To say that a power series has a norm on [a, b] means exactly that it converges
absolutely on [a, b].
Lemma 2 If a function f is defined by an absolutely convergent power series on
[a, b], then f and ‖ f ‖ are both continuous on [a, b].

Recall that C[a, b] denotes the space of continuous real value function defined
on [a, b].
Definition 26 The degree of a list p is |p| := (length p)−1, with the understanding
that the degree of an infinite list is ∞. For a list of rationals a ∈ Q

∞, we set

(σa)x =
|a|∑

n=0

an xn,

526 K. Martin

whenever such a sum exists for all x ∈ [a, b]. This gives a partial map-
ping σ : Q

∞ → C[a, b]. A list p is analytic on [a, b] if ‖(σ p)r‖ < ∞ where
r = max{|a|, |b|}.

Observe that σ is defined for any analytic list.

Corollary 3 For every analytic p ∈ Q
∞, σ p ∈ C[a, b] & ‖σ p‖ ∈ C[a, b].

For f, g ∈ C[a, b], the uniform metric is

d(f, g) = sup{| f (x) − g(x)| : x ∈ [a, b]}

With these preliminaries out the way, we can now order analytic mappings:

Definition 27 The set

P
∞[a, b] := {(p, r) : p analytic, r ∈ [0, ∞)∗}

is ordered by

(p, r) 	 (q, s) ≡ p 	 q and d(‖σ p‖, ‖σq‖) ≤ r − s.

Theorem 15 P
∞[a, b] is an ω-continuous dcpo with a countable basis given by

{(p, r) : p finite, r ∈ Q & r ≥ 0}.

Its approximation relation is

(p, r) � (q, s) ⇔ p finite & d(||σ p||, ||σq||) < r − s

and its natural measurement μ : P
∞[a, b] → [0, ∞)∗ given by

μ(p, r) = r + 1

2|p|

measures all of P
∞[a, b], has ker μ = max(P∞[a, b]) and satisifies the triangle

inequality: for all pairs x, y ∈ P
∞[a, b] with an upper bound, there is z 	 x, y

with μz ≤ μx + μy.

We adopt the convention of writing

Pfin[a, b] = {(p, r) ∈ P
∞[a, b] : p finite, r ≥ 0}

Proposition 4 If f : Pfin[a, b] → E is a monotone map into a dcpo such that

f (p, r) =
⊔

f (p, r + 1/n)

for p finite, then f may be extended uniquely to a Scott continuous map on all of
P

∞[a, b].

9 Domain Theory and Measurement 527

A mapping f of the type discussed in the previous result is said to be invariant
on polynomials.

Example 27 The unary operation addition by 1

(p, r) �→ ([a0 + 1, . . . , an], r)

is monotone and invariant on polynomials, so it extends uniquely to P
∞[a, b].

At times we may blur the distinction between polynomials and lists of rational
numbers, that is, we will treat them as one and the same for the purpose of illustrat-
ing various points about mappings on P

∞[a, b] and the functions they act on. Now
for a nontrivial example.

Example 28 Let [a, b] be an interval containing 0 and define

I : Pfin[a, b] → P
∞[a, b]

I (p, r) = (

∫ x

0
p(t) dt, m · r)

where m = max{|a|, |b|} and
∫ x

0 p(t) dt is the list operation taking p =
[a0, . . . , an] to [0, a0, . . . , an/(n + 1)]. This mapping is monotone and invariant
on polynomials so it has a unique Scott continuous extension to all of P

∞[a, b],
which we denote by

∫ x
0 .

From a symbolic definition of integral for polynomials, the one we normally
program when implementing the polynomial data type, we systematically obtain
a definition of integral for analytic mappings.

Example 29 The exponential map. Consider the operator

exp : P
∞[−c, c] → P

∞[−c, c]
exp(p, r) = 1 +

∫ x

0
(p, r)

for 0 < c < 1, the Scott continuous map
∫ x

0 composed with the unary Scott contin-
uous operator that adds 1. Since (1, r) 	 exp(1, r) for r ≥ 1, Scott continuity gives
a fixed point

fix(exp) =
⊔

n≥0

expn(1, 1)

that is easily seen to be the exponential map ex . This fixed point is unique.
First, because exp is a contraction with respect to the natural measurement μ with

μ(exp) ≤ max{c, 1/2}·μ, any other fixed point exp(p, r) = (p, r) yields μ(p, r) =
0. But any fixed point (p, 0) must also have 1 	 p. Let r := d(1, ‖σ p‖) + 1 ≥ 1.

528 K. Martin

Then since (1, r) 	 (p, 0), we have a lower bound for both (p, 0) and fix(exp),
which gives (p, 0) = fix(exp) since exp is a contraction.

Notice that expn(1, 1) is the nth-degree Taylor approximation of the maximal
element ex . In addition, the smaller the interval [−c, c], the smaller that c is, the
quicker that exp converges to ex . Thus, using the domain of analytic mappings
we see that fewer terms of the Taylor series are required to approximate ex on the
interval [−c/2, c/2] than on the interval [−c, c].

In a similar way one can realize the sine and cosine functions as unique fixed
points of Scott continuous mappings.

Example 30 The trigonometric functions. The operator for the sine is

φ(p, r) = x −
∫ x

0

∫ y

0
(p, r).

The operator for the cosine is

φ(p, r) = 1 −
∫ x

0

∫ y

0
(p, r).

The iteration for the first begins with the polynomial x , and the second begins with
the polynomial 1.

9.4.2 Classical States

Definition 28 Let n ≥ 2. The classical states are

Δn :=
{

x ∈ [0, 1]n :
n∑

i=1

xi = 1

}

.

A classical state x ∈ Δn is pure when xi = 1 for some i ∈ {1, . . . , n}; we denote
such a state by ei .

Pure states {ei }i are the actual states a system can be in, while general mixed
states x and y are epistemic entities. Imagine that one of n different outcomes is
possible. If our knowledge of the outcome is x ∈ Δn , and then by some means we
determine that outcome i is not possible, our knowledge improves to

pi (x) = 1

1 − xi
(x1, . . . , x̂i , . . . , xn+1) ∈ Δn,

where pi (x) is obtained by first removing xi from x and then renormalizing. The
partial mappings which result, pi : Δn+1 ⇀ Δn with dom(pi) = Δn+1 \ {ei }, are
called the Bayesian projections and lead one to the following relation on classical
states.

9 Domain Theory and Measurement 529

Definition 29 For x, y ∈ Δn+1,

x 	 y ≡ (∀i)(x, y ∈ dom(pi) ⇒ pi (x) 	 pi (y)).

For x, y ∈ Δ2,

x 	 y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) .

The relation 	 on Δn is called the Bayesian order.

As we can see, the definition of Δn+1 from Δn is natural. The order on Δ2, is
derived from the graph of entropy H(x) = −x log2(x) − (1 − x) log2(1 − x) as
follows:

H

x f lip−→

(1, 0) (0, 1)

⊥ = (1
2 , 1

2)

It is canonical in the following sense:

Theorem 16 There is a unique partial order on Δ2 that satisfies the mixing law

x 	 y and p ∈ [0, 1] ⇒ x 	 (1 − p)x + py 	 y

and has ⊥ := (1/2, 1/2) as a least element. It is the Bayesian order on classical
two states.

The Bayesian order was discovered in [5] where the following is proven:

Theorem 17 (Δn,) is a dcpo with least element ⊥ := (1/n, . . . , 1/n) and
max(Δn) = {ei : 1 ≤ i ≤ n}. It has Shannon entropy

μx = −
n∑

i=1

xi log xi

as a measurement of type Δn → [0, ∞)∗.

A more subtle example of a measurement on Δn in its Bayesian order is the
retraction r : Δn → Λn which rearranges the probabilities in a classical state into
descending order.

The Bayesian order has a more direct description: the symmetric formulation. Let
S(n) denote the group of permutations on {1, . . . , n} and

Λn := {x ∈ Δn : (∀i < n) xi ≥ xi+1}

530 K. Martin

denote the collection of monotone decreasing classical states. It can then be
shown [5] that for x, y ∈ Δn , we have x 	 y iff there is a permutation σ ∈ S(n)

such that x · σ, y · σ ∈ Λn and

(x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n. Thus, (Δn,) can be thought of as n! many copies of the
domain (Λn,) identified along their common boundaries, where (Λn,) is

x 	 y ≡ (∀i < n) xi yi+1 ≤ xi+1 yi .

It should be remarked though that the problems of ordering Λn and Δn are very
different, with the latter being far more challenging, especially if one also wants
to consider quantum mixed states. Let us now consider an important application of
the Bayesian order to give a method for calculating the maximum entropy state of
statistical mechanics.

9.4.2.1 The Maximum Entropy Principle

The possible outcomes of an event are a1, . . . , an . It is repeated many times and an
average value of E is observed. What is the probability pi of ai ? The maximum
entropy principle provides an approach to solve this problem: because Shannon
entropy has a maximum value on the set

{

p ∈ Δn :
n∑

i=1

pi · ai = E

}

that is assumed at exactly one point, one possibility is to use this state as the proba-
bility distribution that models our observed data. Beautiful—but how do we calcu-
late this distribution?

Define

f (x) =
∑n

i=1 ai exai

∑n
i=1 exai

− E, I f (x) = x − f (x)

(an − a1)2

for any x ∈ R. Define λ : Δn → R ∪ {±∞} by

λ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log
(

sort(x)1
sort(x)2

)

an−an−1
if If (0) > 0;

log
(

sort(x)1
sort(x)2

)

a1−a2
otherwise.

with the understanding for pure states that λx = ∞ in the first case and λx = −∞
in the other. The map sort puts states into decreasing order.

9 Domain Theory and Measurement 531

Theorem 18 Let a1 < E < an. The map

φ : Δn → Δn

given by

φ(x) = (eI f (λx)a1, . . . , eI f (λx)an) · 1

Z(x)

Z(x) =
n∑

i=1

eI f (λx)ai

is Scott continuous in the Bayesian order. Its least fixed point is the maximum
entropy state.

The maximum entropy principle has been successfully applied to perform image
reconstruction from noisy data, probabilistic link extraction from intelligence data,
natural language processing, stock price volatility, thermodynamics.

9.4.3 Quantum States

Let Hn denote an n-dimensional complex Hilbert space with specified inner product
〈·|·〉.
Definition 30 A quantum state is a density operator ρ : Hn → Hn , i.e., a self-
adjoint, positive, linear operator with tr(ρ) = 1. The quantum states on Hn are
denoted Ωn .

Definition 31 A quantum state ρ on Hn is pure if

spec(ρ) ⊆ {0, 1}.

The set of pure states is denoted Σn . They are in bijective correspondence with the
one dimensional subspaces of Hn .

Classical states are distributions on the set of pure states max(Δn). By Gleason’s
theorem, an analogous result holds for quantum states: Density operators encode
distributions on the set of pure states Σn .

Definition 32 A quantum observable is a self-adjoint linear operator e : Hn → Hn .

An observable of a physical system is anything about it that we can measure.
For example, energy is an observable. Observables in quantum mechanics are rep-
resented mathematically by self-adjoint operators.

If we have the operator e representing the energy observable of a system (for
instance), then its set of eigenvalues spec(e), called the spectrum of e, consists of
the actual energy values a system may assume. If our knowledge about the state of

532 K. Martin

the system is represented by density operator ρ, then quantum mechanics predicts
the probability that a measurement of observable e yields the value λ ∈ spec(e).
It is

pr(ρ → eλ) := tr(pλ
e · ρ),

where pλ
e is the projection corresponding to eigenvalue λ and eλ is its associated

eigenspace in the spectral representation of e.

Definition 33 Let e be an observable on Hn with spec(e) = {1, . . . , n}. For a quan-
tum state ρ on Ωn ,

spec(ρ|e) := (pr(ρ → e1), . . . , pr(ρ → en)) ∈ Δn.

We assume that all observables e have spec(e) = {1, . . . , n}. For our purposes
it is enough to assume |spec(e)| = n; the set {1, . . . , n} is chosen for the sake of
aesthetics. Intuitively, then, e is an experiment on a system which yields one of n
different outcomes; if our a priori knowledge about the state of the system is ρ, then
our knowledge about what the result of experiment e will be is spec(ρ|e). Thus,
spec(ρ|e) determines our ability to predict the result of the experiment e.

Let us point out that spec(ρ) = Im(spec(ρ|e)) and spec(σ) = Im(spec(σ |e)) are
equivalent to [ρ, e] = 0 and [σ, e] = 0, where [a, b] = ab − ba is the commutator
of operators.

Definition 34 Let n ≥ 2. For quantum states ρ, σ ∈ Ωn , we have ρ 	 σ iff there
is an observable e : Hn → Hn such that [ρ, e] = [σ, e] = 0 and spec(ρ|e) 	
spec(σ |e) in Δn .

This is called the spectral order on quantum states.

Theorem 19 (Ωn,) is a dcpo with maximal elements max(Ωn) = Σn and least
element ⊥ = I/n, where I is the identity matrix. It has von Neumann entropy

σρ = −tr(ρ log ρ)

as a measurement of type Ωn → [0, ∞)∗.

Another natural measurement on Ωn is the map q : Ωn → Λn which assigns to a
quantum state its spectrum rearranged into descending order. It can be thought of as
an important link between classical and quantum information theory.

There is one case where the spectral order can be described in an elementary
manner.

Example 31 The 2×2 density operators Ω2 can be represented as points on the unit
ball in R

3 :

Ω2 � {(x, y, z) ∈ R
3 : x2 + y2 + z2 ≤ 1}.

9 Domain Theory and Measurement 533

For example, the origin (0, 0, 0) corresponds to the completely mixed state I/2,
while the points on the surface of the sphere describe the pure states. The order on
Ω2 then amounts to the following: x 	 y iff the line from the origin ⊥ to y passes
through x .

Let us now consider an application of Ω2 to the study of communication.

9.4.3.1 Classical and Quantum Communication

The classical channels f : Δ2 → Δ2 which increase entropy (H(f (x)) ≥ H(x))

are exactly those f with f (⊥) = ⊥. They are the strict mappings of domain
theory, which are also known as binary symmetric channels in information the-
ory. Similarly, the entropy increasing qubit channels are exactly those channels2

ε : Ω2 → Ω2 for which ε(⊥) = ⊥. These are called unital in quantum information
theory.

Definition 35 A qubit channel ε : Ω2 → Ω2 is unital if ε(⊥) = ⊥.

Theorem 20

• A classical channel f : Δ2 → Δ2 is binary symmetric iff it is Scott continuous
and its set of fixed points is Scott closed.

• A quantum channel f : Ω2 → Ω2 is unital if and only if it is Scott continuous
and its set of fixed points is Scott closed.

In fact, this last result hints at how to establish the uniqueness of Ω2, in a manner
completely similar to the corresponding result for Δ2:

Theorem 21 There is a unique partial order on Ω2 with the following three
properties:

(i) It has least element ⊥ = I/2,
(ii) It satisfies the mixing law: if r 	 s, then r 	 tr +(1−t)s 	 s, for all t ∈ [0, 1],

(iii) Every unital channel f : Ω2 → Ω2 is Scott continuous and has a Scott closed
set of fixed points.

It is the spectral order, and gives Ω2 the structure of a Scott domain.

Finally, let us turn to one last application of the spectral order.

9.4.3.2 Classical and Quantum Logic

The logics of Birkhoff and von Neumann consist of the propositions one can make
about a physical system. Each proposition takes the form “The value of observable e
is contained in E ⊆ spec(e).” For classical systems, the logic is P{1, . . . , n}, while
for quantum systems it is L

n , the lattice of (closed) subspaces of Hn . In each case,

2 Quantum channels are completely positive and convex linear, see [35] for more.

534 K. Martin

implication of propositions is captured by inclusion, and a fundamental distinction
between classical and quantum—that there are pairs of quantum observables whose
exact values cannot be simultaneously measured at a single moment in time—finds
lattice theoretic expression: P{1, . . . , n} is distributive; L

n is not.
Remarkably, the classical and quantum logics can be derived from the Bayesian

and spectral orders using the same order theoretic technique.

Definition 36 An element x of a dcpo D is irreducible when

∧
(↑x ∩ max(D)) = x

The set of irreducible elements in D is written Ir(D).

The order dual of a poset (D, 	D) is written D∗; its order is x 	 y ⇔ y 	D x .

Theorem 22 For n ≥ 2, the classical lattices arise as

Ir(Δn)∗ � P{1, . . . , n} \ {∅},

and the quantum lattices arise as

Ir(Ωn)∗ � L
n \ {0}.

9.4.4 Spacetime Intervals

General relativity is Einstein’s theory of gravity in which gravity is understood not
in terms of mysterious “universal” forces but rather as part of the geometry of space-
time. It is profoundly beautiful and beautifully profound from both the physical and
mathematical viewpoints and it teaches us clear lessons about the universe in which
we live that are easily explainable. For example, it offers a wonderful explanation of
gravity: if an apple falls from a tree, the path it takes is not determined by the New-
tonian ideal of an “invisible force” but instead by the curvature of the space in which
the apple resides: gravity is the curvature of spacetime. In addition, the presence of
matter in spacetime causes it to “bend” and Einstein even gives us an equation that
relates the curvature of spacetime to the matter present within it. However.

Since everything attracts everything else, a gravitating mass of sufficient size will
eventually collapse. In 1965, Penrose [36] showed that any such collapse eventually
leads to a singularity where the mathematical description of spacetime as a contin-
uum breaks down. This leads to the need to reformulate gravity. It is hoped that the
elusive quantum theory of gravity will resolve this problem.

Since the first singularity theorems [36, 10], causality has played a key role in
understanding spacetime structure. The analysis of causal structure relies heavily on
techniques of differential topology [37]. For the past decade Sorkin and others [42]
have pursued a program for quantization of gravity based on causal structure. In

9 Domain Theory and Measurement 535

this approach the causal relation is regarded as the fundamental ingredient and the
topology and geometry are secondary.

In this section, we will see that the causal structure of spacetime is captured by a
domain and learn the surprising connection between measurement, the Newtonian
concept of time, and the geometry of spacetime.

Definition 37 A continuous poset (P, ≤) is bicontinuous if

• For all x, y ∈ P , x � y iff for all filtered S ⊆ P with an infimum,

∧
S ≤ x ⇒ (∃s ∈ S) s ≤ y,

and
• For each x ∈ P , the set ↑↑x is filtered with infimum x .

We tend to prefer the notation ≤ for the order on a poset that is known to be
bicontinuous. For x, y in a poset (P, ≤),

x < y ≡ x ≤ y & x �= y.

In general, < and � are completely different ideas.

Example 32 (R, ≤), (Q, ≤) are bicontinuous.

Definition 38 The interval topology on a continuous poset P exists when sets of the
form

(a, b) = {x ∈ P : a � x � b} & ↑↑x = {y ∈ P : x � y}

form a basis for a topology on P .

Notice that on a bicontinuous poset, the interval topology exists and has

(a, b) := {x ∈ P : a � x � b}

as a basis.
A manifold M is a locally Euclidean Hausdorff space that is connected and has a

countable basis. Such spaces are paracompact. A Lorentz metric on a manifold is a
symmetric, nondegenerate tensor field of type (0, 2) whose signature is (− + ++).

Definition 39 A spacetime is a real four-dimensional3 smooth manifold M with a
Lorentz metric gab.

Let (M, gab) be a time-orientable spacetime. Let Π+≤ denote the future directed
causal curves, and Π+� denote the future directed time-like curves.

3 The results in the present paper work for any dimension n ≥ 2 [26].

536 K. Martin

Definition 40 For p ∈ M,

I +(p) := {q ∈ M : (∃π ∈ Π+�) π(0) = p, π(1) = q}

and

J +(p) := {q ∈ M : (∃π ∈ Π+≤) π(0) = p, π(1) = q}

Similarly, we define I −(p) and J −(p).

We write the relation J+ as

p ≤ q ≡ q ∈ J +(p).

The “Alexandroff topology” on a spacetime has {I +(p) ∩ I −(q) : p, q ∈ M} as
a basis; a spacetime M is strongly causal iff its Alexandroff topology is Hausdorff
iff its Alexandroff topology is the manifold topology. Penrose has called globally
hyperbolic spacetimes “the physically reasonable spacetimes [44].”

Definition 41 A spacetime M is globally hyperbolic if it is strongly causal and if
↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈ M.

Theorem 23 If M is globally hyperbolic, then (M, ≤) is a bicontinuous poset with
� = I + whose interval topology is the manifold topology.

This result motivates the following definition:

Definition 42 A poset (X, ≤) is globally hyperbolic if it is bicontinuous and each
interval [a, b] = {x : a ≤ x ≤ b} is compact in the interval topology.

Globally hyperbolic posets have rich enough structure that we can deduce many
properties of spacetime from them without appealing to differentiable structure or
geometry, such as the compactness of the space of causal curves [27]. We can also
deduce new aspects of spacetime. Globally hyperbolic posets are very much like the
real line. In fact, a well-known domain theoretic construction pertaining to the real
line extends in perfect form to the globally hyperbolic posets:

Theorem 24 The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}

ordered by reverse inclusion

[a, b] 	 [c, d] ≡ [c, d] ⊆ [a, b]

form a continuous domain with

[a, b] � [c, d] ≡ a � c & d � b.

9 Domain Theory and Measurement 537

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) � X

where the set of maximal elements has the relative Scott topology from IX.

In fact, more is true: in [26] it is shown that the category of globally hyperbolic
posets is naturally isomorphic to the category of interval domains. This observa-
tion – that spacetime has a canonical domain theoretic model – teaches us some-
thing new: from only a countable set of events and the causality relation, one can
reconstruct spacetime in a purely order theoretic manner. Explaining this requires
domain theory.

9.4.4.1 Reconstruction of the Spacetime Manifold

An abstract basis is a set (C, �) with a transitive relation that is interpolative from
the – direction:

F � x ⇒ (∃y ∈ C) F � y � x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also interpola-
tive from the + direction:

x � F ⇒ (∃y ∈ C) x � y � F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a � b} = � ⊆ C2

whose relation is

(a, b) � (c, d) ≡ a � c & d � b.

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 25 Let C be a countable dense subset of a globally hyperbolic spacetime
M and � = I + be timelike causality. Then

max(IC) � M

where the set of maximal elements have the Scott topology.

Theorem 25 is very different from results like “Let M be a certain spacetime
with relation ≤. Then the interval topology is the manifold topology.” Here we iden-
tify, in abstract terms, a process by which a countable set with a causality relation
determines a space. The process is entirely order theoretic in nature, spacetime is

538 K. Martin

not required to understand or execute it (i.e., if we put C = Q and �=<, then
max(IC) � R). In this sense, our understanding of the relation between causal-
ity and the topology of spacetime is now explainable independently of geometry.
Ideally, one would now like to know what constraints on C in general imply that
max(IC) is a manifold.

9.4.4.2 Time and Measurement

A global time function t : M → R on a globally hyperbolic spacetime M is a
continuous function such that x < y ⇒ t (x) < t (y) and t−1(r) = Σ is a Cauchy
surface for M, for each r ∈ R.

Theorem 26 For any global time function t : M → R on a globally hyperbolic
spacetime, the function Δt : M → [0, ∞)∗ given by Δt[a, b] = t (b) − t (a)

measures all of I(M). It is a measurement with ker(Δt) = max(I(M)).

Let d : I(M) → [0, ∞)∗ denote the Lorentz distance on a globally hyperbolic
spacetime

d[a, b] = sup
πab

len(πab)

where the sup is taken over all causal curves that join a to b.
A function between continuous posets is interval continuous when each poset

has an interval topology and the inverse image of an interval open set is interval
open. By the bicontinuity of M, the interval topology on I(M) exists, so we can
consider interval continuity for functions I(M) → [0, ∞)∗.

Theorem 27 The Lorentz distance d : I(M) → [0, ∞)∗ has the following
properties:

(i) It is monotone: x ≤ y ⇒ d(x) ≥ d(y),
(ii) It preserves the way below relation: x � y ⇒ d(x) > d(y),

(iii) It is interval continuous and hence, by (i), Scott continuous.

It does not measure I(M) at any point of ker(d).

That the Lorentz distance is not a measurement has all to do with relativity: it is
a direct consequence of the fact that a clock travelling at the speed of light records
no time as having elapsed i.e. the set of null intervals is equal to

ker(d) \ max(I(M)) �= ∅

but measurements μ always satisfy ker(μ) ⊆ max(D) (Lemma 1).
In fact, no interval continuous function μ : I(M) → [0, ∞)∗ can be a measure-

ment: by interval continuity, μx = 0 for any x with ↑↑x = ∅. Then just like the

9 Domain Theory and Measurement 539

Lorentz distance, an interval continuous μ will also assign 0 to “null intervals.” In
this way, we see that interval continuity captures an essential aspect of the Lorentz
distance: interval continuous functions do not distinguish between single events and
null intervals. In addition, since Δt is a measurement, it cannot be interval continu-
ous. This provides a surprising topological distinction between the Newtonian and
relativistic concepts of time: d is interval continuous, Δt is not. Put another way, Δt
can be used to reconstruct the topology of spacetime (Theorem 2), while d is used
to reconstruct its geometry.

9.4.4.3 Reconstruction of Spacetime Geometry

Specifically, if in addition to int(C) we also begin with a countable collection of
numbers lab chosen for each (a, b) ∈ int(C) in such a way that the map

int(C) → [0, ∞)∗ :: (a, b) �→ lab

is monotone, then in the process of reconstructing spacetime, we can also construct
the Scott continuous function d : IC → [0, ∞)∗ given by

d(x) = inf{lab : (a, b) � x}.

In the event that the countable number of lab chosen are the Lorentz distances lab =
d[a, b], then the function d constructed above yields the Lorentz distance for any
spacetime interval, the reason being that both are Scott continuous and are equal on
a basis of the domain.

Thus, from a countable dense set of events and a countable set of distances, we
can reconstruct the spacetime manifold together with its geometry in a purely order
theoretic manner.

9.5 The Informatic Derivative

Major references: [15, 20, 30]

9.5.1 In a Single Measurement

Recall the seemingly innocent definition of the μ topology from Sect. 9.2.4:

Definition 43 The μ topology on a continuous dcpo D has as a basis all sets of the
form ↑↑x ∩ ↓y where x, y ∈ D. It is denoted μD .

This also turns out to be the topology one needs to define rates of change on
a domain. This comes as something of a surprise since the μ topology is always
zero-dimensional and Hausdorff.

540 K. Martin

Definition 44 Let D be a continuous dcpo with a map μ : D → [0, ∞)∗ that
measures X ⊆ D. If f : D → D is a function and p ∈ X is not a compact element
of D, then

d fμ(p) := lim
x→p

μ f (x) − μ f (p)

μx − μp

is called the informatic derivative of f at p with respect to μ, provided that it exists.
The limit above is taken with respect to the μ topology.

If the limit above exists, then it is unique, since the μ topology is Hausdorff, and
we are taking a limit at a point that is not isolated: {p} is μ open iff p is compact.
Notice too the importance of strict monotonicity of μ in Lemma 1: without it, we
could not define the derivative. The definition of informatic derivative has a simple
extension to functions f : D → E between domains with measurements (D, μ)

and (E, λ) [15].
Our first example comes from calculus and provided the first relationship

between domain theory and the differential calculus [15].

Theorem 28 Let f : R → R be a continuous map on the real line with p ∈ R. If
f ′(p) exists, then

d f̄μ[p] = | f ′(p)|

where f̄ (x) = f (x) is the canonical extension of f to IR and μ[a, b] = b − a.

In particular, any iterative process with a classical derivative has an informatic
derivative, and from the complexity viewpoint, they are equal. In fact, it can be
shown that d f̄μ exists and is continuous iff f has a continuous first derivative i.e.
the informatic derivative is equivalent to the classical derivative for C1 functions.
However, in general, informatic differentiability of f̄ is strictly more general than
classical differentiability [25].

9.5.2 The Derivative at a Fixed Point

It often happens that partial maps on spaces have fixed points which are unknown.
For example, the polynomial p : R → R given by p(x) = x3 + x − 1 has a zero on
[0, 1] because p(0) · p(1) < 0. Consequently, f (x) = x − p(x) has a fixed point
on [0, 1], even though we are not sure of what it is.

Because a partial map f : X ⇀ X on a space X may have an unknown fixed
point p, methods for calculating it are important. A minimal requirement is usually
that p be an attractor: that there exist an open set U ⊆ X such that for all x ∈ U ,
f n(x) → p. This provides a simple scheme for approximating p: simply calculate
the iterates f n(x) beginning with any x ∈ U .

9 Domain Theory and Measurement 541

In Sects. 9.3 and 9.4 we saw many examples of numerical methods and mono-
tone maps (when restricted to I (f) = {x : x 	 f (x)}) which give rise to partial
splittings that converge to fixed points.

Lemma 3 Let s : D ⇀ D be a partial splitting which maps into dom(s). If s(p) =
p and dsμ(p) exists, then dsμ(p) ≤ 1.

So we consider partial maps f with fixed points p such that d fμ(p) ≤ 1. The
identity map 1 : D → D has d(1)μ(p) = 1 at any element which is not compact,
meaning that a map whose derivative is unity need not have an attractive point.
However, if d fμ(p) < 1, then we can say something: for monotone maps with fixed
points in the kernel, we have an attractor in the Scott topology.

Theorem 29 Let f : (D, μ) → (D, μ) be a monotone mapping with f (ker μ) ⊆
ker μ. If d fμ(p) < 1 at a fixed point f (p) = p ∈ ker μ, then there is an approxi-
mation a � p such that

(i) For all x ∈ D, if a 	 x 	 p, then

⊔

n≥0

f n(x) = p,

and this is a limit in the μ topology on D.
(ii) The unique fixed point of f on ↑a is p.

(iii) For all x ∈ ker μ ∩ ↑a, f n(x) → p in the Scott topology on ker μ.

In [15], it is shown that (i) is equivalent to f being μ continuous at p, so we can
take (i) as a definition of μ continuity at a fixed point. The bisection method split f
is not necessarily μ continuous at a fixed point if the corresponding zero of f is not
isolated.

Corollary 4 Let f : R → R be a continuous map on the real line with a fixed point
f (p) = p. If d f̄μ[p] < 1, then there is an ε > 0 such that

(∀ x ∈ (p − ε, p + ε)) f n(x) → p.

In particular, this holds if f is differentiable at p and | f ′(p)| < 1.

The last corollary applies to continuous maps on the real line that have infor-
matic derivatives but do not have classical derivatives [25]. As an application of
Theorem 29, we will prove the correctness of Newton’s Method without using
Taylor’s Theorem.

Example 33 Let f : [a, b] → R be a continuous function with a zero r ∈ (a, b). If
f ′ is nonzero and continuous on [a, b] and f ′′(r) exists, we consider the continuous
map I f : [a, b] → R, given by

542 K. Martin

I f (x) = x − f (x)

f ′(x)
.

It is easy to see that I f (r) = r . By extending I f to the real line in any way whatso-
ever, we appeal to Theorem 28 and obtain

d Ī f

dμ
[r] = 0.

By Corollary 4, we see that there is an ε > 0 such that I f (x) → r for all x ∈
(r − ε, r + ε).

But what is achieved by avoiding Taylor’s theorem? To prove the correctness
of Newton’s method using Taylor’s theorem, we must assume that f ′′ exists on an
open interval containing the zero r . The proof we gave in Example 33 assumes only
that f ′′(r) exists. This gives one definite advantage to using Theorem 29 in place
of Taylor’s theorem: we can prove that Newton’s method works on a larger class of
functions.

Of course, once we know that an iterative process works correctly, the next ques-
tion inevitably concerns the rate at which it works. In classical numerical analysis,
the efficiency of an iterative algorithm is determined by calculating its order of con-
vergence.

Definition 45 Let (xn) be a sequence of reals with xn → p. If

0 < lim
n→∞

|xn+1 − p|
|xn − p|α = r < ∞,

for some α ≥ 1, then α is called the order of convergence of the sequence. If α = 1
then r is called the rate of convergence of (xn).

In this definition, the sequence (xn) is generated by a numerical algorithm
designed to calculate p. The larger that α is, the quicker the convergence of (xn)

to p, the better the algorithm.
If α = 1, the algorithm is said to converge linearly. For α = 2, the convergence

is quadratic. Two linearly convergent algorithms may be compared based on their
rates of convergence.

Notice that orders of convergence are calculated using the uncertainty |xn− p|. To
extend the idea to the setting of domains with measurements, we consider sequences
(xn) which converge to their suprema p in the μ topology on D, and replace |xn − p|
with |μxn − μp|.
Definition 46 Let D be a dcpo and let μ measure X ⊆ D. If (xn) is a sequence in
D which converges to its supremum p ∈ X in the μ topology and

0 < lim
n→∞

μxn+1 − μp

(μxn − μp)α
= r < ∞,

9 Domain Theory and Measurement 543

for some α ≥ 1, then α is called the order of convergence of the sequence. If α = 1
then r is called the rate of convergence of (xn).

An increasing sequence (xn) converges to its supremum p in the μ topology.
We begin with linear processes: the informatic derivative enables the systematic
computation of rates of convergence.

Lemma 4 Let s : (D, μ) ⇀ (D, μ) be a partial map which maps into dom(s) and
has a fixed point p = ⊔

sn x in the μ topology. If dsμ(p) exists, then

lim
n→∞

μsn+1(x) − μp

μsn(x) − μp
= ds

dμ
(p),

provided μsn(x) − μp > 0 for all n ≥ 0.

Thus, to find the rate at which a linear algorithm s converges to a fixed point p,
we find its derivative at p. But why is this a measure of efficiency?

Proposition 5 Let s : (D, μ) ⇀ (D, μ) be a partial map which maps into dom(s).
If s is μ continuous at a fixed point p and 0 < dsμ(p) < 1, then for all 0 < ε <

1 − dsμ(p), there is an a � p such that for all x ∈ dom(s),

a 	 x 	 p and n ≥ log(ε/(μx − μp))

log (dsμ(p) + ε)
⇒ sn x 	 p and |μsn x − μp| < ε,

provided x �= p and n ≥ 1.

Proposition 5 gives an upper bound on the number of iterations a linear process
must do before it achieves ε accuracy. In order that this estimate hold, the input
x must be sufficiently close. However, even in the presence of this mathematical
annoyance, we can still use it to understand why rate of convergence is a measure
of efficiency.

Suppose we have two linear processes s, t which have a common fixed point p
and that 0 < dsμ(p) < dtμ(p) < 1. Let ε > 0. Imagine we have different inputs
for s and t which both have measure λ and that λ − μp > ε. (If λ − μp ≤ ε, each
process is already ε close.) Then

log(ε/(λ − μp))

log (dsμ(p) + ε)
<

log(ε/(λ − μp))

log (dtμ(p) + ε)
,

that is, the number of iterations which ensure t is ε close to p also guarantee that s is
ε close to p. However, it may be that s can achieve ε accuracy with fewer iterations
than t . Roughly speaking, s is a better algorithm than t for calculating p.

The estimate on the number of iterations in Proposition 5 is useful because of
its generality. However, we often encounter linear processes which satisfy μs(x) −
μs(p) ≤ (dsμ(p))(μx − μp) for x 	 p. In this case, we use the estimate

544 K. Martin

n ≥ log (ε/(μx − μp))

log dsμ(p)
.

One question which springs to mind is: How can we know the values of μp
and dsμ(p) when p itself is unknown? Though we cannot always calculate these
quantities independent of p, the estimates given for the number of iterations are still
useful for comparing processes, as we saw above. On the other hand, in the case of
Newton’s Method, we actually know a priori that μp = dsμ(p) = 0. We can also
calculate these quantities independent of p for the bisection method, the golden
section search and for contraction mappings on complete metric spaces.

Example 34 For a continuous map f : R → R, the bisection method is captured by
the partial splitting

split f : IR ⇀ IR

and the data

• dom(split f) = C(f) = {[a, b] ∈ IR : f (a) · f (b) ≤ 0}
• fix(split f) = {[r] : f (r) = 0}
• d(split f)μ[r] = 1/2 for all [r] ∈ fix(split f)

If r is an isolated zero of f , then split f is μ continuous at the associated fixed
point [r]. By the remarks following Proposition 5, if r is an isolated zero of f and
x ∈ C(f) is a sufficiently small input around r , then

splitnf x for n ≥ log(ε/μx)

log (1/2)

is an ε-approximation of r .

The estimate for the number of iterations given in the last example can fail
without μ continuity. If we take f (x) = x · sin(1/x) for x �= 0 and f (0) = 0,
then there are arbitrarily small intervals x̄ ∈ C(f) with x̄ 	 [0], but for which
split f x̄ �	 [0]. Beginning with any one of these intervals as input, and then doing
n ≥ log(ε/μx)/ log (1/2) iterations of split f , leaves an interval of length < ε. The
problem is that we are now on track to calculate a different zero [r], rather than the
one we intended to calculate, [0].

The point is this: an estimate for the number of iterations is of little use if we do
not know what we are calculating. This is why zeroes are normally assumed isolated
in numerical analysis, as in Newton’s method, where we assume f ′(r) �= 0. Thus,
we expect iterative numerical methods to be μ continuous at fixed points when
realized as partial maps on domains.

Example 35 The Golden Section Search. In Example 16, given a function f : R →
R and a constant 1/2 < r < 1, we defined the splitting

9 Domain Theory and Measurement 545

max f : IR → IR

max f [a, b] =
{ [l(a, b), b] if f (l(a, b)) < f (r(a, b)),

[a, r(a, b)] otherwise.

where l(a, b) = (b − a)(1 − r) + a and r(a, b) = (b − a)r + a.
If f is unimodal on [a, b] and its unique maximizer is x∗ ∈ int[a, b], then max f

is μ continuous at [x∗] because

[a, b] � x̄ 	 [x∗] ⇒ max f x̄ 	 [x∗],

which was shown in Example 16, and because it has a derivative at [x∗], given by

d(max f)

dμ
[x∗] = r.

Thus, if f is unimodal on [a, b] and x∗ ∈ int[a, b], then

maxn
f [a, b] for n ≥ log(ε/(b − a))

log(r)

is an ε-approximation of x∗.

Example 36 Contraction maps. If f : X → X is a contraction on a complete metric
space (X, d) with constant 0 < c < 1, its extension to the formal ball model

f̄ : BX → BX, f̄ (x, r) = (f x, c · r)

has derivative d f̄π (p) = c, for all p ∈ BX . The map f̄ is Scott continuous and
hence μ continuous at all points. If we take any x ∈ X and r ≥ d(x, f x)/(1 − c),
then

f̄ n(x, r) for n ≥ log(r/ε)

log c

is an ε-approximation of the unique attractor of f .

The presence of informatic linearity in the last three examples enables us to use
the estimate mentioned after Proposition 5. The next example is more interesting.

Example 37 The Regula Falsi Method. For a function f : [a, b] → R such that

(i) f (a) < 0 and f (b) > 0,
(ii) f ′(x) > 0 for all x ∈ [a, b], and

(iii) f ′′(x) ≥ 0 for all x ∈ [a, b],

546 K. Martin

we define the partial mapping

r f : IR ⇀ IR

r f [x, b] =
[

b − f (b)

(
b − x

f (b) − f (x)

)

, b

]

whose domain is

dom(r f) = {[x, b] : a ≤ x ≤ r}

where r ∈ (a, b) is the unique zero of f on [a, b].
The map r f is a Scott continuous splitting which maps the dcpo dom(r f) into

itself. For if a ≤ x ≤ y ≤ r , we have the string of inequalities

a ≤ x ≤ b − f (b)

(
b − x

f (b) − f (x)

)

≤ b − f (b)

(
b − y

f (b) − f (y)

)

≤ r,

where the second follows from f (x) ≤ 0, and the last two follow from

f (b) − f (x)

b − x
≤ f (b) − f (y)

b − y
≤ f (b) − f (r)

b − r
,

which is a consequence of the fact that f ′ is nondecreasing. This proves that r f is a
monotone splitting which takes dom(r f) into itself. Finally, r f is Scott continuous
because its measure is Scott continuous.

By Proposition 7, if x̄ ∈ dom(r f), then

⊔

n≥0

rn
f (x̄) ∈ fix(r f),

but it is easy to see that fix(r f) = {[r, b]}. Thus, iterating r f is an algorithm for
approximating r , called the Regula Falsi method. But how efficient is it?

To answer this question, we calculate the informatic derivative of r f at the fixed
point [r, b] as follows:

dr f

dμ
[r, b] = lim

x̄→[r,b]
μr f (x̄) − μr f [r, b]

μx̄ − μ[r, b]
= lim

x→r−
f (b)(r − x) + f (x)(b − r)

(f (b) − f (x))(r − x)

= lim
x→r−

[
f (b)

f (b) − f (x)
+ f (x) − f (r)

r − x
· b − r

f (b) − f (x)

]

= f (b)

f (b) − f (r)
+ (−1) f ′(r) · b − r

f (b) − f (r)

= 1 − f ′(r)(b − r)

f (b)
.

9 Domain Theory and Measurement 547

By monotonicity of r f , this derivative is nonnegative, and hence a number in the
interval [0, 1). In fact, we can see that

d(r f)μ[r, b] → 0 as b → r

so the efficiency of this algorithm is determined by the closeness of b to r . Notice
that it does not depend on a.

Once we have the derivatives of two different algorithms which solve the same
problem, we can compare them to understand their respective strengths and weak-
nesses.

Example 38 The Bisection versus Regula Falsi. If f : R → R is a continuous map
and [a, b] is an interval such that f (a) < 0 and f (b) > 0, f ′ > 0 on [a, b] and
f ′′ ≥ 0 on [a, b], then

⊔

n≥0

splitnf [a, b] = [r] and
⊔

n≥0

rn
f [a, b] = [r, b]

are both schemes for calculating the unique zero r of f on [a, b]. But which one is
better? We consider two examples.

If f (x) = x2 − x − 1 and [a, b] = [1, 2], then r = (1 + √
5)/2. Thus,

d(split f)[r] = 1

2
and d(r f)[r, b] = 7 − 3

√
5

2
≈ 0.145898,

which means that eventually μr f (x) − μ[r, b] ≈ 0.14(μx − μ[r, b]), as compared
to μ split f (x)−μ[r] = 0.5(μx −μ[r]) for the bisection. In other words, eventually
the Regula Falsi method reduces the uncertainty in an interval by about 86%, while
for the bisection uncertainty is always reduced by 50%. This suggests that r f is
preferable in this case. Six iterations of each gives

split6f [1, 2] = [1.59375, 1.625] and r6
f [1, 2] ≈ [1.618025, 2].

The approximation of r offered by the bisection is the midpoint of split6f [1, 2],
1.609375, while the approximation given by the Regula Falsi method is the left
endpoint of r6

f [1, 2], around 1.618025. Thus, the Regula-Falsi method is accurate
to four decimal places, while the bisection is only accurate to one. This supports the
intuition offered by the informatic derivatives calculated above: r f converges faster
than split f in this case.

If f (x) = x6 − x − 1 and [a, b] = [1, 2], then r ≈ 1.13472. The informatic
derivatives in this case are

d(split f)[r] = 1

2
and d(r f)[r, b] ≈ 0.85407,

548 K. Martin

which suggests that now it is split f which converges faster. If we do sixteen itera-
tions of each, we find that

split16
f [1, 2] ≈ [1.134719, 1.134735] and r16

f [1, 2] ≈ [1.121308, 2].

Thus, the bisection gives the approximation r ≈ 1.13472, while the Regula Falsi
method is only accurate to one decimal place. In fact, it is only after 68 iterations
that the Regula Falsi method can duplicate what the bisection achieves in 16:

r68
f [1, 2] ≈ [1.13472, 2].

The intuition imparted by informatic derivative is also correct in this instance.

Example 39 The secant method. Recall from Theorem 8, the secant method sec f :
PC [a, r] → PC [a, r] given by

sec f [x, y] =
[

y, y − f (y)

d f [x, y]
]

yields an algorithm for calculating r with f (r) = 0 given by

⊔

n≥0

secn
f (x) = [r],

for any x ∈ PC [a, r]. For the secant method sec f , we have d(sec f)[r] = 0.
Let x̄ = [x, y] 	 [r] with μx̄ > 0. Then by the mean value theorem and the

triangle inequality,

0 ≤ μ sec f (x̄)

μx̄
≤ 2(r − y)

r − x + r − y
+ | f (y)|

f ′(c)(r − x + r − y)
,

where c ∈ x̄ . But since r − x + r − y ≥ 2(r − y) and r − x + r − y ≥ r − y, the
expression on the right is bounded by

2(r − y)

2(r − y)
+ | f (y)|

f ′(c)(r − y)
= 1 − | f (y) − f (r)|

f ′(c)(y − r)
.

As x̄ → [r] in the μ topology, we have x, y → r and c → r . Hence,

0 ≤ lim
x̄→[r]

μ sec f (x̄)

μx̄
≤ lim

c,y→r

(

1 − | f (y) − f (r)|
f ′(c)(y − r)

)

= 1 − 1 = 0,

proving the claim.

Thus, the convergence of the secant method is superlinear, in agreement with
numerical analysis. This is an interesting example. The function sec f does not cor-
respond to iterating a classical real valued function, and the informatic derivative

9 Domain Theory and Measurement 549

is not a classical derivative: the formula in Example 21 takes two real numbers as
input, but returns only one as output.

Thus, to prove that a numerical method works correctly, we show it iterates to a
fixed point. To go along with this uniform approach to the problem of correctness,
we now have a uniform method for calculating rates of convergence of linear pro-
cesses: simply take the informatic derivative of a map on a domain at a fixed point.
This extends what is done is numerical analysis, enabling a unified treatment not
previously possible. For instance, the secant method, the golden section search and
the bisection method are iterative processes which have no classical descriptions as
differentiable functions on the real line. Nevertheless, we have seen that they may be
naturally described as mappings on domains which possess informatic derivatives.

9.5.3 Rates of Change in the Communication Process

A classical binary channel f : Δ2 → Δ2 takes an input distribution to an output
distribution. In a similar way, a qubit channel is a function of the form ε : Ω2 → Ω2

that is convex linear and completely positive [35]. For our purposes, there is no need
to get lost in too many details of the Hilbert space formulation: qubit channels can be
represented as linear selfmaps on the unit ball in Euclidean three space as follows.

There is a 1–1 correspondence between density operators on a two dimensional
state space and points on the unit ball B

3 = {x ∈ R
3 : |x | ≤ 1}: each density

operator ρ : H2 → H2 can be written uniquely as

ρ = 1

2

(
1 + rz rx − iry

rx + iry 1 − rz

)

where r = (rx , ry, rz) ∈ R
3 satisfies |r | =

√
r2

x + r2
y + r2

z ≤ 1. The vector r ∈ B
3 is

called the Bloch vector associated to ρ. Bloch vectors have a number of aesthetically
pleasing properties.

If ρ and σ are density operators with respective Bloch vectors r and s, then
(i) the eigenvalues of ρ are (1 ± |r |)/2, (ii) the von Neumann entropy of ρ is Sρ =
H((1+|r |)/2) = H((1−|r |)/2), where H : [0, 1] → [0, 1] is the base two Shannon
entropy, (iii) if ρ and σ are pure states and r + s = 0, then ρ and σ are orthogonal,
and thus form a basis for the state space; conversely, the Bloch vectors associated to
a pair of orthogonal pure states form antipodal points on the sphere, (iv) the Bloch
vector for a convex sum of mixed states is the convex sum of the Bloch vectors, (v)
the Bloch vector for the completely mixed state I/2 is 0 = (0, 0, 0).

Because of the correspondence between Ω2 and B
3, let us now regard these two

as equal.
A standard way of measuring the capacity of a quantum channel in quantum

information is the Holevo capacity; it is sometimes called the product state capacity
since input states are not allowed to be entangled across two or more uses of the
channel.

550 K. Martin

Definition 47 For a quantum channel f , the Holevo capacity is given by

C(f) = sup
{xi ,ρi }

[

S

(

f

(
∑

i

xiρi

))

−
∑

i

xi · S(f (ρi))

]

where the supremum is taken over all ensembles {xi , ρi } of possible input states ρi

to the channel.

The possible input states ρi to the channel are in general mixed and the xi are
probabilities with

∑
i xi = 1. If f is the Bloch representation of a qubit channel,

the Holevo capacity of f is given by

C(f) = sup
{xi ,ri }

[

H

(
1 + | f

(∑
i xi ri

) |
2

)

−
∑

i

xi · H

(
1 + | f (ri)|

2

)]

where ri are Bloch vectors for density operators in an ensemble, and we recall that
eigenvalues of a density operator with Bloch vector r are (1 ± |r |)/2.

Recall that the classical channels f : Δ2 → Δ2 which increase entropy
(H(f (x)) ≥ H(x)) are exactly those f with f (⊥) = ⊥. They are the strict
mappings of domain theory, which are also known as binary symmetric channels
in information theory. Similarly, the entropy increasing qubit channels are exactly
those f for which f (⊥) = ⊥. These are called unital in quantum information
theory.

Theorem 30 Let μ(x) = 1 − |x | denote the standard measurement on Ω2. For any
unital channel f and any p ∈ Ω2 different from ⊥,

d fμ(p) = | f (p)|
|p|

Thus, the Holevo capacity of f is determined by the largest value of its informatic
derivative. Explicitly,

C(f) = 1 − H

(
1

2
+ 1

2
sup

x∈ ker(μ)

d fμ(x)

)

Then C(f) = 1 for any rotation f since d fμ = 1. Notice that d fμ ≡ 1 iff f
is a rotation. For each p ∈ [0, 1], the unique channel f 	 1 with d fμ = p is the
depolarization channel f = dp = p · I , so that C(dp) = 1 − H((1 + p)/2). In fact,
there is an isomorphism from binary symmetric channels onto the depolarization
channels. The only unital qubit channel with capacity zero is 0 itself.

Example 40 The two Pauli channel in Bloch form is

ε(r) = p r +
(

1 − p

2

)

sx (r) +
(

1 − p

2

)

sy(r)

9 Domain Theory and Measurement 551

where sx and sy are the Bloch representations of the unitary channels derived from
the Pauli spin operators σx and σy . This simplifies to

ε(rx , ry, rz) = (prx , pry, −(1 − p)rz)

The matrix associated to ε is diagonal, so the diagonal element (eigenvalue) that
has largest magnitude also yields the largest value of its informatic derivative. The
capacity of the two Pauli channel is then

1 − H

(
1 + max{p, 1 − p}

2

)

where p ∈ [0, 1].
The set of unital channels U is compact hence closed and thus forms a dcpo as a

subset of the domain [Ω2 → Ω2].
Corollary 5 The Holevo capacity C : U → [0, 1] is Scott continuous.

Thus, the ability of a unital qubit channel to transmit information is determined
by the largest value of its informatic derivative.

9.5.4 The Derivative at a Compact Element: A Discrete Derivative

If one looks closely at the definition of the informatic derivative above, it has a
computationally restrictive aspect: the requirement that p not be isolated in the μ

topology. This is equivalent to saying that p must not be a compact element of D.
From the mathematical viewpoint, one does not object to this: mathematics offers
us no way of obtaining unique “limits” at isolated points of topological spaces. Nev-
ertheless, computationally, it is easy to write down simple examples of mappings on
domains which should have derivatives, but are excluded simply because they work
only with compact elements.

For instance, on the domain of lists [S], the map rest: [S] → [S] which removes
the first element from a nonempty list and sends the empty list to itself, satisfies

μ rest(x) = μ(x) − 1

for x �= [], where μ is the length measurement. Thus, we ought to be able to say
that d(rest)μ(x) = 1 for x �= [].

We now consider an extension of the definition of informatic derivative which
applies at compact elements as long as they are not minimal. One of the benefits of
this extension is that we are finally able to understand the sense in which the asymp-
totic notions of complexity used in numerical analysis (rates of convergence) are the
same as those used in the analysis of “discrete” algorithms (for example, list pro-
cessing). Another is the identification of an idea which allows us to systematically

552 K. Martin

calculate both of these complexity notions in a uniform manner: informatic rates of
change apply in both the continuous and discrete realms.

9.5.4.1 The Informatic Derivative at a Compact Element

Defining the informatic derivative of a selfmap on a domain D really only depends
on our ability to define it for functions of the form f : D → R. If we set

d fμ(p) = lim
x→p

f (x) − f (p)

μx − μp

then for f : D → D, we can set d fμ(p) = d(μ f)μ(p), obtaining the usual defi-
nition of the informatic derivative. Of course, the problem is that this is only works
when p is not compact i.e. when

p �∈ K (D) := {x ∈ D : x � x}

These are precisely the points that are not isolated in the μ topology. The reason we
must work with points which are not isolated is that there must be enough nontrivial
μ open sets around p so that we can take a limit in the formal sense of topology –
without enough nontrivial open sets, a limit may not be unique.

However, any point p �∈ min(D) := {x ∈ D : ↓x = {x}} can be approximated
from below using the nontrivial μ open subsets of D which are contained in ↓p and
which themselves contain p and at least one other element:

approxμ(p) = {V ∈ μD : p ∈ V ⊆ ↓p and V �= {p}}.

Thus, the existence of approximations is not the problem – the problem is that we
need a concept more applicable than ‘limit’.

Definition 48 Let f : D → R be a function and p ∈ D. We set

d+ fμ(p) := sup{c : (∃V ∈ approxμ(p))(∀x ∈ V) f (x) − f (p) ≥ c · (μx − μp)}

and

d− fμ(p) := inf{c : (∃V ∈ approxμ(p))(∀x ∈ V) f (x) − f (p) ≤ c · (μx − μp)},

provided p is not a minimal element of D, i.e., p �∈ min(D).

The existence of the informatic derivative of a real-valued function in the usual
case is expressible entirely in terms of d+ fμ and d− fμ as follows:

Theorem 31 Let f : D → R be a function with p ∈ D \ K (D). Then d fμ(p) exists
iff d+ fμ(p) exists, d− fμ(p) exists and d− fμ(p) ≤ d+ fμ(p). In either case, we
have d fμ(p) = d+ fμ(p) = d− fμ(p).

9 Domain Theory and Measurement 553

The previous theorem justifies the following definition.

Definition 49 Let f : D → R be a function on a continuous dcpo D with a mea-
surement μ which measures D at p ∈ D \ min(D). If d− fμ(p) exists, d+ fμ(p)

exists and d− fμ(p) ≤ d+ fμ(p), then we define

d fμ(p) := d+ fμ(p)

and call this number the informatic derivative of f at p.

By Theorem 31, the new definition and the old definition agree in the continuous
case (p �∈ K (D)). We now turn our attention to the discrete case (p ∈ K (D)).

Theorem 32 Let f : D → R be a function on an algebraic dcpo D with a measure-
ment μ that measures D at p ∈ K (D)\ min(D). Then the following are equivalent:

(i) The derivative d fμ(p) exists.
(ii) The supremum

sup

{
f (x) − f (p)

μx − μp
: x ∈ K (D) ∩ ↓p, x �= p

}

exists and the infimum

inf

{
f (x) − f (p)

μx − μp
: x ∈ K (D) ∩ ↓p, x �= p

}

exists.

In either case, the value of d+ fμ(p) is the supremum in (ii), while the value of
d− fμ(p) is the infimum in (ii).

Finally, the definition of derivative for selfmaps on a domain D.

Definition 50 Let f : D → D be a function on a domain (D, μ) with a map μ that
measures D at p ∈ D \ min(D). If d(μ f)μ(p) exists, then we write

d fμ(p) := d(μ f)μ(p)

and call this number the informatic derivative of f at p with respect to μ. We also
set d∗ fμ(p) := d∗(μ f)μ(p) for ∗ ∈ {+, −}.

It is easy to extend this definition for a map f : (D, μ) → (E, λ), as was done
for the original formulation of the derivative in the continuous case [15], but in the
present paper there are no applications warranting such an abstraction.

554 K. Martin

Example 41 Derivatives of list operations.

(i) The map first : [S] → [S], first(a :: x) = [a], first[] = []. Using Theorem 32,

d(first)μ(x) = d+(first)μ(x) = d−(first)μ(x) = 0,

for all x �= []. At x = [], d(first)μ(x) = d+(first)μ(x) = 1 ≥ 0 =
d−(first)μ(x).

(ii) The map rest : [S] → [S], rest(a :: x) = x , rest[] = []. Using Theorem 32,

d(rest)μ(x) = d+(rest)μ(x) = d−(rest)μ(x) = 1,

for all x �= []. At x = [], d(rest)μ(x) = d+(rest)μ(x) = 1 ≥ 0 =
d−(rest)μ(x).

There is something worth pointing out before we focus on the derivative in the
discrete case. The definition of d fμ(p) splits into two cases, the continuous (p �∈
K (D)) and the discrete (p ∈ K (D)). From this bifurcation appears a remarkable
duality: In the continuous case the inequality d f +

μ (p) ≤ d f −
μ (p) always holds, but

d f −
μ (p) ≤ d f +

μ (p) may not; in the discrete case the opposite is true, d f −
μ (p) ≤

d f +
μ (p) always holds, but d f +

μ (p) ≤ d f −
μ (p) may not.

The results of this section allow for only one interpretation of this phenomenon:
In the continuous case, the derivative is determined by local properties of the func-
tion; in the discrete case, the derivative is determined by global properties of the
function.

9.5.4.2 Measuring the Length of an Orbit

Throughout this section, we assume that (D, μ) is an algebraic dcpo whose compact
elements K (D) form a lower set K (D) = ↓K (D). Some important examples of this
are N

∗, N
∞ = N ∪ {∞}, [S], Pω, Σ∞, and [N ⇀ N]. Computationally, this is not

much of an assumption.

Theorem 33 (The Mean Value Theorem) Let f : D → D be a function on (D, μ)

such that d fμ(p) exists at a compact element p. Then

(μx − μp) · d− fμ(p) ≤ μ f (x) − μ f (p) ≤ d+ fμ(p) · (μx − μp),

for all x 	 p.

If a splitting r has a compact fixed point p reachable by iteration
⊔

rn(x) = p,
then the derivative of r at p can be used to provide a precise measure of the num-
ber of iterations required to get to p from an input of x . Later we will see that
such quantities can play an integral role in determining the complexity of certain
algorithms.

9 Domain Theory and Measurement 555

Definition 51 Let r : D → D be a splitting. An orbit is a sequence of iterates (rn x).
An orbit is compact if

⊔

n≥0

rn(x) ∈ K (D).

The length of a compact orbit (rn x) is

|(rn x)| := inf{n ≥ 0 : rn+1(x) = rn(x)}.

A compact orbit is nontrivial when |(rn x)| > 0; otherwise it is a fixed point.

In this new language, we can say that we are interested in determining the length
of nontrivial compact orbits of splittings. If (rn x) is a compact orbit, then rl(x) is a
fixed point of r where l = |(rn x)|. For this reason, we say that the orbit (rn x) ends
at p = rl(x).

Lemma 5 If a splitting r : D → D has a nontrivial compact orbit which ends at
p ∈ K (D), and drμ(p) exists, then 0 ≤ drμ(p) ≤ 1.

Theorem 34 Let r be a splitting with a nontrivial compact orbit (rn x) that ends at
p. If drμ(p) = 0, then r(x) = p. If 0 < drμ(p) < 1, then

n ≥
⌈

log((μx − μp)/ε)

log(1/drμ(p))

⌉

+ 1 ⇒ |μrn(x) − μp| < ε,

for any ε > 0.

By the compactness of p, there is a choice of ε > 0 which will ensure that
|μrn(x) − μp| < ε ⇒ rn(x) = p, but at this level of generality we cannot give a
precise description of it. It depends on μ. For lists, the value is ε = 1.

Example 42 Let r be a splitting on [S] with 0 < drμ(p) < 1 at any fixed point p.
Then for any x , there is some k ≥ 0 such that rk(x) = p is a fixed point. By the last
result, doing

n >

⌈
log(μx − μp)

log(1/drμ(p))

⌉

iterations implies that rn(x) = p.

Let’s consider an important example of this type.

Example 43 Contractive list operations. For a positive integer x > 0, define

m(x) =
{

x/2 if x even;
(x + 1)/2 if x odd.

556 K. Martin

Consider the splittings

left(x) = [x(1), · · · , x(m(μx) − 1)]
right(x) = [x(m(μx) + 1), · · · , x(μx)]

each of which takes lists of length one or less to the empty list []. Each has a deriva-
tive at its unique fixed point [] as follows.

First, since both of these maps are splittings and p = [] has measure μp = 0,
each has a derivative at p—it is simply a matter of determining d+ at [] in each
case. For this, if x �= [], then

μ left(x)

μx
≤ (μx/2) − (1/2)

μx
= 1

2
·
(

1 − 1

μx

)

≤ 1

2
μ right(x)

μx
≤ μx/2

μx
= 1

2

which means d(left)μ[] = d(right)μ[] = 1/2.
Notice that the case of ‘left’ is much more interesting than the case of “right.”

In the former, the value of the derivative is never attained by any of the quotients
μ left/μ—it is determined by a ‘limit’ process which extracts global information
about the mapping left.

Already we notice a relationship to processes in numerical analysis: the case
drμ(p) = 0 is an extreme form of superlinear convergence (extreme since in one
iteration the computation finishes), while the case 0 < drμ(p) < 1 behaves just like
ordinary linear convergence. However, unlike numerical analysis, we can actually
say something about the case drμ(p) = 1.

To do this is nontrivial, and in what follows, we seek only to illustrate the value
of the informatic derivative in the discrete case by showing that the precise number
of iterations required to calculate a fixed point p by iteration of a map r can be
determined when drμ(p) = 1—a case in which classical derivatives are notorious
for yielding no information.

A compact element p that is not minimal has a natural set of predecessors, these
are formally defined as the set of maximal elements in the dcpo ↓p \ {p}:

pred(p) = max(↓p \ {p}).

To see that this makes sense, notice that ↓p\{p} is nonempty since p is not minimal,
and is closed in the μ topology, as the intersection of μ closed sets. But a μ closed
set is closed under directed suprema, and so must have at least one maximal element.

Theorem 35 Let r : D → D be a splitting on (D, μ) with a compact fixed point
p = r(p) such that

(∀x) x 	 p ⇒
⊔

n≥0

rn(x) = p.

9 Domain Theory and Measurement 557

If d+rμ(x) = 1 for all x 	 p and d−rμ(x) = 1 for all x 	 p with x �= p, then for
all x 	 p with x �= p, there is q ∈ pred(p) such that

rn(x) = p ⇔ n = μx − μp

μq − μp
.

It is interesting to notice in the last result that if d−rμ(p) = 1, then we must have
r(x) = x for all x 	 p. Of course, our hypotheses on r rule this out since the fixed
point p must be an attractor on ↓ p.

Example 44 In Example 41, we saw that the map rest : [S] → [S] is an example
of the sort hypothesized in Theorem 35 with p = []. The predecessors of p are the
one element lists

pred(p) = {[x] : x ∈ S}.

Thus, the last theorem says that

restn(x) = [] ⇔ n = μx,

for any x �= [].

9.5.4.3 Complexity

We briefly consider how the informatic derivative offers a new perspective on the
complexity of algorithms.

Example 45 Linear search. To search a list x for a key k consider

search : [S] × S → {⊥, &}

given by

search([], k) = ⊥
search(x, k) = & if first x = k,

search(x, k) = search(rest x, k) otherwise.

Let D = [S] × S� – the product of [S] with the set S ordered flatly. We measure this
domain as μ(x, k) = μx . Let r : D → D be the splitting r(x, k) = (rest x, k).

On input (x, k) in the worst case, the number of comparisons n done by this algo-
rithm is the same as the number of iterations needed to compute rn(x, k) = ([], k).
Since d+rμ(x) = 1 for all x and d−rμ(x) = 1 for all x �= ([], k), Theorem 35
applies to give

r n(x, k) = ([], k) ⇔ n = μ(x, k) = μx,

which helps us understand how the complexity of a discrete algorithm can be deter-
mined by the derivative of a splitting which models its iteration mechanism.

558 K. Martin

Example 46 Binary search. To search a sorted list x for a key k, we use

bin : [S] × S → {⊥, &}

given by

bin([], k) = ⊥
bin(x, k) = & if mid x = k,

bin(x, k) = bin(left x, k) if mid x > k,

bin(x, k) = bin(right x, k) otherwise.

where mid x := x(m(μx)). Again D = [S] × S� and μ(x, k) = μx . This time we
consider the splitting r : D → D by

r(x, k) =
{

(left x, k) if mid x > k;
(right x, k) otherwise.

On input (x, k) in the worst case, the number of comparisons n must satisfy
rn(x, k) = ([], k). In this case, we have drμ([], k) = 1/2, so by Theorem 34,

n ≤
⌈

log(μx)

log(2)

⌉

+ 1 = 'log2(μx)(+ 1,

since we know that the expression on the right is a number m that satisfies
rm(x, k) = ([], k) but that n is the least of all such natural numbers because it
was produced by the algorithm bin.

To summarize these simple examples: we have two different algorithms which
solve the same problem recursively by iterating splittings r and s, respectively, on
a domain (D, μ) in an effort to compute a fixed point p. If drμ(p) < dsμ(p),
then the algorithm using r is faster than the one which uses s. In the case of linear
search we have dsμ(p) = 1, while for binary search we have drμ(p) = 1/2. As we
have already seen, this is identical to the way one compares zero finding methods in
numerical analysis – by comparing the derivatives of mappings at fixed points.

9.5.4.4 Thoughts on the Discrete Derivative

Theorem 31 is crucial in that it characterizes differentiability independent of its
continuous component. Taking only this result as motivation for the definition of
derivative leaves a few distinct possibilities. For instance, if we had called the deriva-
tive the interval [d− fμ(p), d+ fμ(p)], we might notice more clearly the tendency of
continuous information to collapse at a point. Another possibility is to say that the
derivative is d− fμ(p). The author chose d+ fμ because it makes the most sense from
an applied perspective. As an illustration, consider the intuitions we have about it:
algorithms r with drμ(p) = 0 belong to O(1), those with 0 < drμ(p) < 1 belong
to O(log n), while drμ(p) = 1 indicates a process is in O(n).

9 Domain Theory and Measurement 559

At first glance, an extension of the informatic derivative to the case of discrete
data (compact elements) seems like an absurd idea. To begin, we have to confront
the issue of essentially defining unique limits at isolated points. But even if we
assume we have this, we need the new formulation to extend the previous, which
means spotting a relationship between limits in the continuous realm versus finite
sequences of discrete objects. But the truth is that all of this only sounds difficult
because of what we are taught: that the continuous and discrete are “fundamentally
different” and that one of the crucial distinctions between the two is the sensibility
of the limit concept for continuous objects, as compared to the discrete case where
‘limit’ has no meaning. From this, we conclude that math students should spend less
time attending lectures and more time coming up with new ideas.

The existence of a derivative in the discrete case means much more than it does in
the continuous case. Most results on discrete derivatives do not hold in the continu-
ous case. Just consider a quick example: let r : D → D be any continuous map with
p = r(p) ∈ K (D) and drμ(p) = 0. If x 	 p, then r(x) = p. Now compare this to
the continuous case (like calculus on the real line), where one can only conclude that
there is an a � p such that rn(x) → p for all x with a � x 	 p. Again, this sharp
contrast is due to the fact that discrete derivatives make use of global information,
while continuous derivatives use only local information. Nevertheless, each is an
instance of a common theme.

9.6 Forms of Process Evolution

9.6.1 Intuition

The idea in the measurement formalism is to analyze processes: a process is a thing
that evolves in a space of informatic objects. The space of informatic objects is
formally described by a domain with a measurement. By contrast, the measurement
formalism allows for considerable flexibility in formalizing the notion of process.
We have already seen one such notion of process: a function f : D → D that
on input x produces iterates (f n(x)) which converge to a fixed point

⊔
f n(x).

This discrete form of evolution has various generalizations within the measurement
formalism. We consider a few more of them in this section. The renee equation,
which is a discrete extension of iteration, can be used to define recursion on general
domains while still maintaining a first order view of evolution. The trajectory leads
one to daydream about a kinematics of computation: for instance, the complexity
of an algorithm is the amount of time it takes its trajectory in informatic space to
achieve its order theoretic maximum. Lastly, we consider a third notion of process,
one grounded on a ‘thermodynamical’ view of evolution, very different from the first
two. The basic idea is this: before a process evolves, there are several possible states
it may evolve to; when it finishes evolving, we gain information, but the acquisition
of information is not free – how much does it cost?

Major references: [15, 22, 28, 29]

560 K. Martin

9.6.2 The Renee Equation

The renee equation is a model of recursion. After introducing this equation, we
discuss two major results. The first is that every renee equation has a unique solu-
tion. The second is that the partial and primitive recursive functions on the naturals
may be captured by taking closure under renee equations on the domains N

∞ and
N

∗ – the naturals in their usual and opposite orders, respectively. This suggests that
the information order on a domain determines a natural notion of computability,
and that the renee equation yields a systematic method for determining this notion
of computability. We will also see that one renee equation describing an algorithm
leads to another which captures its complexity. This provides a qualitative and quan-
titative first order view of computation, one very much in line with actual program
development.

9.6.2.1 Unique Solvability of the Equation

Recall the definition of the μ topology from Sect. 9.2.4.

Definition 52 Let (X, +) be a Hausdorff space with a binary operation that is asso-
ciative. If (xn) is a sequence in X , then its infinite sum is

∑

n≥1

xn := lim
n→∞(x1 + · · · + xn)

provided that the limit of the partial sums on the right exists.

Definition 53 Let + : D2 → D be a binary operation on a continuous dcpo. A point
x ∈ D is idle if there is a μ open set σ(x) around x such that

(i) (σ (x), +) is a semigroup, and
(ii) If (xn) is any sequence in σ(x) which converges to x in the μ topology, then

∑

n≥1

xn exists and lim
n→∞

∑

k≥n

xk = lim
n→∞ xn .

The operation + is said to be idle at x .

An idle point is one where the “unwinding” of a recursive definition stops. For
example, 0 ∈ N, or the empty list.

Definition 54 Let D be a continuous dcpo. A μ continuous operation + : D2 → D
is iterative if it has at least one idle point.

Here are a few simple examples of iterative operations.

Example 47 Data types.

(i) ([S], ·) concatenation of lists. The idle points are {[]}.
(ii) (N∗, +) addition of natural numbers. The idle points are {0}.

9 Domain Theory and Measurement 561

(iii) (N∗, ×) multiplication of natural numbers. The idle points are {0, 1}.
(iv) ({⊥, &}, ∨) Boolean ‘or.’ The idle points are {⊥, &}.
(v) ({⊥, &}, ∧) Boolean ‘and.’ The idle points are {⊥, &}.

The μ topology on each domain above is discrete. The fixed points of a function
f : P → P are fix(f) = {x ∈ P : f (x) = x}.
Definition 55 A splitting r : D → D on a dcpo D is inductive if for all x ∈ D,⊔

rn x ∈ fix(r).

Definition 56 Let D be a dcpo and (E, +) be a domain with an iterative operation.
A function δ : D → E varies with an inductive map r : D → D provided that

(i) For all x ∈ fix(r), δ(x) is idle in E , and
(ii) For all x ∈ D, δ(r n x) → δ(

⊔
rn x) in the μ topology on E .

The function δ interprets the recursive part r of an algorithm in the domain
(E, +). A fixed point of r is mapped to an idle point in E : A point where recursion
stops.

Definition 57 Let D be a dcpo and (E, +) be a domain with an iterative operation.
A renee equation on D → E is one of the form

ϕ = δ + ϕ ◦ r

where δ : D → E varies with an inductive map r : D → D.

Theorem 36 (Canonicity) The renee equation

ϕ = δ + ϕ ◦ r

has a unique solution which varies with r and agrees with δ on fix(r).

Please stop and read the last theorem again. Thank you. The importance of ϕ

varying with r is that it enables a verification principle [15]. Here are a few basic
instances of the renee equation.

Example 48 The factorial function

fac : N → N

is given by

fac 0 = 1
fac n = n × fac(n − 1).

Let D = N
∗ and E = (N∗, ×). Define δ : D → E by

δ(n) =
{

1 if n = 0,

n otherwise.

562 K. Martin

and pred : D → D by pred(n) = n − 1, if n > 0, and pred(0) = 0. The unique
solution of

ϕ = δ × ϕ ◦ pred

which satisfies ϕ(0) = 1 is the factorial function.

Example 49 The length of a list

len : [S] → N

is given by

len [] = 0
len a :: x = 1 + len x .

Let D = [S] and E = (N∗, +). Define δ : D → E by

δ(x) =
{

0 if x = [],
1 otherwise.

and rest : D → D by rest(a :: x) = x and rest([]) = []. The unique solution of

ϕ = δ + ϕ ◦ rest

which satisfies ϕ([]) = 0 is the length function.

Example 50 The merging of two sorted lists of integers

merge : [int] × [int] → [int]

is given by the following ML code

fun merge([], ys) = ys : int list
| merge(xs, []) = xs
| merge(x :: xs, y :: ys) = if x ≤ y then

x :: merge(xs, y :: ys)
else

y :: merge(x :: xs, ys);

Let D = [int] × [int] and E = ([int], ·). Define δ : D → E by

δ(x, []) = x
δ([], y) = y
δ(x, y) = [min(first x, first y)], otherwise.

9 Domain Theory and Measurement 563

and π : D → D by

π(x, []) = ([], [])
π([], y) = ([], [])
π(x, y) = (rest x, y), if first x ≤ first y;
π(x, y) = (x, rest y), otherwise.

The unique solution of

ϕ = δ · ϕ ◦ π

satisfying ϕ([], []) = [] is merge.

The last example is interesting because solving the equation yields a new iterative
operation on [int]. We shall make use of this fact in the next example to solve an
equation for sorting. In this way, we see that algorithms can be built up by solving
sequences of renee equations.

Example 51 The prototypical bubblesort of a list of integers

sort : [int] → [int]

is given by

sort [] = []
sort x = merge([first x], sort rest x)

Let D = [int] and E = ([int], +) where

+ : [int]2 → [int]
(x, y) �→ merge(x, y)

is the merge operation of Example 50. Define δ : D → E by

δ(x) =
{ [] if x = []

[first x] otherwise

and let rest : [int] → [int] be the usual splitting. The unique solution of

ϕ = δ + ϕ ◦ rest

satisfying ϕ[] = [] is sort.

564 K. Martin

9.6.2.2 Computability from the Information Order

In this section, we will see that the primitive and partial recursive functions can
both be captured using the renee equation: each arises as a canonical notion of
computability derivable from a given information order.

Definition 58 Let N⊥ denote the set N ∪ {⊥}, where ⊥ is an element that does not
belong to N.

For instance, one could take ⊥ = {N}, should the need arise.

Definition 59 A partial function on the naturals is a function

f : N
n → N⊥,

where n ≥ 1. We say that f is undefined at x exactly when f (x) = ⊥.

Thinking of f as an algorithm, f (x) = ⊥ means that the program f crashed
when we sent it input x .

Definition 60 The composition of a partial map f : N
n → N⊥ with partial map-

pings gi : N
k → N⊥, 1 ≤ i ≤ n, is the partial map

f (g1, · · · , gn) : N
k → N⊥

f (g1, · · · , gn)(x) =
{

f (g1(x), · · · , gn(x)) if (∀i) gi (x) �= ⊥;
⊥ otherwise.

That is, if in the process of trying to run the program f , the computation of one
of its inputs fails, then the entire computation fails.

Definition 61 A partial map f : N
n+1 → N⊥ is defined by primitive recursion

from g : N
n → N⊥ and h : N

n+2 → N⊥ if

f (x̄, y) =
{

g(x̄) if y = 0;
h(x̄, y − 1, f (x̄, y − 1)) otherwise.

where we have written x̄ ∈ N
n .

Computationally, primitive recursion is a counting loop.

Definition 62 The class of primitive recursive functions on the naturals is the small-
est collection of functions f : N

n → N which contains the zero function, the
successor, the projections, and is closed under composition and primitive recursion.

The analogue of a “while” loop is provided by minimization.

Definition 63 The minimization of a partial function f : N
n+1 → N⊥ is the partial

function

μ f : N
n → N⊥

μ f (x) = min{y ∈ N : (∀z < y) f (x, z) �= ⊥ & f (x, y) = 0}

with the convention that μ f (x) = ⊥ if no such y exists.

9 Domain Theory and Measurement 565

Definition 64 The class of partial recursive functions on the naturals is the smallest
collection of partial maps f : N

n → N⊥ which contains the zero function, the
successor, the projections, and is closed under composition, primitive recursion, and
minimization.

Let D be a domain which as a set satisfies N ⊆ D ⊆ N ∪ {∞}.
Definition 65 The sequence of domains (Dn)n≥1 is given inductively by

D1 = D,

Dn+1 = Dn × D1, n > 0.

We extend a few simple initial functions to D.

Definition 66 The initial functions.

(i) Addition of naturals + : D2 → D given by

(x, y) �→
{

x + y if x, y ∈ N;
∞ otherwise.

(ii) Multiplication of naturals × : D2 → D given by

(x, y) �→
{

x × y if x, y ∈ N;
∞ otherwise.

(iii) The predicate ≤: D2 → D given by

(x, y) �→
{

x ≤ y if x, y ∈ N;
∞ otherwise.

(iv) The projections πn
i : Dn → D, for n ≥ 1 and 1 ≤ i ≤ n, given by

(x1, · · · , xn) �→
{

xi if (x1, · · · , xn) ∈ N
n;

∞ otherwise.

A map r : Dn → Dn may be written in terms of its coordinates ri : Dn → D,
for 1 ≤ i ≤ n, as r = (r1, · · · , rn).

Definition 67 Let C(D) be the smallest class of functions f : Dn → D with the
following properties:

(i) C(D) contains +, ×, ≤, and πn
i , for n ≥ 1 and 1 ≤ i ≤ n,

(ii) C(D) is closed under substitution: If f : Dn → D is in C(D) and gi : Dk → D
is in C(D), for 1 ≤ i ≤ n, then

f (g1, · · · , gn) : Dk → D is in C(D),

and

566 K. Martin

(iii) C(D) is closed under iteration: If δ : Dn → D and + : D2 → D are in C(D),
and r : Dn → Dn is a map whose coordinates are in C(D), then

ϕ = δ + ϕ ◦ r ∈ C(D)

whenever this is a renee equation on Dn → D.

C(D) contains maps of type Dn → D. To obtain functions on the naturals,
we simply restrict them to N

n . In general, we obtain partial maps on the naturals,
depending on whether or not D contains ∞.

Definition 68 The restriction of a mapping f : Dn → D to N
n is

| f | : N
n → N⊥

| f |(x) =
{

f (x) if f (x) ∈ N;
⊥ otherwise.

Let N
∞ denote the domain of naturals in their usual order with ∞ as a top ele-

ment, N
∗ denote the domain of naturals in their dual order and N

� denote the domain
of naturals ordered flatly: x 	 y ≡ x = y.

The information order on a domain determines a notion of computability because
it determines our ability to iterate.

Theorem 37

(i) |C(N∞)| is the class of partial recursive functions.
(ii) |C(N∗)| is the class of primitive recursive functions.

(iii) |C(N�)| is the smallest class of functions containing the initial functions which
is closed under substitution.

9.6.2.3 A Renee Equation for Algorithmic Complexity

One renee equation describing an algorithm leads to another describing its complex-
ity. If we have an algorithm ϕ = δ + ϕ ◦ r , then in order to calculate ϕ(x), we must
calculate δ(x), r(x), ϕ(r x) and δ(x) + ϕ(r x). Thus, the cost cϕ(x) of calculating
ϕ(x) is the sum of the four costs associated with computing δ(x), r(x), ϕ(r x) and
δ(x) + ϕ(r x). In symbols,

cϕ(x) = cδ(x) + cr (x) + cϕ(r x) + c+(δ(x), ϕ(r x)).

When the functions (cδ, c+, cr) actually describe the complexity of an algorithm,
the equation above can be solved uniquely for cϕ .

Proposition 6 Let ϕ = δ + ϕ ◦ r be a renee equation on D → E. If cδ : D → N
∗,

cr : D → N
∗ and c+ : E2 → N

∗ are functions such that for all x ∈ D,

9 Domain Theory and Measurement 567

lim
n→∞ cδ(r

n x) = lim
n→∞ cr (r

n x) = lim
n→∞ c+(δ(rn x), ϕr(rn x)) = 0,

then

cϕ = cδ + cr + c+(δ, ϕ ◦ r) + cϕ(r)

is a renee equation on D → (N∗, +).

Thus, one renee equation describing an algorithm leads to another describing its
complexity. Let’s briefly consider a quick example just to check that the ideas work
the way they should, we calculate the complexity of a sorting algorithm.

Example 52 Recall the prototypical bubblesort of a list of integers

sort : [int] → [int]

is given by

sort [] = []
sort x = merge([first x], sort rest x)

Let D = [int] and E = ([int], +) where

+ : [int]2 → [int]

(x, y) �→ merge(x, y)

is the merge operation mentioned previously. Define δ : D → E by

δ(x) =
{ [] if x = []

[first x] otherwise

and let r : D → D be the splitting r x = rest x . The unique solution of

ϕ = δ + ϕ ◦ r

satisfying ϕ[] = [] is sort.
For the worst case analysis of sort = δ + sort ◦ r the number of comparisons

performed by r and δ on input x is zero. Hence,

cr (x) = cδ(x) = 0,

while the cost of merging two lists x and y can be as great as μx + μy, so

c+(x, y) = μx + μy.

568 K. Martin

By Proposition 6, we have a renee equation

csort = c+(δ, sort ◦ r) + csort(r)

which should measure the complexity of bubblesort. But does it? By Theorem 36,

csort[] = 0,

while for any other list x , we have

csort(x) = c+(δ(x), sort(r x)) + csort(r x)

= μδ(x) + μ sort(r x) + csort(r x)

= 1 + (μx − 1) + csort(r x)

= μx + csort(r x).

However, the function f (x) = [μx(μx + 1)]/2 varies with r , agrees with δ on
fix(r), and satisfies the equation above, so by the uniqueness in Theorem 36, we
have

csort(x) = μx(μx + 1)

2
,

for all x .

One can go further with these ideas. In [18], the renee equation and measurement
combine to provide a practical formal model of what a classical “search” method
ϕ = δ+ϕ◦r is. A particular highlight of the approach is that it does not force one to
distinguish between discrete notions of searching, such as linear and binary search-
ing of lists, and continuous notions of searching, such as zero finding methods like
the bisection. The complexity cϕ of such methods is then shown to be determined
by the number of iterations it takes r to get “close enough” to a fixed point. Thus,
cϕ can also be calculated using the informatic derivative at a compact element.

9.6.3 Trajectories

Iterating an operator f : D → D yields a sequence x, f (x), f 2(x), . . . , f n(x).
Each f n(x) can be thought of as occuring at time n. It is natural to then wonder
if an element f t (x) exists where t ∈ [0, ∞). We would then have a trajectory
x : [0, ∞) → D which describes the effect that f has had on x after t units of time.
We could then take derivatives of x with respect to time and use them to learn things
about a process. For instance, maybe the complexity of a process would amount to
the point in time t when x(s) 	 x(t) for all s i.e. the “absolute maximum” of x .
Maybe we could graph trajectories on the t−	 axis to learn things about processes
that we didn’t know before. Maybe we should try this.

9 Domain Theory and Measurement 569

9.6.3.1 Kinematics

Proofs for this section can be found in [22].

Definition 69 A variable on a dcpo is a measurement v : D → [0, ∞)∗ such that
for all x, y ∈ D, we have x 	 y & vx = vy ⇒ x = y.

Definition 70 A curve on a domain D is a function x : dom(x) → D where dom(x)

is a nontrivial interval of the real line.

Each curve x determines a value of v at time t , which is the number vx(t).

Definition 71 For a curve x and variable v on a dcpo,

ẋv(t) := lim
s→t

vx(s) − vx(t)

s − t
.

We then define

ẍv := dẋv

dt

and so on for higher order.

Because ẋv : [0, ∞) → R is an ordinary function, higher order derivatives are
calculated as usual – its the first derivative that requires theory.

Proposition 7 Let x be a curve with ẋv defined on (a, b).

(i) x is monotone increasing on [a, b] iff ẋv ≤ 0 on (a, b) and x[a, b] is a chain.
(ii) x is monotone decreasing on [a, b] iff ẋv ≥ 0 on (a, b) and x[a, b] is a chain.

(iii) x is constant on [a, b] iff ẋv = 0 on (a, b) and x[a, b] is a chain.

Notice that the sign of ẋv is an indicator of how uncertainty behaves: If ẋv ≤ 0,
then uncertainty is decreasing, so we are moving up in the order.

Definition 72 A curve x has a relative maximum at an interior point t ∈ dom(x) if
there is an open set Ut containing t such that x(s) 	 x(t) for all s ∈ Ut . Relative
minimum is defined dually, and these two give rise to relative extremum.

Notice that a qualitative relative maximum is a point in time where the quantita-
tive uncertainty is a local minimum.

Lemma 6 If a curve x has a relative extremum at interior point t ∈ dom(x), then
for all variables v, either ẋv(t) = 0, or it does not exist.

A nice illustration of why the qualitative idea 	 is important: if a curve has
a derivative with respect to just one variable v, then its set of extreme points is
contained in the set {t : ẋv(t) = 0}. This is quite valuable: we are free to choose the
variable which makes the calculation as simple as possible.

570 K. Martin

Once we have the extreme points there is also a systematic way in the informatic
setting to determine which (if any) are maxima or minima: the second derivative
test, whose formalization requires one to acknowledge the qualitative structure on
which it is implicitly founded.

Definition 73 A curve x is a trajectory if for all t ∈ dom(x) there is an open set Ut

containing t such that

x(s) 	 x(t) or x(t) 	 x(s)

for all s ∈ Ut .

Thus, a trajectory is a curve x with underlying qualitative structure; it is called
C2

v when ẍv is continuous, with respect to variable v.

Proposition 8 Let x be a C2
v trajectory. If ẋv(t) = 0 and ẍv(t) �= 0 for some interior

point t ∈ dom(x), then x has a relative extremum at t .

(i) If ẍv(t) > 0, then x(t) is a relative maximum.
(ii) If ẍv(t) < 0, then x(t) is a relative minimum.

In this work we will be mostly concerned with the strongest form of extrema on
domains:

Definition 74 A curve x has an absolute maximum at t ∈ dom(x) if

x(s) 	 x(t)

for all s ∈ dom(x). Absolute minimum is defined similarly.

Here is a simple but surprisingly useful way of establishing the existence of abso-
lute extrema.

Proposition 9 Let v be a variable on D and x : [a, b] → D a curve whose image
is a chain. If vx : [a, b] → R is Euclidean continuous, then

(i) The map x is continuous from the Euclidean to the Scott topology, and
(ii) The map x assumes an absolute maximum and an absolute minimum on [a, b].

In particular, its absolute maximum is

x(t∗) =
⊔

t∈[a,b]
x(t)

for some t∗ ∈ [a, b], with a similar expression for the absolute minimum.

9 Domain Theory and Measurement 571

A valuable property of absolute maxima: If x(t∗) is an absolute maximum, then
for all variables v,

vx(t∗) = inf{vx(t) : t ∈ dom(x)}.

That is, an absolute maximum is a point on a curve which simultaneously minimizes
all variables.

9.6.3.2 Linear Searching

Suppose a list has n > 0 elements. Linear search begins with the first element in
the list and proceeds to the next and so on until the key is located. At time t (after
t comparisons), all elements with indices from 1 to t have been searched. Thus, a
trajectory representing the information we have gained is x(t) = t for t ∈ [0, n].
The natural space of informatic objects is D = [0, n] whose natural measure of
uncertainty is vx = n − x .

�

t•
(0,0)

Next is a better example—one where the kinematics of computation will help us
visualize a computation.

9.6.3.3 Binary Searching

This algorithm causes a trajectory on (IR, v) with v[a, b] = b −a. For a continuous
f : R → R, let split f : IR → IR be the bisection method on the interval domain
defined by

split f [a, b] :=
{

left[a, b] if f (a) · f ((a + b)/2) ≤ 0;
right[a, b] otherwise.

A given x ∈ IR leads to a trajectory x : [0, ∞) → IR defined on natural numbers
by

x(n) = splitnf (x)

and then extended to all intermediate times n < t < n + 1 by declaring x(t) to be
the unique element satisfying

x(n) 	 x(t) 	 x(n + 1) and μx(t) = vx

2t
.

572 K. Martin

By definition, the trajectory of binary search is also increasing. But graphing it is
more subtle. It looks like this:

�

t

But why? Using the kinematics of computation, since vx(t) = e−(ln 2)t · vx(0), we
have

ẋv(t) = (− ln 2)vx(t) < 0

reflecting the fact that x : [0, ∞) → IR is increasing. In addition, ẍv(t) > 0, so the
graph is concave down. Notice that as t → ∞, the trajectory should tend toward the
answer as its velocity tends to zero.

Trajectories of classical search algorithms tend to increase with time. All of the
curves basically look the same, so what’s the point? It makes the dream of a “kine-
matics of computation” seem out of reach. But then, what is the point in dreaming of
things that are within reach? Those aren’t dreams, they’re just things you plan to do.

9.6.3.4 Quantum Searching

Grover’s algorithm [9] for searching is the only known quantum algorithm whose
complexity is provably better than its classical counterpart. It searches a list L of
length n (a power of two) for an element k known to occur in L precisely m times
with n > m ≥ 1. The register begins in the pure state

|ψ〉 = 1√
n

n∑

i=1

|i〉

and after j iterations of the Grover operator G

G j |ψ〉 = sin(2 jθ + θ)√
m

∑

L(i)=k

|i〉 + cos(2 jθ + θ)√
n − m

∑

L(i) �=k

|i〉

where sin2 θ = m/n. The probability that a measurement yields i after j iterations
is

sin2(2 jθ + θ)/m if L(i) = k

and

cos2(2 jθ + θ)/(n − m) if L(i) �= k.

9 Domain Theory and Measurement 573

To get the answer, we measure the state of the register in the basis {|i〉 : 1 ≤ i ≤ n};
if we perform this measurement after j iterations of G, when the state of the register
is G j |ψ〉, our knowledge about the result is represented by the vector

x(j) =
(

sin2(2 jθ + θ)

m
, . . . ,

sin2(2 jθ + θ)

m
,

cos2(2 jθ + θ)

n − m
, . . . ,

cos2(2 jθ + θ)

n − m

)

The crucial step now is to imagine t iterations,

x(t) =
(

sin2(2tθ + θ)

m
, . . . ,

sin2(2tθ + θ)

m
,

cos2(2tθ + θ)

n − m
, . . . ,

cos2(2tθ + θ)

n − m

)

Thus, x is a curve on the domain Δn of classical states in its implicative order
(Sect. 9.2.2)

x 	 y ≡ (∀i) xi < yi ⇒ xi = x+

where x+ refers to the largest probability in x . Thus, only a maximum probability is
allowed to increase as we move up in the information order on Δn . If the maximum
probability refers to a solution of the search problem, then moving up in this order
ensures that we are getting closer to the answer.

We will now use this trajectory to analyze Grover’s algorithm using the
kinematics of computation. Here are some crucial things our analysis will yield:

(a) The complexity of the algorithm,
(b) A qualitative property the algorithm possesses called antimonotonicity. Without

knowledge of this aspect, an experimental implementation would almost
certainly fail (for reasons that will be clear later).

(c) An explanation of the algorithm as being an attempt to calculate a classical
proposition.

Precisely now, the classical state x(t) is a vector of probabilities that do not
increase for t ∈ dom(x) = [a, b], a = 0 and b = π/2θ − 1. The image of
x : [a, b] → Λn is a chain in the implicative order, which is simplest to see by
noting that it has the form

x = (f, . . . , f, g, . . . , g)

574 K. Martin

so that g(s) ≥ g(t) ⇒ x(s) 	 x(t); otherwise, x(t) 	 x(s). We can now deter-
mine the exact nature of the motion represented by x using kinematics. Because
x : [a, b] → D is a curve on a domain D whose image is a chain and whose time
derivative ẋv(t) exists with respect to a variable v on Δn , we know that

(i) The curve x has an absolute maximum on [a, b]: There is t∗ ∈ [a, b] such that

x(t∗) =
⊔

t∈[a,b]
x(t),

and
(ii) Either t∗ = a, t∗ = b or ẋv(t∗) = 0.

Part of the power of this simple approach is that we are free to choose any v we like.
To illustrate, a tempting choice might be entropy v = H , but then solving ẋv = 0
means solving the equation

−m ḟ (1 + log f) − (n − m)ġ(1 + log g) = 0

and we also have to determine the points where ẋv is undefined, the set {t : g(t)= 0}.
However, if we use

v = 1 − √
x+,

we only have to solve a single elementary equation

cos(2tθ + θ) = 0

for t , allowing us to conclude that the maximum must occur at t = a, t = b, or at
points in

{t : ẋv(t) = 0} = {b/2}.

The absolute maximum of x is

x(b/2) = (1/m, . . . , 1/m, 0, . . . , 0)

because for the other points we find a minimum of

x(a) = x(b) = ⊥ = (1/n, . . . , 1/n).

The value of knowing the absolute maximum is that it allows us to calculate the
complexity of the algorithm: it is O(b/2), the amount of time required to move
to a state from which the likelihood of obtaining a correct result by measurement

9 Domain Theory and Measurement 575

is maximized. This gives O(
√

n/m) using θ ≥ sin θ ≥ √
m/n and then b/2 ≤

(π/4)
√

n/m − 1/2.
From ẋv(t) ≤ 0 on [a, b/2] and ẋv(t) ≥ 0 on [b/2, b], we can also graph x :

x

t
•

b/2

This is the “antimonotonicity” of Grover’s algorithm: if j = b/2 iterations will
solve the problem accurately, 2 j iterations will mostly unsolve it! This means that
our usual way of reasoning about iterative procedures like numerical methods, as
in “we must do at least j iterations,” no longer applies. We must say “do exactly j
iterations; no more, no less.” As is now clear, precise estimates like these have to be
obtained before experimental realization is possible.

Finally, as explained in more detail in [23], we can view Grover’s algorithm as
an attempt to calculate as closely as possible the classical proposition

x(b/2) = (1/m, . . . , 1/m, 0, . . . , 0) ∈ Ir(Δn) =
{

x :
∧

↑x ∩ max(Δn) = x
}

.

It does so by generating approximations

x(t) � x(b/2)

for all t �= b/2.

9.6.3.5 Amplitude Damping

Let H be the state space for a two dimensional quantum system. Two parties com-
municate with each other as follows. First, they agree up front on a fixed basis of H,
say {|ψ〉, |φ〉}, which can be expressed in some basis {|0〉, |1〉} as

|ψ〉 = a|0〉 + b|1〉 & |φ〉 = c|0〉 + d|1〉

where the amplitudes a, b, c, d are all complex. The state |ψ〉 is taken to mean “0”,
while the state |φ〉 is taken to mean “1”. The first party, the sender, attempts to send
one of these two qubits |∗〉 ∈ {|ψ〉, |φ〉} to the second party, the receiver. The second
party receives some qubit and performs a measurement in the agreed upon basis. The
result of this measurement is one of the qubits {|ψ〉, |φ〉}, which is then interpreted
as meaning either a “0” or a “1”.

We say some qubit because as |∗〉 travels, it suffers an unwanted interaction with
its environment, whose effect on density operators can be described as

ε(ρ) = E0ρE†
0 + E1ρE†

1

576 K. Martin

where the operation elements are given by

E0 =
(

1 0
0

√
1 − λ

)

& E1 =
(

0
√

λ

0 0

)

This effect is known as amplitude damping and the parameter λ ∈ [0, 1] can be
thought of as the probability of losing a photon. Thus, the receiver does not neces-
sarily acquire the qubit |∗〉, but instead receives some degradation of it, describable
by the density operator ε(|∗〉〈∗|).

The probability that ‘0’ is received when ‘0’ is sent is

α = P(0|0) = −2|a|4 p(λ) + |a|2(λ + 2p(λ)) + 1 − λ

while the probability that ‘0’ is received when ‘1’ is sent is

β = P(0|1) = 2|a|4 p(λ) + |a|2(λ − 2p(λ))

where p(λ) = −1 + λ + √
1 − λ ≥ 0. Thus, each choice of basis defines a classical

binary channel (α, β). Notice that the probabilities α and β only depend on |a|2
because |c|2 = |a|2 and |b|2 = |d|2 = 1 − |a|2 by the orthogonality of |ψ〉 and |φ〉,
and because the initial expressions for α and β turn out to only depend on modulus
squared terms. Because the basis is fixed, |a|2 ∈ [0, 1] is a constant and we obtain a
function x : [0, 1] → N of λ given by

x(λ) = (α(λ), β(λ))

where we recall that N � I[0, 1] is the domain of binary channels. Its domain
theoretic nature was first established in [29]:

Proposition 10 The trajectory x : [0, 1] → N is Scott continuous.

One valuable aspect of x being Scott continuous is that we can now make precise
the connection between quantum information’s intuitive use of the word “noise”
and information theory’s precise account of it: the quantity C(x(λ)) decreases as
λ increases i.e. the amount of information that the two parties can communicate
decreases as the the probability of losing a photon increases. In the extreme cases,

x(0) = (1, 0) & x(1) = (|a|2, |a|2)

yielding respective capacities of 1 and 0. There is a more fundamental idea at work
in this example and in many others like it: we have learned about capacity by
only examining how the probabilities in the noise matrix change, and this more
than justifies the domain theoretic approach. Imagine what would happen if we
actually tried to calculate C(x(λ)) explicitly: we would have to substitute α(λ) =
−2|a|4 p(λ)+|a|2(λ+2p(λ))+1−λ for a and β(λ) = 2|a|4 p(λ)+|a|2(λ−2p(λ))

for b into theformula

9 Domain Theory and Measurement 577

C(a, b) = log2

(

2
āH(b)−b̄H(a)

a−b + 2
bH(a)−aH(b)

a−b

)

and then seek to show that the resulting quantity decreases as λ increases.

9.6.3.6 Decoherence Over Time

One interesting aspect of amplitude damping is that it is not unital. Any unital qubit
channel will lead to a trajectory defined on some nontrivial interval since all classical
channels derived from them are binary symmetric and the binary symmetric chan-
nels form a chain in N. An interesting example in this last regard is phase damping
as a function of time, whose effect on the pure state |ψ〉 = α|0〉 + β|1〉 with density
operator

ρ = |ψ〉〈ψ | =
(|α|2 αβ∗

α∗β |β|2
)

after t units of time is

ρ(t) =
(|α|2 αβ∗e−t/td

e−t/td α∗β |β|2
)

where td is a constant known as the decoherence time. If the qubit decoheres for t
units of time, then a “0” may no longer be a “0” and a “1” may no longer be a “1”.
Specifically, the probability that a “0” is still a “0” is

P(0|0) = |a|4 + 2e−t/td |a|2|b|2 + |b|4

while the probability that a ‘1’ changes into a ‘0’ is

P(0|1) = 1 − P(0|0).

This gives rise to a binary symmetric channel.

9.6.4 Vectors

We can think of domains as a qualitative way of reasoning about informative objects,
and measurement as a way of determining the amount of information in an object.
But neither set of ideas attempts to directly answer the question “What is infor-
mation?” In this section, we offer one possible answer to this question which has
pragmatic value and is of interest to computer science.

To begin, we assume that the words “complexity” and “information” are just
that—words. We start from a clean slate, forgetting the various connotations these

578 K. Martin

words have in the sciences, and simply begin talking about them intuitively. We
might say:

• The complexity of a secret is the amount of work required to guess it.
• The complexity of a problem is the amount of work required to solve it.
• The complexity of a rocket is the amount of work required to escape gravity.
• The complexity of a probabilistic state is the amount of work required to resolve

it.

In all cases, there is a task we want to accomplish, and a way of measuring the
work done by a process that actually achieves the task; such a process belongs
to a prespecified class of processes which themselves are the stuff that science is
meant to discover, study and understand. Then there are two points not to miss
about complexity:

(i) It is relative to a prespecified class of processes,
(ii) The use of the word “required” necessitates the minimization of quantities like

work over the class of processes.

Complexity is process dependent. Now, what is information in such a setting?
Information, in seeming stark contrast to complexity, is process independent.

Here is what we mean: information is complexity relative to the class of all con-
ceivable processes. For instance, suppose we wish to measure the complexity of
an object x with respect to several different classes P1, . . . , Pn of processes. Then
the complexity of x varies with the notion of process: It will have complexities
c1(x), . . . , cn(x), where ci is calculated with respect to the class Pi . However,
because information is complexity relative to the class of all conceivable processes,
the information in an object like x will not vary. That is what we mean when we
say information is process independent: it is an element present in all notions of
complexity. So we expect

complexity ≥ information

if only in terms of the mathematics implied by the discussion above. For example,
this might allow us to prove that the amount of work you expect to do in solving
a problem always exceeds the a priori uncertainty (information) you have about its
solution: the less you know about the solution, the more work you should expect to
do. An inequality like the one above could be valuable.

To test these ideas, we study the complexity of classical states relative to a class
of processes. A class of processes will be derived from a domain (D, μ) with a
measurement μ that supports a new notion called orthogonality. Write cD(x) for
the complexity of a classical state x relative to (D, μ). Then we will see that

inf
D∈Σ

cD = σ (9.1)

9 Domain Theory and Measurement 579

where σ is Shannon entropy and Σ is the class of domains (D, μ). This equation
provides a setting where it is clear that information in the sense of the discussion
above is σ , and that the class of all conceivable processes is Σ . By (9.1), our intuitive
development of ‘complexity’ turns out to be capable of deriving lower bounds on the
complexity of algorithms such as sorting and searching. Another limit also exists,

⋂

D∈Σ

≤D = ≤ (9.2)

where ≤D is a relation on classical states which means x ≤D y iff for all processes p
on (D, μ), it takes more work for p to resolve x than y. This is qualitative complex-
ity, and the value of the intersection above ≤ just happens to be the majorization
relation from Sect. 9.2.2. Muirhead [34] discovered majorization in 1903, and in
the last 100 years his relation has found impressive applications in areas such as
economics, computer science, physics and pure mathematics [2, 14]. We will see
that the complexity cD is determined by its value on this subset.

The limits (9.1) and (9.2) comprise what we call the universal limit, because it is
taken over the class of all domains. The pair (σ, ≤) can also be derived on a fixed
domain (D, μ) provided one has the ability to copy processes. The mathematics
of copying necessitates the addition of algebraic structure ⊗ to domains (D, μ)

already supporting orthogonality. It is from this setting, which identifies the essential
mathematical structure required to execute classical information theory [41] over
the class of semantic domains, that the fixed point theorem springs forth: as with
recursive programs, the semantics of information can also be specified by a least
fixed point:

fix(Φ) =
⊔

n≥0

Φn(⊥) = σ

where Φ is the copying operator and ⊥ is the complexity cD , i.e., the least fixed
point of domain theory connects complexity in computer science to entropy in
physics. We thus learn that one can use domains to define the complexity of objects
in such a way that information becomes a concept derived from complexity in a
precise and systematic manner: as a least fixed point.

9.6.4.1 Processes

To study processes which may result in one of several different outcomes, we have
to know what “different” means. This is what orthogonality does: It provides an
order theoretic definition of “distinct.”

Definition 75 A pair of elements x, y ∈ D are orthogonal if μ(↑x ∩ ↑y) ⊆ {0}.
This is written x ⊥ y.

The word “domain” in this section means a continuous dcpo D with a least ele-
ment ⊥ and a map μ that measures all of D. By replacing μ with μ/μ⊥ if necessary,
we can and will assume that μ⊥ = 1. Finally, we will assume that

580 K. Martin

μ(
∧

F) ≥
∑

x∈F

μx

for each finite set F ⊆ D of pairwise orthogonal elements.

Example 53

(i) I[0, 1] with the length measurement μ is a domain.
(ii) Let p ∈ Δn be a classical state with all pk > 0 and Σ∞ the strings over the

alphabet Σ = {0, . . . , n − 1}. Define μ : Σ∞ → [0, ∞)∗ by μ⊥ = 1 and
μi = pi+1 for i ∈ Σ , and then extend it homomorphically by

μ(s · t) = μs · μt

where the inner dot is concatenation of finite strings. The unique Scott continu-
ous extension, which we call μ, yields a domain (D, μ).

An immediate corollary is the case p = (1/2, 1/2) ∈ Δ2 and Σ = {0, 1} = 2,
the binary strings with the usual measurement: (2∞, 1/2|·|) is a domain. This is the
basis for the study of binary codes. The fact that it is a domain implies the vital Kraft
inequality of classical information theory.

Theorem 38 (Kraft) We can find a finite antichain of Σ∞ which has finite word
lengths a1, a2, . . . , an iff

n∑

i=1

1

|Σ |ai
≤ 1.

Finite antichains of finite words are sometimes also called instantaneous codes. The
inequality in Kraft’s result can be derived as follows:

Example 54 The Kraft inequality. We apply the last example with

p = (1/|Σ |, . . . , 1/|Σ |) ∈ Δ|Σ |.

A finite subset of Σ<∞ is pairwise orthogonal iff it is an antichain. Thus,

μ(
∧

F) ≥
∑

x∈F

μx .

In particular, 1 = μ⊥ ≥ μ(
∧

F), using the monotonicity of μ. Notice that the
bound we derive on the sum of the measures is more precise than the one given
in the Kraft inequality. We call μ the standard measurement and assume it when
writing (Σ∞, μ), unless otherwise specified.

Finally, the order theoretic structure of (D, μ) gives rise to a notion of process:
a set of outcomes which are (a) different and (b) achievable in finite time.

9 Domain Theory and Measurement 581

Definition 76 A process on (D, μ) is a function p : {1, . . . , n} → D such that
pi ⊥ p j for i �= j and μp > 0. Pn(D) denotes the set of all such processes.

9.6.4.2 Complexity (Quantitative)

There is a natural function − log μ : Pn(D) → (0, ∞)n which takes a process
p ∈ Pn(D) to the positive vector

− log μp = (− log μp1, . . . , − log μpn).

By considering processes on the domain of binary strings (2∞, μ), it is clear that the
expected work done by an algorithm which takes one of n different computational
paths p : {1, . . . , n} → D is 〈− log μp|x〉. Thus, the complexity of a state c :
Δn → [0, ∞)∗ is

c(x) := inf{〈− log μp|x〉 : p ∈ Pn(D)}.

The function sort+ reorders the components of a vector so that they increase; its
dual sort− reorders them so that they decrease.

Proposition 11 For all x ∈ Δn,

c(x) = inf{〈sort+(− log μp)|sort−(x)〉 : p ∈ Pn(D)}.

In particular, the function c is symmetric.

So we can restrict our attention to monotone decreasing states Λn .

Definition 77 The expectation of p ∈ Pn(D) is 〈p〉 : Λn → [0, ∞)∗ given by

〈p〉x = 〈sort+(− log μp)|x〉.

If the outcomes of process p are distributed as x ∈ Λn , then the work we expect
p will do when taking one such computational path is 〈p〉x . And finally:

Definition 78 The complexity of a state h : Λn → [0, ∞)∗ is

h(x) = inf{〈p〉x : p ∈ Pn(D)}.

Thus, the relation of h to c is that c(x) = h(sort−(x)) for all x ∈ Δn . The Shannon
entropy σ : Δn → [0, ∞)

σ x := −
n∑

i=1

xi log xi

can also be viewed as a map on Λn , and as a map on allmonotone states. Its type
will be clear from the context.

582 K. Martin

Proposition 12 If (D, μ) is a domain, then the complexity h D : (Λn, ≤) → [0, ∞)∗
is Scott continuous and hD ≥ σ where σ is entropy and ≤ is majorization.

We have now proven the following: the amount of work we expect to do when
solving a problem exceeds our a priori uncertainty about the solution. That is, the
less you know about the solution, the more work you should expect to do:

Example 55 Lower bounds on algorithmic complexity. Consider the problem of sort-
ing lists of n objects by comparisons. Any algorithm which achieves this has a binary
decision tree. For example, for lists with three elements, a1, a2, a3, it is

a1 : a2

a1 : a3

a2 : a3

a1 : a3

a2 : a3 [a3, a1, a2]

[a1, a2, a3] [a1, a3, a2]

[a2, a1, a3]

[a2, a3, a1] [a3, a2, a1]

where a move left corresponds to a decision ≤, while a move right corresponds
to a decision >. The leaves of this tree, which are labelled with lists representing
potential outcomes of the algorithm, form an antichain of n!-many finite words
in 2∞ using the correspondence ≤ �→ 0 and > �→ 1. This defines a process
p : {1, . . . , n!} → 2∞. If our knowledge about the answer is x ∈ Λn!, then

avg. comparisons = 〈− log μp|x〉
≥ 〈p〉(sort−x)

≥ h(sort−x)

≥ σ x .

Assuming complete uncertainty about the answer, x = ⊥, we get

avg. comparisons ≥ σ⊥ = log n! ≈ n log n.

In addition, we can derive an entirely objective conclusion: In the worst case, we
must do at least

max(− log μp) ≥ 〈p〉⊥ ≥ σ⊥ ≈ n log n

comparisons. Thus, sorting by comparisons is in general at least O(n log n). A sim-
ilar analysis shows that searching by comparison is at least O(log n).

We have used domain theoretic structure as the basis for a new approach to
counting the number of leaves in a binary tree. Just as different domains can give
rise to different notions of computability (Sect. 9.6.2), different domains can also
give rise to different complexity classes, for the simple reason that changing the
order changes the notion of process. An example of this is (L , μ) ⊆ (2∞, μ) which
models linear search (Example 57).

9 Domain Theory and Measurement 583

9.6.4.3 Complexity (Qualitative)

Each domain (D, μ), because it implicitly defines a notion of process, provides an
intuitive notion of what it means for one classical state to be more complex than
another: x is more complex than y iff for all processes p ∈ Pn(D), the work that
p does in resolving x exceeds the work it does in resolving y. This is qualitative
complexity.

Definition 79 For x, y ∈ Λn , the relation ≤D is

x ≤D y ≡ (∀p ∈ Pn(D)) 〈p〉x ≥ 〈p〉y.

Only one thing is clear about ≤D : The qualitative analogue of Proposition 12.

Lemma 7 For each domain (D, μ), ≤ ⊆ ≤D.

The calculation of ≤D requires knowing more about the structure of D. We con-
sider domains whose orders allow for the simultaneous description of orthogonality
and composition. In the simplest of terms: These domains allow us to say what
different outcomes are, and they allow us to form composite outcomes from pairs of
outcomes.

Definition 80 A domain (D, μ) is symbolic when it has an associative operation
⊗ : D2 → D such that μ(x ⊗ y) = μx · μy and

x ⊥ u or (x = u & y ⊥ v) ⇒ x ⊗ y ⊥ u ⊗ v

for all x, y, u, v ∈ D.

Notice that ⊗ has a qualitative axiom and a quantitative axiom. One example of
a symbolic domain is (Σ∞, μ) for an alphabet Σ with ⊗ being concatenation.

Example 56 The ⊗ on I[0, 1] is

[a, b] ⊗ [y1, y2] = [a + y1 · (b − a), a + y2 · (b − a)].

(I[0, 1], ⊗) is a monoid with ⊥ ⊗ x = x ⊗ ⊥ = x and the measurement μ is
a homomorphism! We can calculate zeroes of real-valued functions by repeatedly
⊗-ing left(⊥) = [0, 1/2] and right(⊥) = [1/2, 1], i.e., the bisection method.

We can ⊗ processes too: If p : {1, . . . , n} → D and q : {1, . . . , m} → D are
processes, then p ⊗ q : {1, . . . , nm} → D is a process whose possible actions are
pi ⊗q j , where pi is any possible action of p, and q j is any possible action of q. The
exact indices assigned to these composite actions for our purposes is immaterial. We
can characterize qualitative complexity on symbolic domains:

Theorem 39 Let (D, ⊗, μ) be a symbolic domain. If there is a binary process
p : {1, 2} → D, then the relation ≤D = ≤.

584 K. Martin

9.6.4.4 The Universal Limit

We now see that ≤ and σ are two sides of the same coin: The former is a qualitative
limit; the latter is a quantitative limit. Each is taken over the class of domains.

Theorem 40 Let σ : Λn → [0, ∞)∗ denote Shannon entropy and Σ denote the
class of domains. Then

inf
D∈Σ

h D = σ

and

⋂

D∈Σ

≤D = ≤

where the relation ≤ on Λn is majorization.

Corollary 6 Shannon entropy σ : (Λn, ≤) → [0, ∞)∗ is Scott continuous.

By Theorem 40, the optimum value of (h D, ≤D) is (σ, ≤). But when does a
domain have a value of (hD, ≤D) that is close to (σ, ≤)? Though it is subtle, if we
look at the case when ≤D achieves ≤ in the proof of Theorem 39, we see that a
strongly contributing factor is the ability to copy processes—we made use of this
idea when we formed the process

⊗n
i=1 p. We will now see that the ability to copy

on a given domain also guarantees that h is close to σ .

9.6.4.5 Inequalities Relating Complexity to Entropy

We begin with some long overdue examples of complexity. It is convenient on a
given domain (D, μ) to denote the complexity in dimension n by hn :Λn → [0, ∞).

Example 57 Examples of h.

(i) On the lazy naturals (L , μ) ⊆ (2∞, μ), where the L is for linear,

hn(x) = x1 + 2x2 + . . . + (n − 1)xn−1 + (n − 1)xn

which is the average number of comparisons required to find an object among
n using linear search.

(ii) On the domain of binary streams (2∞, μ),

h2(x) ≡ 1

h3(x) = x1 + 2x2 + 2x3 = 2 − x1

h4(x) = min{2, x1 + 2x2 + 3x3 + 3x4} = min{2, 3 − 2x1 − x2}

In general, hn(x) is the average word length of an optimal code for transmitting
n symbols distributed according to x .

9 Domain Theory and Measurement 585

(iii) On (I[0, 1], μ), hn(x) = −∑n
i=1 xi log xi , Shannon entropy.

These examples do little to help us understand the relation of h to σ . What we
need is some math. For each integer k ≥ 2, let

c(k) := inf{max(− log μp) : p ∈ Pk(D)}.

Intuitively, over the class Pk(D) of algorithms with k outputs, c(k) is the worst case
complexity of the algorithm whose worst case complexity is least.

Theorem 41 Let (D, ⊗, μ) be a symbolic domain with a process p ∈ Pk(D). Then

σ ≤ h ≤ c(k)

log k
· (log k + σ)

where h and σ can be taken in any dimension.

The mere existence of a process on a symbolic domain (D, μ) means not only
that ≤D=≤ but also that h and σ are of the same order. Without the ability to ‘copy’
elements using ⊗, h and σ can be very different: Searching costs O(n) on L , so hL
and σ are not of the same order. We need a slightly better estimate.

Definition 81 If (D, ⊗, μ) is a symbolic domain, then the integer

inf{k ≥ 2 : c(k) = log k}

is called the algebraic index of (D, μ) when it exists.

By orthogonality, c(k) ≥ log k always holds, so to calculate the algebraic index
we need only prove c(k) ≤ log k. The value of the index for us is that:

Corollary 7 If (D, ⊗, μ) is a symbolic domain with algebraic index k ≥ 2, then

σ ≤ h ≤ log k + σ

where h and σ can be taken in any dimension.

There are results in [28] which explain why the algebraic index is a natural idea,
but these use the Gibbs map and partition function from thermodynamics, which we
do not have the space to discuss. But, it is simple to see that the algebraic index of
I[0, 1] is 2, the algebraic index of Σ∞ is |Σ | and in general, if there is a process
p ∈ Pn(D) on a symbolic domain with (μp1, . . . , μpn) = ⊥ ∈ Λn for some n,
then D has an algebraic index k ≤ n.

9.6.4.6 The Fixed Point Theorem

Let Λ be the set of all monotone decreasing states and let ⊗ : Λ × Λ → Λ be

586 K. Martin

x ⊗ y := sort−(x1 y, . . . , xn y).

That is, given x ∈ Λn and y ∈ Λm , we multiply any xi by any y j and use these nm
different products to build a vector in Λnm .

Definition 82 The copying operator ! : X → X on a set X with a tensor ⊗ is

!x := x ⊗ x

for all x ∈ X .

If p ∈ Pn(D) is a process whose possible outputs are distributed as x ∈ Λn ,
then two independent copies of p considered together as a single process !p will
have outputs distributed according to !x . Now let [Λ → [0, ∞)∗] be the dcpo with
the pointwise order f 	 g ≡ (∀x) f (x) ≥ g(x).

Theorem 42 Let (D, ⊗, μ) be a symbolic domain whose algebraic index is k ≥ 2.
Then the least fixed point of the Scott continuous operator

Φ : [Λ → [0, ∞)∗] → [Λ → [0, ∞)∗]
Φ(f) = f !

2

on the set ↑ (h + log k) is

fix(Φ) =
⊔

n≥0

Φn(h + log k) = σ,

where h : Λ → [0, ∞) is the complexity on all states.

This iterative process is very sensitive to where one begins. First, Φ has many fixed
points above σ : Consider c · σ for c < 1. Thus, Φ cannot be a contraction on
any subset containing ↑ h. But Φ also has fixed points below σ : The map f (x) =
log dim(x) = σ⊥dim(x) is one such example. This proves that σ is genuinely a least
fixed point.

The fixed point theorem can be used to derive Shannon’s noiseless coding the-
orem [28]. In the proof of Theorem 42, we can regard Λ a continuous dcpo by
viewing it as a disjoint union of domains. But we could just view it as a set. And if
we do, the function space is still a dcpo, the theorem remains valid, and we obtain a
new characterization of entropy:

Corollary 8 Let (D, ⊗, μ) be a symbolic domain with algebraic index k ≥ 2. Then
there is a greatest function f : Λ → [0, ∞) which satisfies h ≥ f and f (x ⊗ x) ≥
f (x) + f (x). It is Shannon entropy.

The question then, “Does h approximate σ , or is it σ which approximates h” is
capable of providing one with hours of entertainment. In closing, we should mention
that Φ might also provide a systematic approach to defining information fix(Φ) from
complexity h in situations more general than symbolic domains.

9 Domain Theory and Measurement 587

9.6.4.7 The Quantum Case

The fixed point theorem also holds for quantum states where one replaces σ by von
Neumann entropy, and ⊗ on domains by the algebraic tensor ⊗ of operators. (The
domain theoretic ⊗ can also be mapped homomorphically onto the tensor of quan-
tum states in such a way that domain theoretic orthogonality implies orthogonality
in Hilbert space.) Several new connections emerge between computer science and
quantum mechanics whose proofs combine new results with work dating as far back
as Schrödinger [39] in 1936. The bridge that connects them is domain theory and
measurement. One such result proves that reducing entanglement by a technique
called local operations and classical communication is equivalent to simultaneously
reducing the average case complexity of all binary trees, a major application of
Theorem 39 that we could not include in this paper due to space limitations. These
and related results are in [28].

9.7 Provocation

. . . and accordingly all experience hath shewn, that mankind are more disposed to suffer,
while evils are sufferable, than to right themselves by abolishing the forms to which they
are accustomed.

– Thomas Jefferson, The Declaration of Independence.

What is a Domain?

The “domains” of classical and quantum states are dcpo’s with a definite notion of
approximation, but they are not continuous. Their notion of approximation is

x � y ≡ (∀ directed S) y =
⊔

S ⇒ (∃s ∈ S) x 	 s

On a continuous dcpo, the relation above is equivalent to the usual notion of approx-
imation. In general, they are not equal, and the canonical examples are (Δn,) in
the Bayesian order and (Ωn,) in the spectral order. We forgot to mention this in
Section 9.4 because we wanted to brainwash the reader, to convince them that the
‘domain’ illusion was real. Of course, in fairness to the author, we never said that we
knew what a domain was exactly, just that they existed and that we would see lots
of examples of them. Another possible example of a domain, the domain of infinite
dimensional quantum states, is given in [33]. As a final example of something that
is probably a domain, let us consider the circle.

I once had a prominent domain theorist tell me when I was a student that the
circle could not be partially ordered in a natural way. I didn’t believe it then and I
don’t believe it now. But now I have a reason:

588 K. Martin

The Circle

If we have two pure states |ψ〉 and |φ〉 written in a basis |i〉 of n dimensional Hilbert
space Hn ,

|ψ〉 =
n∑

i=1

ai |i〉 |φ〉 =
n∑

i=1

bi |i〉

where the ai , bi ∈ C are complex, how can we order them so that (generally speak-
ing) |ψ〉 	 |φ〉 means that the result of measuring the system in state φ is more
predictable than the result of measuring the system in the state ψ? If we had an
order 	 on classical probability distributions Δn , and another order 	 on phases
S1 ∪ {0}, we could answer the question in what looks to be a natural way:

|ψ〉 	 |φ〉 ≡ (|a1|2, . . . , |an |2) 	 (|b1|2, . . . , |bn |2) & (∀i) phase(ai) 	 phase(bi).

Many orders on Δn are known. So the entire question is reduced to the ordering of
phases.

It’s Just a Phase

The phase of a complex number is either zero or a point on the circle, so the problem
of ordering phases is really just the question of how to order the circle.

�

⊥1

e1

⊥2 •

•

•

•

•

••

•

•

e2

⊥3

e3

⊥4

e4

One way to order phases is to order the circle so that the arc from any ⊥i to an
adjacent e j is isomorphic to ([0, 1], ≤), and that the center of the circle & = (0, 0)

is above everything. Dynamically, if we start at e4 and begin traversing the circle
counterclockwise, then we move down until reaching ⊥1, at which point we begin
moving up until e1, down until ⊥2, up until e2, down until ⊥3, up until e3, down

9 Domain Theory and Measurement 589

until ⊥4, and then up until returning to e4. Notice that this is the kind of domain that
Grover’s algorithm, when viewed as acting on a two dimensional subpsace, seems
to “move” in.

Another way to order phases is to use the discrete order: x 	 y iff x = y or
y = (0, 0). This is very satisfying in that it does not leave one worried about the
meaning of the order in the case where the classical distributions stay constant but
the phases are allowed to vary.

Example 58 The reason that & = (0, 0) is above everything is so that relations like
the following are satisfied:

1√
2
(|0〉 + |1〉) 	 |0〉

1√
2
(|0〉 + |1〉) 	 |1〉

What is a Measurement?

Though the more general formulation of approximation for domains like Ωn is cer-
tainly meaningful, there are things that are missing. The definition of “domain” that
we are looking for should allow one to do things like: prove sobriety of the Scott
topology and give a satisfying definition of measurement. Yes, I realize that we
defined measurement for a dcpo in Sect. 9.2.3, but I never said that we found the
definition entirely convincing. The definition of measurement has more impact on a
continuous dcpo as evidenced by results like Theorems 2 and 3.

Related to this question are two more pressing issues: (a) systematic methods for
deriving higher order measurements from simpler measurements, and (b) techniques
for proving that a given function is a measurement. For instance, to illustrate (a), if
D is a domain and F(D) is some higher order domain, like a powerdomain or an
exponential object, can a measurement on D be used to simply construct one on
F(D)? The question (b) is particularly urgent in physics and information theory:
generally speaking, proving that functions like entropy and capacity are measure-
ments is about as much fun as being a domain theorist in search of a decent job.4

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science III. Oxford University Press, Oxford
(1994) 494, 502

2. Alberti, P.M., Uhlmann, A.: Stochasticity and partial order: Doubly stochastic maps and uni-
tary mixing. Dordrecht, Boston (1982) 579

4 Any such domain theorist should send a CV and some recent papers to keye.martin@nrl.navy.
mil immediately.

590 K. Martin

3. Brent, R.P.: Algorithms for minimization without derivatives. Prentice-Hall, New Jersey
(1973) 516

4. Chernous’ko, F.L.: An optimal algorithm for finding the roots of an approximately computed
function. Zh. vychisl. Mat. i mat. Fiz. 8(4) 705–724 (1968), English translation 516

5. Coecke, B., Martin, K.: A partial order on classical and quantum states. Oxford University
Computing Laboratory Research Report (August 2002) 525, 529, 530

6. Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193,
53–73 (1998) 497, 523

7. Falconer, K.: Fractal geometry. Wiley, Chichester (1990) 516
8. Gross, O., Johnson, S.M.: Sequential minimax search for a zero of a convex function. Math.

Tables Other Aids Comput. 13(65), 44–51 (1959) 516
9. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.

Lett. 78, 325 (1997) 572
10. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs

on Mathematical Physics. Cambridge University Press, Cambridge (1973) 534
11. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981) 522
12. Kowalski, M., Sikorski, K., Stenger, F.: Selected topics in approximation and computation.

Oxford University Press, Oxford (1995) 516
13. Kraft, L.G.: A device for quantizing, grouping and coding amplitude modulated pulses. Thesis,

M.S., Electrical Engineering Department, MIT (1949)
14. Marshall, A.W., Olkin, I.: Inequalities: Theory of majorization and its applications. Academic

Press Inc., New York (1979) 579
15. Martin, K.: A foundation for computation. Ph.D. Thesis, Tulane University, Department of

Mathematics (2000) 494, 505, 506, 508, 509, 521, 539, 540, 541, 553, 559, 561
16. Martin, K.: The measurement process in domain theory. Lecture Notes in Computer Science,

Vol. 1853. Springer, New York (2000) 505
17. Martin, K.: Unique fixed points in domain theory. Elect. Notes Theor. Comput. Sci. 45,

258–268 (2001) 520
18. Martin, K.: A renee equation for algorithmic complexity. Lecture Notes in Computer Science,

vol. 2215, pp. 201–218. Springer, New York (2001) 568
19. Martin, K.: Powerdomains and zero finding. Elect. Notes Theor. Comput. Sci. 59(3), 173–184

(2001) 513
20. Martin, K.: The informatic derivative at a compact element. Lecture Notes in Computer

Science, vol. 2303, pp. 103–148. Springer, New York (2002) 539
21. Martin, K.: B-sides. Oxford University Computing Lab, Research Report (2003) 505
22. Martin, K.: Epistemic motion in quantum searching. Oxford University Computing Labora-

tory, Research Report (2003) 559, 569
23. Martin, K.: A continuous domain of classical states. Oxford University Computing Laboratory,

Research Report (2003) 499, 575
24. Martin, K.: Fractals and domain theory. Mathematical Structures in Computer Science,

vol. 14(6), pp. 833–851. Cambridge University Press, Cambridge (2004) 521, 524
25. Martin, K., Ouaknine, J.: Informatic vs. classical differentiation on the real line. Elect. Notes

Theor. Comput. Sci. 73, 133–140 (2004) 540, 541
26. Martin, K., Panangaden, P.: A domain of spacetime intervals in general relativity. Commun.

Math. Phys. 267(3), 563–586 (November 2006) 525, 535, 537
27. Martin, K.: Compactness of the space of causal curves. J. Class. Quantum Grav. 23, 1241–1251

(2006) 524, 525, 536
28. Martin, K.: Entropy as a fixed point. Theoretical Computer Science (2006) 559, 585, 586, 587
29. Martin, K.: Topology in information theory in topology. Theoretical Computer Science. To

appear (2007) 507, 559, 576
30. Martin, K.: A domain theoretic model of qubit channels. To appear (2008) 525, 539
31. Martin, K.: The maximum entropy state. Logical Methods in Computer Science. To appear 525
32. Martin, K., Panangaden, P.: In preparation (2008) 525

9 Domain Theory and Measurement 591

33. Mashburn, J.: A spectral order for infinite dimensional quantum spaces. Elect. Notes Theor.
Comput. Sci. 173, 263–273 (2007) 587

34. Muirhead, R.F.: Some methods applicable to identities and inequalities of symmetric algebraic
functions of n letters. Proc. Edinburgh Math. Soc. 21, 144–157 (1903) 579

35. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge Univer-
sity Press, Cambridge (2000) 533, 549

36. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59
(1965) 534

37. Penrose, R.: Techniques of differential topology in relativity. Soc. Ind. Appl. Math. (1972) 534
38. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing, New York (1988) 516
39. Schrödinger, E.: Proc. Cambridge Philosophical Soc. 32, 446 (1936) 587
40. Scott, D.: Outline of a mathematical theory of computation. Technical Monograph PRG-2,

Oxford University Computing Laboratory (November 1970)
41. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423,

623–656 (1948) 579
42. Sorkin, R.: Spacetime and causal sets. In: D’Olivo, J. et al. (eds.) Relativity and Gravitation:

Classical and Quantum. World Scientific, Singapore (1991) 534
43. Spreen, D. (2001) On some constructions in quantitative domain theory. Extended Abstract.

http://www.informatik.uni-siegen.de/ spreen/ 505
44. Wald, R.M.: General relativity. The University of Chicago Press, Chicago (1984) 536
45. Waszkiewicz, P.: Quantitative continuous domains. PhD Thesis, University of Birmingham

(2002)
46. Yamaguti, M., Hata, M., Kigami, J.: Mathematics of fractals. Translations of Mathematical

Monographs, vol. 167. American Math Society (1997) 516

Chapter 10
A Partial Order on Classical and Quantum
States

B. Coecke and K. Martin

Abstract We introduce a partial order on classical and quantum mixed states which
reveals that these sets are actually domains: Directed complete partially ordered sets
with an intrinsic notion of approximation. The operational significance of the par-
tial orders involved conclusively establishes that physical information has a natural
domain theoretic structure. For example, the set of maximal elements in the domain
of quantum states is precisely the set of pure states, while the completely mixed
ensemble I/n is the order theoretic least element ⊥.

In the same way that the order on a domain provides a rigorous qualitative defini-
tion of information, a special type of mapping on a domain called a measurement
provides a formal account of the intuitive notion “information content.” Not only
is physical information domain theoretic, but so too is physical entropy: Shannon
entropy is a measurement on the domain of classical states; von Neumann entropy
is a measurement on the domain of quantum states.

These results yield a foundation from which one can (a) reason qualitatively
about probability, (b) derive the lattices of Birkhoff and von Neumann in a uni-
fied manner, suggesting that domains may provide a formalism for the logic of
partial belief, and (c) develop new techniques for studying phenomena like noise
and entanglement. Along the way, new lines of investigation open up within various
subdisciplines of physics, mathematics and theoretical computer science.

10.1 Introduction

One of the great lessons of the differential and integral calculus is that we can con-
quer the infinite, and in particular, the continuous, by means of the discrete. An
infinite sum may be understood as a limit of finite sums, the area beneath a curve as

B. Coecke (B)
OUCL, University of Oxford, Oxford, UK
e-mail: Bob.Coecke@comlab.ox.ac.uk

K. Martin (B)
Naval Research Laboratory, Washington, DC, USA
e-mail: keye.martin@nrl.navy.mil

Coecke, B., Martin, K.: A Partial Order on Classical and Quantum States. Lect. Notes Phys. 813,
593–683 (2011)
DOI 10.1007/978-3-642-12821-9_10 c© Springer-Verlag Berlin Heidelberg 2011

594 B. Coecke and K. Martin

the limit of areas of approximating rectangles, the line tangent to a curve at a point
is the limit of the secant lines joining points nearby.

The philosophy espoused is unambiguous: The ideal can be realized as a limit
of the partial; the abstract, as a limit of the concrete; the continuous, a limit of the
discrete, and so on. And this powerful ideology, as it arises in the context of recursive
functionals, is part of what the axioms of domain theory are intended to capture.
But even in Scott’s prelude to the subject, it is difficult to keep the imagination from
wandering beyond the confines of computation [16]:

Maybe it would be better to talk about information; thus, x � y means that x and y want to
approximate the same entity, but y gives more information about it. This means we have to
allow incomplete entities, like x , containing only partial information.

In its purest interpretation, domain theory is a branch of mathematics which offers
an exclusively qualitative account of information: A proposal for how we might find
information structured in a universe where all things arise as a limit of the partial.

Physics of course is also the study of information. But with one caveat: In
physics, the term “information” normally manages to escape rigorous mathemat-
ical definition, and in those cases where it does not, its formulations tend toward
the purely quantitative. But what is self-evident is that only qualitative accounts of
physical phenomena are capable of imparting “structural laws of general validity.”
From A. Einstein,

I do not believe in micro- and macro-laws, but only in (structural) laws of general validity.

Now this is not to say that physics ought to be done in laboratories without numbers,
simply that our understanding of physical reality should be mathematically express-
ible in such a way that the laws of nature are clearly delineated from the conventions
of man.

Thus, at least on the surface, there is a good match between what domain theory
offers, and what physics needs: Domain theory can provide the structures of reality,
physics in turn can explicate the reality of the structures. A research program in
this direction begins with the demonstration contained herein that the density oper-
ator formulation of quantum mechanics is an instance of domain theory: Its partial
elements are the mixed states, its total or idealized elements are the pure states.

The route to this discovery passes through the measurement formalism, a the-
ory [8] which allows for the quantitative expression μ : D → [0,∞)∗ of the
qualitative notion captured by a domain (D,�). In doing so, it yields an indis-
pensable methodology for uncovering the structural aspects of information which
often enough seem to appear in purely quantitative disguise. Such is the case with
classical and quantum information, for instance, which are normally formulated in
terms of Shannon and von Neumann entropy.

Our method of transport is a philosophy still advocated in certain studies on the
foundations of physics [3, 9, 13]: Every formal idea should represent a meaning-
ful physical notion, and each successive mathematical development ought to have
a clear counterpart in physical reality. To illustrate, the partial order on classical
states is defined inductively in terms of Bayesian state update, which corresponds

10 A Partial Order on Classical and Quantum States 595

to the process by which an observer looks for an object and updates his knowledge
according to what he finds. Similarly, the partial order on quantum states relies on
the physical notion of a measurement process.

On our way, this vehicle escorts classical and quantum probability into a genuine
formal realization of the Bayesian ideal, elegantly captured by F. P. Ramsey [14]:
“Probability is the logic of partial belief.”

Pi

ψ

µ−→

Concretely, we introduce the domain of classical states, which has Shannon
entropy as a measurement. The partial order on classical states extends to yield a
domain of quantum states with von Neumann entropy as a measurement. As already
mentioned, the operational significance of the partial orders involved unquestion-
ably demonstrates that physical information has a natural domain theoretic structure.
By recognizing this structure, the present work achieves unity across various subdis-
ciplines of physics and information theory. For example, the Birkhoff-von Neumann
contrast, between classical and quantum, which arises in the logical aspect, is in
perfect harmony with Shannon and von Neumann entropy, which arises in more
“pragmatic” pursuits. All of these are part of a single, and it would appear, more
complete, picture of physical reality.

10.2 Classical States

The information an observer has a priori about the result of an event in which one
of n different outcomes is possible can be described by a function x : {1, . . . , n} →
[0, 1] that assigns a probability xi indicating the degree to which outcome i is likely.
These are called classical states.

Definition 1 The classical n-states are

Δn := {x ∈ [0, 1]n :
n∑

i=1

xi = 1},

where x = (x1, . . . , xn) and n ≥ 1.

596 B. Coecke and K. Martin

In this section we will introduce a natural partial order on classical states that is
probably best referred to as the Bayesian order. Before doing so, here is a brief indi-
cation of how this order was discovered and our original motivation for studying it.

In contrast to a classical n-state, a quantum n-state is a self-adjoint, positive,
trace one, linear operator ρ : Hn → Hn on a n dimensional complex Hilbert space
Hn . In particular, ρ is an n × n matrix of complex numbers whose n eigenvalues
λi ≥ 0 for 1 ≤ i ≤ n add up to one. Thus, to each quantum state ρ we can associate
a classical state spec(ρ) = (λ1, . . . , λn).

Thus, if we have a partial order� on Δn , we might be able to use the connection
between quantum and classical given above to derive a natural candidate for a partial
order on quantum states as follows:

ρ � σ ⇔ spec(ρ) � spec(σ) and (insert magic here).

And then the questions start: (i) Can we really order matrices by ordering their
eigenvalues? (ii) How exactly do we form the list (λ1, . . . , λn), when in actuality
the eigenvalues spec(ρ) of ρ only form a set? (iii) How do we order classical states?

The first two questions will be answered in the next section, but the short answers
are: (i) Yes, if we have the right order on Δn , and (ii) quantum measurement. Let us
then get on with the answering of (iii).

10.2.1 Two States and the Parabola

Begin by imagining n + 1 boxes

? ? ?

1 i n+1

In one of these boxes, there lies a tenured position in the land of free expression.
There are two observers searching frantically for its location. The knowledge an
observer has about its location is a classical state x ∈ Δn+1, formed by assigning a
probability xi which indicates the likelihood that the tenured position is located in
box i :

knowledge x :: x1 xi xn+1

1 i n+1

For example, if the observer is frustrated beyond belief because he has no earthly
idea which box contains the tenured position, then his knowledge would be the
completely mixed state

⊥ = (1/(n + 1), . . . , 1/(n + 1)),

indicative of the fact that he regards all boxes as equally likely:

10 A Partial Order on Classical and Quantum States 597

1 1 1

1

n+1 n+1 n+1

n+1i

On the other hand, if the observer knows the tenured position is located in box i ,
then his knowledge would be the pure state

ei = (0, . . . , 1, . . . , 0),

where the one occurs at index i :

0 1 0

1 n+1i

In general, the actual location is always represented by a pure state. This much is
independent of all observers.

Let k be the actual location of the tenured position, x ∈ Δn+1 represent the
knowledge of the first observer and y ∈ Δn+1 the knowledge of the second observer:

0 1 0

1 n+1k

y1 yk yn+1

x1 xk xn+1knowledge x ::

knowledge y ::

actual position ::

In the interest of holding the reader’s attention, let x �= y. If � is a partial order on
Δn+1 that expresses what it means for one state to be more informative than another,
and in this order we have x � y, then observer one knows less about the location of
the tenured position than observer two.

But now suppose that each observer looks into box i only to discover that it does
not contain the tenured position. Then xi < 1 and yi < 1. In addition, the knowledge
of the first observer changes to

pi (x) = 1

1− xi
(x1, . . . , x̂i , . . . , xn+1) ∈ Δn,

while the state of the second observer’s knowledge updates to pi (y):

0

1 n+1i (=k)

0

1−xi

1−yi

0
xn+1

yn+1

1−xi

1−yi

knowledge x ::

knowledge y ::

actual position ::

x1

y1

Because the second observer knew more than the first before observation, and
because they have both increased their knowledge by the same amount (they both

598 B. Coecke and K. Martin

now additionally know that it is not in box i), we must conclude that the second still
knows more than the first. That is,

pi (x) � pi (y)

whenever i �= k. But this reasoning should apply in all situations, i.e., it should not
depend on the actual location of the tenured position: We should allow for the reality
that k could be any of the values in {1, . . . , n + 1}. Thus, we arrive at a potential
definition of (Δn+1,�) in terms of (Δn,�):

x � y ⇔ (∀i)(xi , yi < 1 ⇒ pi (x) � pi (y)).

This leaves just one question: How do we order Δ2? The answer appears when we
imagine that the order � on Δn is known, and then use it to formally express some
of the well-known intuitions used in physics when reasoning about classical states
as information:

• The completely mixed state should be the least element of (Δn,�),

(∀x)⊥ � x,

• The set of pure states should be the set of maximal elements,

max(Δn) = {ei : 1 ≤ i ≤ n},
• The observer’s a priori uncertainty, Shannon entropy

μx = −
n∑

i=1

xi log xi ,

should be a measurement in the sense of domain theory [8]. In particular, as states
become more informative, uncertainty should decrease:

x � y ⇒ μx ≥ μy,

i.e., as a map from the poset Δn to the poset [0,∞)∗ of nonnegative reals in their
opposite order, it should be monotone.

• The mixing law should be respected by �:

x � y and p ∈ [0, 1] ⇒ x � (1− p)x + py � y.

The state (1 − p)x + py is a mixture of x and y whose composition consists of
(1 − p) percent x and p percent y. Thus, the mixing law says that if y is more
informative than x , then any mixture of the two is more informative than x , but
less informative than y.

This leaves only one way of ordering Δ2.

10 A Partial Order on Classical and Quantum States 599

Definition 2 For x, y ∈ Δ2, we order classical two states by

(x1, x2) � (y1, y2) ⇔ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1).

We will prove the uniqueness of this order after explaining its derivation. For the
latter, look at the graph of Shannon entropy μ on two states:

μ

x1

Remembering that the order � on Δ2 should be defined so that Shannon entropy
μ : Δ2 → [0,∞)∗ is a measurement in the sense of domain theory (and hence
monotone), a natural candidate for � appears when we flip the parabola upside
down:

(0, 1) (1, 0)

⊥ = (1
2
, 1

2)

The order suggested by this picture is simply a copy of [0, 1/2]∗ and [1/2, 1] joined
at 1/2,

(0, 1) (1, 0)

⊥ = 1
2
, 1

2()

which is exactly how we defined the order on Δ2 (Definition 2).
For its uniqueness, first realize that there are at least two reasonable interpreta-

tions of the mixing law: (i) (Informatically) When two comparable states are mixed,
a loss of information is experienced from one point of view that is simultaneously
a gain of information from the other, (ii) (Geometrically) The line connecting two
comparable states moves up in the order.

Lemma 1 A partial order� on Δn respects the mixing law iff the map f : [0, 1] →
Δn given by f (t) = (1 − t)x + t y is monotone for each pair of comparable states
x � y.

Proof The monotonicity of f implies the mixing law. For the converse, let s < t .
By the mixing law, x � f (t) � y, so applying the mixing law again to x � f (t),
gives

600 B. Coecke and K. Martin

x �
(

1− s

t

)
x + s

t
· f (t) � f (t),

which finishes the proof since f (s) = (1− s
t

)
x + s

t f (t).

Now the uniqueness of (Δ2,�) is transparent.

Theorem 1 There is a unique partial order on Δ2 which satisfies the mixing law
and has ⊥ = (1/2, 1/2). It is the order on classical two states.

Proof Let ≤ be any partial order on Δ2 which respects the mixing law and has least
element ⊥ = (1/2, 1/2).

Because ⊥ ≤ e1 = (1, 0), Lemma 1 implies that the straight line path f1 from
f1(0) = ⊥ to f1(1) = e1 is monotone. Similarly, the line f2 from f2(0) = ⊥ to
f2(1) = e2 = (0, 1) is monotone. Thus, � ⊆ ≤.

To prove ≤ ⊆ �, suppose x ≤ y. First, we must have either x1, y1 ≤ 1/2 or
1/2 ≥ x1, y1: Otherwise, the line f from f (0) = x to f (1) = y passes through ⊥,
and since f is monotone by the mixing law, we have x = ⊥ � y. But this means
that either x � y or y � x . In the first case, the proof is done. In the latter, we must
have y ≤ x , which by the antisymmetry of ≤, gives x = y, and hence x � y. ��

Thus far, we have not defined terms like “domain” and “measurement.” At this
stage, there is no need to. Let us simply point out that Δ2 is a domain with Shannon
entropy μ as a measurement such that

ker μ = max(Δ2) = {e1, e2}.

The precise definitions of these terms will become apparent as we proceed.

10.2.2 A Partial Order on Classical States

When an observer looks in box i and discovers that the object of his desire is not
there, the classical state x representing his knowledge of its location collapses to
one pi (x) in a lower dimension as follows.

Definition 3 Let n ≥ 2. The projection which collapses the i th outcome is the partial
map pi : Δn+1 ⇀ Δn given by

pi (x) = 1

1− xi
(x1, . . . , x̂i , . . . , xn+1)

for 1 ≤ i ≤ n + 1 and 0 ≤ xi < 1. It is defined on dom(pi) = Δn+1 \ {ei }.
In the way of needless (but fun) geometric illustration, consider the case of the

triangle Δ3. If x = (x1, x2, x3), then although pi (x) is technically a member of Δ2,
we can still picture its effect on x as follows:

Recalling the definition of (Δ2,�) from the last section, we can now completely
specify the order on classical states.

10 A Partial Order on Classical and Quantum States 601

e1 e2

e3

p3x = 1
1−x3

(x1, x2,0)

p2x = 1
1−x2

(x1, 0, x3)
x

Definition 4 Let n ≥ 2. For x, y ∈ Δn+1, we define

x � y ⇔ (∀i)(x, y ∈ dom(pi) ⇒ pi (x) � pi (y)),

where i ranges over the set {1, . . . , n + 1}.
To be perfectly clear, notice that x, y ∈ dom(pi) iff xi , yi < 1. The following

operators on classical states will prove indispensable in what follows.

Definition 5 Let n ≥ 2. For x ∈ Δn , we set

x+ := max
1≤i≤n

xi and x− := min
1≤i≤n

xi .

We have x− ∈ [0, 1/n] and x+ ∈ [1/n, 1].
For example, a state x is pure iff x+ = 1, while ⊥ is the unique classical state x

with x+ = x−.

Lemma 2 Let x, y ∈ Δn for n ≥ 2. Then

(i) If x � y with xi = 1, then yi = 1.
(ii) If x � ⊥, then x = ⊥.

Proof (i) Assume for n ≥ 2. For n + 1, suppose xi = 1. First, we claim there is
some k �= i with yk = 0. If not, then because n + 1 ≥ 3, there is some k �= i such
that

0 < yk <
∑

k �=i

yk = 1− yi ≤ 1,

as the sum above involves at least two positive numbers. Because k �= i , xk = 0, so
the inductive hypothesis applied to pk(x) � pk(y) gives

yi

1− yk
= xi

1− xk
= 1 �⇒ yk = 1− yi ,

602 B. Coecke and K. Martin

which contradicts yk < 1 − yi . Thus, there is k �= i with xk = yk = 0, and the
inductive hypothesis applied to pk(x) � pk(y) yields

yi = yi

1− yk
= xi

1− xk
= 1,

finishing the proof.
(ii) We know x+ < 1, since otherwise by (i) we would have ⊥+ = 1. Now the

proof is a trivial induction: Since x � ⊥, we have pi (x) � pi (⊥) = ⊥n , and by the
inductive hypothesis, pi (x) = ⊥n for all i ∈ {1, . . . , n + 1}. The only possibility is
x = ⊥.

Lemma 3 For classical n-states x � y, either x = ⊥, y = ⊥ or there is an index
k ∈ {1, . . . , n} such that xk ≤ yk, xk > x− and yk > y−.

Proof The result is true for n = 2. Assume it for n. To prove it for n + 1, we start
with x, y �= ⊥. Immediately, we have x �= y (otherwise, x �= ⊥ ⇒ xk = yk =
x+ > x−), and by virtue of Lemma 2(i), x+ < 1.

Now let i be an index with xi ≥ yi . Throughout, yi < 1, since otherwise x = y.
Then either (1) pi (x) �= ⊥n or (2) pi (x) = ⊥n .

In case (1), we cannot have pi (y) = ⊥n (Lemma 2(ii)), so the inductive hypoth-
esis applies, yielding an index of pi (x) and pi (y) which we can relabel as an index
k of x and y with

x−

1− xi
≤ pi (x)− <

xk

1− xi
≤ yk

1− yi
> pi (y)− ≥ y−

1− yi
.

Then xk > x− and yk > y−. In addition, since xi ≥ yi ,

xk ≤ 1− xi

1− yi
· yk ≤ 1 · yk ,

which finishes the proof in case (1).
In case (2), pi (x) = ⊥. It helps to picture x as the (n + 1)-state

(
1− xi

n
, . . . , xi , . . . ,

1− xi

n

)

,

though our proof does not depend on this informal remark. Because x �= ⊥,
xi �= (1− xi)/n, so either (1− xi)/n > xi or xi > (1− xi)/n.

The case (1 − xi)/n > xi is simple: Since xi ≥ yi , there must exist k �= i with
xk ≤ yk , or else we could derive xi < yi . Then we have

yk ≥ xk = 1− xi

n
> xi ≥ yi ,

which also makes it clear that xk > x− = xi and yk > yi ≥ y−.

10 A Partial Order on Classical and Quantum States 603

For the last case, we have xi > (1 − xi)/n. First we eliminate the possibility
y+ = 1. If y+ = 1, then there is an index j with y j = 0. Delicately, we can take
j �= i because n + 1 ≥ 3. Then p j (x) �= ⊥n and p j (y) �= ⊥n , so the inductive
hypothesis applies to yield an index k

x−

1− x j
≤ p j (x)− <

xk

1− x j
≤ yk

1− y j
> p j (y)− ≥ y−

1− y j
.

But xk > x− implies that k = i . In addition, we have known from the start that
yi < 1, which means yi = 0 because y+ = 1. But then 0 = yi = yk ≥ xk = xi = 0,
which contradicts xi > (1− xi)/n ≥ 0.

To finish case (2), we have x+, y+ < 1 and xi = x+ > (1 − xi)/n. What we
will prove is that xi > x−, yi > y− and xi ≤ yi . The first of these is clear. For
the other two, let k be any index different from i . Then pk(x) �= ⊥n , which means
pk(y) �= ⊥n since pk(x) � pk(y). By the inductive hypothesis, there is an index j
such that

x−

1− xk
≤ pk(x)− <

x j

1− xk
≤ y j

1− yk
> pk(y)− ≥ y−

1− yk
.

Again, x j > x− implies j = i . Hence, yi > y−. But this also gives us
xi (1− yk) ≤ yi (1− xk), for all k �= i , which enables

xi

∑

k �=i

(1− yk) ≤ yi

∑

k �=i

(1− xk) �⇒ xi

yi
≤ n − 1+ xi

n − 1+ yi
,

ending in (n − 1)xi + xi yi ≤ (n − 1)yi + xi yi . ��
Lemma 4 If x � y in Δn for n ≥ 2, then there is an index i ∈ {1, . . . , n} such that
xi = x− ≥ y− = yi .

Proof If x = ⊥ the claim is trivial; thus, y �= ⊥, by Lemma 2(ii). By Lemma 3,
there is an index k ∈ {1, . . . , n} such that xk ≤ yk , xk > x− and yk > y−.

If xk = 1 ≤ yk , then x = y and the proof is done. If yk = 1, then let i be an index
where xi = x−. We cannot have i = k since xk > x−. Thus, xi = x− ≥ yi = 0.

Assume for n. For n+ 1, pk(x) � pk(y), and the inductive hypothesis applies to
yield an index i of x and y with

pk(x)− = xi

1− xk
≥ yi

1− yk
= pk(y)−.

Because xk ≤ yk , xi ≥ yi . But since xk > x− and yk > y−, we have xi = x− and
yi = y−.

Now that we understand the behavior of minima, the nature of the maxima is
immediate (and fundamental).

604 B. Coecke and K. Martin

Proposition 1 Let x, y ∈ Δn and ei be the pure states in Δn.

(i) If x � y, then there is an index i such that xi = x+ ≤ y+ = yi .
(ii) For any i , xi = x+ if and only if x � ei .

(iii) If x � y and x+ = y+, then x = y.

Proof All of these statements are proved by induction. The arguments below all
assume that the respective claims are true for n and give the argument for the n + 1
case. That they are true for n = 2 is clear.

(i) By Lemma 4, there is an index k with xk = x− ≥ y− = yk , so we apply the
inductive hypothesis to pk(x) � pk(y) to obtain an index i such that

pk(x)+ = xi

1− x−
≤ yi

1− y−
= pk(y)+.

Since xi ≥ x− = xk and xi ≥ x j for all j �= k using pk(x)+ = xi/(1 − x−), we
have xi = x+. Similarly, yi = y+. That xi � yi now follows from

xi ≤ 1− x−

1− y−
· yi ≤ 1 · yi

since x− ≥ y−.
(ii) Let i be an index where xi = x+ and ei ∈ Δn+1 be the associated pure state

whose value at index i is one. To prove that x � ei , we must show that pk(x) �
pk(ei) for all k �= i . Fix an arbitrary k �= i .

First, let j be the index of pk(x) corresponding to index i in x . This index exists
because k �= i . The value of pk(x) at index j is

pk(x)+ = xi

1− xk
.

Second, pk(ei) is a pure state in Δn whose value at index j is one. By the inductive
hypothesis, pk(x) � pk(ei), for all k �= i , which means x � ei .

For the converse, suppose x � y := ei . By (i), there is an index k such that
xk = x+ and yk = y+. But y is pure, so we must have k = i , which means
xi = xk = x+.

(iii) Starting with x � y and x+ = y+, we use Lemma 4 to project away the
minima xk = x− ≥ y− = yk , obtaining pk(x) � pk(y). Applying (i) to this pair
yields an index i with

pk(x)+ = xi

1− x− ≤
yi

1− y− = pk(y)+.

As in the proof of (i), xi = x+ and yi = y+. But since xi = yi > 0 and pk(x)+ ≤
pk(y)+, we have x− ≤ y−, which gives x− = y−. This means pk(x)+ = pk(y)+,

10 A Partial Order on Classical and Quantum States 605

and since pk(x) � pk(y), the inductive hypothesis applies, leaving pk(x) = pk(y).
Because we also have xk = yk , the states x and y are equal. ��

Proposition 1(ii) shows that an outcome with maximum probability in a classical
state has a certain qualitative character to it. In general, it is the only outcome we
can say this about.

Theorem 2 Δn is a partially ordered set for each n ≥ 2. Its maximal elements are
the pure states,

max(Δn) = {x ∈ Δn : x+ = 1},

and its least element is the completely mixed state ⊥ := (1/n, . . . , 1/n).

Proof The proof is by induction. It is true for n = 2. Assume the result for n. Then
for n + 1, the reflexivity and transitivity are clear.

For antisymmetry, let x � y and y � x . By Proposition 1(i), we have x+ ≤ y+
and y+ ≤ x+. By Proposition 1(iii), x = y.

That the least element is ⊥ follows from pi (⊥) = ⊥n for all i . For its maximal
elements, first suppose x+ = 1 and that x � y. By Proposition 1(i), there is an
index i with xi = x+ = 1 ≤ y+ = yi , so yi = 1, which means x = y. Hence,
x ∈ max(Δn+1).

Conversely, if x ∈ max(Δn+1), then x � ei by Proposition 1(ii), where ei is the
pure state corresponding to xi = x+. By the maximality of x , x = ei , which means
x+ = 1. ��

The next result displays some fundamental properties of the order on classical
states—the crucial degeneration lemma.

Lemma 5 (Degeneration) If x � y in Δn, then

(xi = 0 ⇒ yi = 0) & (yi = y j > 0 ⇒ xi = x j)

for all 1 ≤ i, j ≤ n.

Proof Both of these are proved by induction. For n = 2 they are easily seen to be
true; we give the arguments for n + 1 assuming n.

For (xi = 0 ⇒ yi = 0), we can assume x+, y+ < 1: If x+ = 1, then x = y since
x is maximal; If y+ = 1, then either yi = 0, which finishes the proof, or yi = 1,
in which case Proposition 1(i) gives yi = y+ = 1 ≥ x+ = xi > 0, contradicting
xi = 0. Thus, since x+, y+ < 1, any k �= i yields pk(x) � pk(y), and since
xi/(1− xk) = 0, the inductive hypothesis gives yi/(1− yk) = 0 hence yi = 0.

For the other claim, suppose yi = y j > 0 with i �= j . Then y+ < 1. In addition,
x+ < 1 or else x = y and we are done. Then because n + 1 ≥ 3, there is k ∈
{1, . . . , n+1} \ {i, j}. For any such index, we have pk(x) � pk(y), so the inductive
hypothesis gives xi/(1− xk) = x j/(1− xk), i.e., xi = x j . ��

The standard projections πk : Δn → [0, 1] are πk(x) = xk for 1 ≤ k ≤ n.
Lemma 4 extends to increasing sequences as follows.

606 B. Coecke and K. Martin

Lemma 6 If (xi) is an increasing sequence in Δn, then

(i) There is an index k with πk(xi) = x−i for all i .
(ii) There is an index k with πk(xi) = x+i for all i .

Proof (i) Before starting, a crucial consequence of Lemma 5 for the present argu-
ment is that

{k : yk = y−} ⊆ {k : xk = x−}

provided that x � y and y− > 0. Thus, any increasing sequence (xi) with x−i > 0
leads to a decreasing sequence of nonempty finite sets. The intersection of such
a sequence must be nonempty, and any member k in this intersection will satisfy
πk(xi) = x−i for all i .

Thus, for our sequence (xi)i≥1, we may assume that there is a least integer m ≥ 1
with x−m = 0. First, the proof is finished if we find k with πk(xi) = x−i for all i ≤ m,
since then we have πk(xm) = 0 and hence πk(xi) = 0 for all i ≥ m, by Lemma 5,
which means πk(xi) = x−i for all i ≥ 1.

The case m = 1 is trivial. If m > 1, then for the subsequence (xi)i<m , we have
x−i > 0 for i < m, by the choice of m, so our opening remarks give πk(xi) = x−i ,
for all i < m, where k is any index in {k : πk(xm−1) = x−m−1}. By Lemma 4, there
is k with πk(xm−1) = x−m−1 and πk(xm) = x−m . This value of k gives πk(xi) = x−i
for all i ≤ m.

(ii) We simplify modify the proof of Proposition 1(i) using (i).

Now we take our first step toward proving that Δn is a domain.

Definition 6 A subset S of a poset is directed if it is nonempty and

(∀x, y ∈ S)(∃z ∈ S) x, y � z .

A directed-complete partial order, or dcpo, is a poset in which every directed subset
has a supremum.

A familiar example of a directed set is an increasing sequence: A sequence (xi)

such that xi � xi+1 for all i . Joyfully, on classical states, one can always replace
directed sets with increasing sequences, so we never have to think about the former.

Proposition 2 The classical states Δn are a dcpo. In more detail,

(i) If (xi) is an increasing sequence, then

⊔

i≥1

xi = (lim
i→∞π1(xi), . . . , lim

i→∞πn(xi)).

(ii) Every directed subset of Δn contains an increasing sequence with the same
supremum.

10 A Partial Order on Classical and Quantum States 607

Proof We first prove (i) by induction. It is true for n = 2. Assume for n. Given an
increasing sequence (xi), Lemma 6 yields an index k such that πk(xi) = x−i for
all i . The sequence (pk(xi)) is increasing in Δn , so by the inductive hypothesis, we
know that

lim
i→∞

(
π j (xi)

1− x−i

)

exists for all j �= k. The sequence (x−i) is decreasing and contained in [0, 1/(n+1)],
so it has a limit sk = lim πk(xi) < 1, which means (1 − x−i) has a limit that is not
zero. Thus,

s j := lim
i→∞π j (xi) = lim

i→∞

(
π j (xi)

1− x−i

)

· lim
i→∞(1− x−i)

exists for j �= k. Notice that

n+1∑

j=1

s j =
n+1∑

j=1

lim
i→∞π j (xi) = lim

i→∞

n+1∑

j=1

π j (xi) = 1,

which means that s = (s1, . . . , sn+1) is a classical state. We claim that s is the
supremum of (xi).

To avoid needless complication, we can assume x+i < 1, since otherwise (xi) has
finitely many distinct elements, and then the claim is obvious. To prove that xi � s
for all i , we must show

(∀i)(∀ j) s j < 1 ⇒ p j (xi) � p j (s).

Fix an index j with s j < 1. Then the sequence (p j (xi))i≥1 is increasing in Δn , so
by the inductive hypothesis, it has a supremum

⊔

i≥1

p j (xi) =
(

lim
i→∞

π1(xi)

1− π j (xi)
, . . . ,

̂

lim
i→∞

π j (xi)

1− π j (xi)
, . . . , lim

i→∞
πn+1(xi)

1− π j (xi)

)

which is equal to p j (s) since s j = limi→∞ π j (xi) < 1. Hence, p j (xi) � p j (s) for
all i and j with s j < 1, which means xi � s for all i .

To prove that s is the supremum of (xi), let u be any upper bound of (xi). We
must show that s � u, i.e.,

(∀ j) s j < 1 & u j < 1 ⇒ p j (s) � p j (u).

Let j be any index with s j < 1 and u j < 1. Then since p j (xi) � p j (u) for all
i , we have p j (s) = ⊔i≥1 p j (xi) � p j (u), using the inductive hypothesis and that
s j < 1. Thus, s � u, which proves s =⊔ xi .

608 B. Coecke and K. Martin

The directed completeness of Δn and (ii) now follow from a theorem in [8] pro-
vided there is a strictly monotone map f : Δn → [0,∞)∗ which preserves suprema
of increasing sequences. To see that f (x) = 1 − x+ is one such map, if (xi) is an
increasing sequence, Lemma 6(ii) yields an index k with πk(xi) = x+i for all i , so

⎛

⎝
⊔

i≥1

xi

⎞

⎠

+
= lim

i→∞πk(xi) = lim
i→∞ x+i ,

which makes it clear that f preserves suprema of increasing sequences. That f is
strictly monotone follows from Proposition 1(iii). ��
Definition 7 A map f : D → E between dcpo’s is Scott continuous if it is mono-
tone

x � y ⇒ f (x) � f (y)

and it preserves directed suprema:

f
(⊔

S
)
=
⊔

f (S)

for any directed set S ⊆ D.

Corollary 1 A monotone map f : Δn → E into a dcpo E is Scott continuous iff for
each increasing sequence (xi) in Δn, f

(⊔
xi
) =⊔ f (xi).

Proof If S ⊆ Δn is directed, then
⊔

f (S) � f (
⊔

S) by monotonicity. For the other
direction, Proposition 12(ii) gives an increasing sequence (xi) in S with

⊔
S =⊔

xi , enabling

f
(⊔

S
)
= f
(⊔

xi

)
=
⊔

f (xi) �
⊔

f (S),

confirming that f preserves suprema of all directed sets provided it does so for
increasing sequences. ��

For instance, the map

Δn → [0, 1] :: x �→ x+

is Scott continuous, while x �→ 1− x+ is Scott continuous as a map Δn → [0, 1]∗.
An amusing example of a Scott continuous map that is not Euclidean continuous is
the natural retraction from Δ2 onto

∂Δ2 = max(Δ2) .

Generally speaking, the entropy of an event with probability p is − log p. If
forced to choose a single probability representative of an entire classical state x ,

10 A Partial Order on Classical and Quantum States 609

x+ would be the most sensible choice, because of its qualitative significance in
Proposition 1. Thus, one might say that s(x) = − log x+ measures the entropy of a
classical state.

Corollary 2 The map s : Δn → [0,∞)∗ given by s(x) = − log x+ is Scott contin-
uous. It has the following properties:

(i) For all x, y ∈ Δn, if x � y and s(x) = s(y), then x = y.
(ii) For all x ∈ Δn, we have s(x) = 0 iff x ∈ max(Δn).

(iii) For all x ∈ Δn, we have s(x) = log n iff x = ⊥.

Proof The map is well-defined because x+ ∈ [1/n, 1]. That s is strictly monotone
follows from Proposition 1. (ii) and (iii) follow from combinations of direct calcu-
lation and applications of (i).

By the last result, a monotone map f : D → Δn from a dcpo D is Scott contin-
uous iff s ◦ f is Scott continuous. We will take a closer look at entropy later on.

10.2.3 Symmetries for Classical States

We now establish the fundamental role played by the symmetric group

S(n) = {σ |σ : {1, . . . , n} � {1, . . . , n}}

of bijections on the set {1, . . . , n}. These we also refer to as permutations or sym-
metries. The composition of x ∈ Δn and σ ∈ S(n) is written x · σ .

Definition 8 A state x ∈ Δn is monotone if xi ≥ xi+1 for all i < n.

A classical state x ∈ Δn can be completely described by a monotone state x · σ
and a symmetry σ−1. The order on Δn has an analogous representation.

Lemma 7 For states x, y ∈ Δ2, we have x � y iff there is a permutation σ of {1, 2}
such that x · σ = (x+, x−), y · σ = (y+, y−) and x+y− ≤ x−y+.

Theorem 3 For x, y ∈ Δn, we have x � y iff there is a permutation σ of {1, . . . , n}
such that x · σ and y · σ are monotone and

(x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n.

Proof By the last lemma, the claim is true for n = 2. Assume the result for n ≥ 2.
For the case n + 1, we prove both implications separately.

First suppose x � y. Let k be an index with xk = x− ≥ y− = yk . By
the inductive hypothesis applied to pk(x) � pk(y), there is a permutation σ of

610 B. Coecke and K. Martin

{1, . . . , n} such that pk(x) · σ and pk(y) · σ are monotone. Now compose σ with
the natural bijection that maps indices of pk(x) and pk(y) to indices of x and y,
and since there is no harm in doing so, call the resulting bijection σ : {1, . . . , n} →
{1, . . . , n + 1} \ {k}.

We extend σ to a permutation of {1, . . . , n + 1} by setting σ(n + 1) := k. It is
then clear that x · σ and y · σ are monotone and that

(x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all 1 ≤ i < n. To finish this direction, we need to prove

(x · σ)n(y · σ)n+1 ≤ (x · σ)n+1(y · σ)n.

Because (x · σ)n+1 = xk = x− ≥ y− = yk = (y · σ)n+1, we need only consider
the case that (y · σ)n < (x · σ)n .

First, x+ < 1, since (x · σ)n > 0 ⇒ (x · σ)1 = x+ < 1. Next, y+ < 1,
since otherwise (y · σ)n+1 = 0, in which case the inequality is trivial. Now let j
be an index with x j = x+ ≤ y+ = y j . By the inductive hypothesis applied to
p j (x) � p j (y), we obtain a permutation π of {1, . . . , n}. Similar to the case of σ ,
we regard π as a bijection

{2, . . . , n + 1} → {1, . . . , n + 1} \ { j}

and then extend it to a permutation of {1, . . . , n + 1} by setting π(1) := j . Again
x · π and y · π are monotone, and in this case we have

(x · π)i (y · π)i+1 ≤ (x · π)i+1(y · π)i

for 2 ≤ i < n + 1. Because x · π = x · σ and y · π = y · σ , setting i = n yields the
desired inequality, finishing this direction.

For the other, let σ be a permutation of {1, . . . , n+ 1} with x · σ, y · σ monotone
and (x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i for all i with 1 ≤ i < n + 1. First notice
that slightly more is true:

(∗) (x · σ)i (y · σ) j ≤ (x · σ) j (y · σ)i

for 1 ≤ i ≤ j ≤ n + 1.
In the cases (x · σ)i = 0 and (y · σ) j = 0, (∗) is clear; if (x · σ)i > 0 and

(y ·σ) j > 0, then (y ·σ)k > 0 for k ≤ j by monotonicity, which means (x ·σ)k > 0
for all i ≤ k ≤ j as well, since for k > i we have

(x · σ)k ≥ (x · σ)k−1(y · σ)k

(y · σ)k−1
> 0

assuming (x · σ)k−1 > 0. Without division by zero to worry about, (∗) is now clear.

10 A Partial Order on Classical and Quantum States 611

To prove x � y we must show pk(x) � pk(y) for all k with xk < 1, yk < 1. To
this end, fix one such k. We restrict σ to a bijection

{1, . . . , n + 1} \ σ−1(k)→ {1, . . . , n + 1} \ {k}

which then yields a permutation σk of {1, . . . , n} such that pk(x) · σk and pk(y) · σk
are monotone. By (*), we have

(pk(x) · σk)i (pk(y) · σk)i+1 ≤ (pk(x) · σk)i+1(pk(y) · σk)i

for all 1 ≤ i < n. By the inductive hypothesis, pk(x) � pk(y), finishing the proof.
��

The explicit nature of the representation using symmetries can be advantageous
in establishing certain properties of the order.

Lemma 8 The map x �→ x · σ is an order isomorphism of Δn for each σ ∈ S(n).

Proof Let f (x) = x · σ . To see that f is monotone, if x � y, then there is ν ∈ S(n)

with x · ν and y · ν monotone satisfying the inequalities of Theorem 3. But the
same is true of x · σ and y · σ if we apply the permutation σ−1 · ν to each. Thus,
f (x) = x · σ � y · σ = f (y).

The same argument shows g(x) = x · σ−1 is monotone. Because f and g are
also inverse to one another, each is an order isomorphism. ��

It is now time to take a more in depth look at the order on classical states. To
keep things simple initially, we start on the outside and work our way inward. The
boundary of Δn+1,

∂Δn+1 =
⋃

1≤i≤n+1

ker πi ,

can be understood geometrically as n + 1 copies of Δn identified at certain points.
The same result holds order theoretically. That is, the dcpo ∂Δn+1 is order isomor-
phic to n + 1 copies of the dcpo Δn identified along their common boundaries.

Proposition 3 For n ≥ 1, we have an order isomorphism

Δn � {x ∈ Δn+1 : πi (x) = 0},

for any of the standard projections πi : Δn+1 → [0, 1] with 1 ≤ i ≤ n + 1.

Proof First, in+1 : Δn → Δn+1 :: x �→ (x, 0) is an order embedding. It is order
reflecting:

in+1(x) � in+1(y) �⇒ x = pn+1(in+1(x)) � pn+1(in+1(y)) = y.

For its monotonicity, let x � y. By Theorem 3, there is σ ∈ S(n) with x · σ and
y · σ monotone such that the usual inequalities hold.

612 B. Coecke and K. Martin

Now extend σ to a permutation in S(n+1) by setting σ(n+1) = n+1. Because
the value of the state in+1(x) at index n + 1 is zero, in+1(x) · σ and in+1(y) · σ are
monotone and satisfy the inequalities of Theorem 3. Thus, in+1(x) � in+1(y).

The other n maps, ik for 1 ≤ k ≤ n, which produce an n + 1 state having value
zero at index k, all arise as the composition of isomorphisms (derived from right
multiplication by a symmetry) followed by in+1. ��

Thus, the boundary of the triangle Δ3 is a dcpo made of three copies of Δ2:

Δ2

Δ3
Δ2

Δ2

• •

•

To get an idea of what the order is like on int(Δn), we need to look a little closer.
First, some long overdue notation.

Definition 9 The monotone classical states are denoted

Λn := {x ∈ Δn : (∀i < n) xi ≥ xi+1}.
For σ ∈ S(n),

Δn
σ := {x ∈ Δn : x · σ ∈ Λn}.

Notice that Δn
1 = Λn .

As we have already seen, the order on monotone states can be characterized
purely algebraically. For the sake of emphasis:

Lemma 9 For x, y ∈ Λn, x � y iff (∀ 1 ≤ i < n) xi yi+1 ≤ yi xi+1.

Just as was the case with its boundary, there is also a natural way of dividing Δn

itself into regions: For each n ≥ 1,

Δn :=
⋃

σ∈S(n)

Δn
σ .

And just as before, these regions are identical (order-theoretically).

Proposition 4 Let n ≥ 2.

(i) For each σ ∈ S(n), Δn
σ is closed under directed suprema in Δn.

(ii) For an increasing sequence (xi) in Δn, there is σ ∈ S(n) with xi ∈ Δn
σ for all i .

10 A Partial Order on Classical and Quantum States 613

(iii) The natural map

r : Δn → Λn

is a Scott continuous retraction whose restriction to Δn
σ is an order isomor-

phism Δn
σ � Λn for each σ ∈ S(n).

Proof (i) Since every directed set contains an increasing sequence with the same
supremum, we only have to prove this result for increasing sequences (xi) in Δn

σ .
By Lemma 8 and the formula for suprema,

(⊔
xi

)
· σ =

⊔
(xi · σ) = (lim

i→∞π1(xi · σ), . . . , lim
i→∞πn(xi · σ)).

But the state on the far right is monotone because all the xi · σ are. This proves that⊔
xi ∈ Δn also belongs to Δn

σ .
(ii) This is a straightforward induction using Lemma 6(i).
(iii) For σ ∈ S(n), we denote the order isomorphism in Lemma 8 by rσ (x) =

x · σ . Set r(x) = rσ (x) for x ∈ Δn
σ . This map is well defined and its restriction to

Δn
σ is an order isomorphism: Δn

σ = r−1
σ (Λn) � Λn .

It is monotone: If x � y, then by Theorem 3, there is σ ∈ S(n) with x, y ∈ Δn
σ

which gives r(x) = rσ (x) � rσ (y) = r(y).
It is Scott continuous: If μ : Δn → [0,∞)∗ is strictly monotone, Scott contin-

uous and μr = μ, then r itself is Scott continuous, since it is monotone and has
continuous measure μr . Let μx = − log x+ (Corollary 2).

Finally, r |Λn = 1Λn , which proves that r is a retraction.

Thus, we can think of Δn as being n!-many copies of the retract Λn identified
along their common boundaries. For instance, Δ3 splits into six different regions,
all order isomorphic to Λ3:

e3

e2e1

Λ3

This, combined with an elementary analysis of Λ3, allows us to determine the
upper sets of (Δ3,�) shown in Fig. 10.1.

We now have our first example of an intuition about classical states that has been
formally justified. Consider a closed cylinder of volume V partitioned into smaller
volumes Vi as follows:

V1 V2 V3

614 B. Coecke and K. Martin

Fig. 10.1 Pictures of ↑x for x ∈ Δ3

The cylinder is known a priori to contain a single molecule. With no other infor-
mation available to us, our knowledge of the molecule’s location is (p1, p2, p3)

where pi = Vi/V . Or is it? Well, it is if we assume that the volumes are labelled
from left to right as 1,2,3. But if they have been labelled in the reverse order, as

V1 V2 V3

3 2 1

then our knowledge is (p3, p2, p1).
Naturally, we intuitively understand that in the grand scheme of things it makes

no difference how we label things—as long as all statements made about the exper-
iment are made with respect to the same choice of labels, we will not encounter any
trouble: What is physically true for one choice of labels is also true for any other.
But that’s where the magic is! We have derived this simple truth: For each σ ∈ S(n),
the map x �→ x · σ is an order isomorphism.

In short, there is a definite physical reason why Δn is divided into different
regions Δn

σ all of which are “identical” (Δn
σ � Δn

ν). For the very same reason,
measures of information content in such experiments tend to be symmetric.

Definition 10 A function f : Δn → E is symmetric if for all σ ∈ S(n), we have
f (x · σ) = f (x).

Lemma 10 Let E be a dcpo. Then

(i) Every function f : Λn → E determines a unique symmetric extension f̄ :
Δn → E given by f̄ = f ◦ r where r is the natural retraction.

10 A Partial Order on Classical and Quantum States 615

(ii) Monotonicity, strict monotonicity and Scott continuity are inherited by f̄ when-
ever they are possessed by f .

Proof (i) For the uniqueness of f̄ , if g : Δn → E is another symmetric extension
of f , then for any x ∈ Δn

σ , we can write

g(x) = g(x · σ) = f (x · σ) = f̄ (x · σ) = f̄ (x)

using that g is symmetric, followed by the fact that g = f on Λn , and then the fact
that f̄ is a symmetric extension of f .

(ii) Each property is preserved by composition and satisfied by r .

Example 1 Canonical symmetric functions on Δn

(i) The maps Δn → [0, 1] :: x �→ x+ and Δn → [0, 1]∗ :: x �→ 1− x+.
(ii) Entropy s(x) = − log x+.

(iii) The natural retraction r : Δn → Λn .
(iv) Shannon entropy

μx = −
n∑

i=1

xi log xi .

As the last result illustrates, the retraction r : Δn → Λn provides us with a
general approach for solving problems involving classical states: First solve it for
Λn , and then for Δn in general.

10.2.4 Approximation of Classical States

A decent understanding of approximation can provide insight about the nature of
partiality. Partiality, as we will see in the next section, is imperative for a meaningful
discussion on entropy.

Definition 11 Let D be a dcpo. For x, y ∈ D, we write x � y iff for all directed
sets S ⊆ D,

y =
⊔

S ⇒ (∃s ∈ S) x � s.

The approximations of x ∈ D are

↓↓x := {y ∈ D : y � x},

and D is called exact if ↓↓x is directed with supremum x for all x ∈ D.

A continuous dcpo is exact, and in that case, the “way below” relation and our
notion of approximation above are equivalent. In addition, the two notions also coin-
cide on maximal elements.

616 B. Coecke and K. Martin

Lemma 11 Let D be a dcpo. For each x ∈ D, the set ↓↓x is directed with supremum
x iff it contains a directed set with supremum x.

The ability to approximate classical states is provided by the mixing law.

Proposition 5 (The mixing law) If x � y in Δn, then

x � (1− p)x + py � y

for all p ∈ [0, 1].
Proof Let z denote the classical state (1 − p)x + py. Because x � y, there is a
symmetry σ with x · σ, y · σ monotone. First,

(z · σ)i = (1− p)(x · σ)i + p(y · σ)i

≥ (1− p)(x · σ)i+1 + p(y · σ)i+1

= (z · σ)i+1,

for 1 ≤ i < n, which means z · σ is monotone. Thus, x � z follows from

(x · σ)i (z · σ)i+1 ≤ (x · σ)i+1(z · σ)i

⇔
p(x · σ)i (y · σ)i+1 ≤ p(x · σ)i+1(y · σ)i ,

while z � y follows similarly. ��
A path from x to y in a space X is a continuous map

p : [0, 1] → X

with p(0) = x and p(1) = y. A segment of a path p is p[a, b] for b > a. Any mono-
tone path into Δn with its Euclidean topology is Scott continuous. For instance, by
the mixing law (Lemma 1), the straight line path from x to y,

πxy(t) = (1− t)x + t y

is Scott continuous iff x � y.

Lemma 12 Let x � y with x ∈ Δn and y ∈ Λn. Then

(i) If yi > 0 for all i , then x ∈ Λn.
(ii) If x � y, then x ∈ Λn.

Proof (i) The proof is by induction. For the n + 1 case, Lemma 4 gives an index i
with xi = x− ≥ yi = y−, while the monotonicity of y yields yn+1 = y− = yi > 0.
By degeneration (Lemma 5), xn+1 = xi = x− > 0.

10 A Partial Order on Classical and Quantum States 617

Now we can apply the inductive hypothesis to pn+1(x) � pn+1(y), since
pn+1(y) ∈ Λn and all its values are positive, to deduce that pn+1(x) ∈ Λn . But
since xn+1 = x−, we have x ∈ Λn+1.

(ii) We apply (i). By the Scott continuity of π⊥y ,

y =
⊔

t<1

π⊥y(t),

and since x � y, we have x � π⊥y(t) for some t < 1. Because y ∈ Λn, π⊥y(t) ∈
Λn , and π⊥y(t)i > 0 for all i since t < 1. By (i), x ∈ Λn . ��
Proposition 6 Let r : Δn → Λn be the natural retraction.

(i) If x, y ∈ Δn
σ and x � y, then πxy(t) ∈ Δn

σ for all t ∈ [0, 1].
(ii) For x, y ∈ Δn, we have x � y iff

(∀σ ∈ S(n))(y ∈ Δn
σ ⇒ x ∈ Δn

σ) and (r(x)� r(y) in Λn) .

Proof (i) This was shown in the proof of the mixing law. (ii) First recall that right
multiplication by σ ∈ S(n), rσ (x) = x ·σ , is an order isomorphism of Δn . If x � y,
then x � y, which means x, y ∈ Δn

σ for some σ ∈ S(n). Because rσ is an order
isomorphism,

x � y ⇒ rσ (x) � rσ (y) in Δn .

But r(x) = rσ (x) and r(y) = rσ (y), which means r(x) � r(y) in Δn . However,
r(x), r(y) ∈ Λn and in addition Λn is closed under directed suprema in Δn by
Prop. 4(i), which means that the supremum in Λn of a directed set S ⊆ Λn is equal
to the supremum it has as a subset of Δn . Thus, r(x)� r(y) in Λn .

To finish this direction, suppose y ∈ Δn
σ . Then x ·σ = rσ (x) � rσ (y) = y ·σ in

Δn , since rσ is an order isomorphism. But y · σ is monotone, so Lemma 12 implies
that x · σ is too, i.e., x ∈ Δn

σ .
For the other direction, if we choose any σ ∈ S(n) with y ∈ Δn

σ , then x ∈ Δn
σ .

By assumption, we have rσ (x) = r(x) � r(y) = rσ (y) in Λn . If we show that
rσ (x) � rσ (y) in Δn , then because rσ is an order isomorphism, we may conclude
x � y in Δn .

Let (yi) be an increasing sequence in Δn with rσ (y) = ⊔ yi . By Proposition 4,
there is ν ∈ S(n) with yi ∈ Δn

ν for all i , and hence y · σ ∈ Δn
ν . Then because

y ∈ Δn
σ ·ν , we have x ∈ Δn

σ ·ν by assumption, so the following relation involves only
states in Λn :

x · (σ · ν) = x · σ � y · σ = y · (σ · ν) =
⊔

(yi · ν).

Because x · σ � y · σ in Λn , we must have x · (σ · ν) � yi · ν for some i , i.e.,
rν(rσ (x)) � rν(yi) which gives rσ (x) � yi . Then rσ (x) � rσ (y) in Δn , and now
the proof is finished. ��

618 B. Coecke and K. Martin

Theorem 4 The classical states Δn are exact.

(i) For every x ∈ Δn, π⊥x (t)� x for all t < 1.
(ii) The approximation relation � is interpolative: If x � y in Δn, then there is

z ∈ Δn with x � z � y.

Proof The exactness of Δn follows from (i), the Scott continuity of π⊥x , and
Lemma 11. To prove (i), we first show that π⊥x (t) � x in Λn for any x ∈ Λn

and t < 1. Notice that π⊥x (t) ∈ Λn for all t ∈ [0, 1] by Proposition 6(i). Let
x =⊔ yk ∈ Λn for an increasing sequence (yk)k≥1 in Λn .

For i < n fixed, we will show that there is an integer ki such that

(
1− t

n
+ t xi

)

πi+1(yk) ≤ πi (yk)

(
1− t

n
+ t xi+1

)

for all k ≥ ki . If xi = 0, then xi+1 = 0 by the monotonicity of x , and then we can
take ki = 1, by the monotonicity of each yk . Thus, we can assume xi > 0.

If xi+1 = 0, then we can write

(
1− t

n
+ t xi

)

lim
k→∞πi+1(yk) = 0 < δ < xi

(
1− t

n

)

= lim
k→∞πi (yk)

(
1− t

n

)

,

where δ > 0 is some constant, and we use x = ⊔ yk . This makes it clear that such
a ki exists in this case. Thus, we can also assume xi+1 > 0.

If xi = xi+1 > 0, then because yk � x , degeneration (Lemma 5) gives πi (yk) =
πi+1(yk) > 0 for each k. In this case, we can again take ki = 1. Thus, we assume
xi > xi+1 > 0. By the degeneration lemma, this also implies πi (yk) > 0 and
πi+1(yk) > 0 for all k. But then we get

(1− t)/n + t xi

(1− t)/n + t xi+1
<

xi

xi+1
= lim

k→∞
πi (yk)

πi+1(yk)
,

using xi > xi+1 > 0, t < 1 and
⊔

yk = x . Thus, in this case there is also a large
enough ki such that the desired inequality holds for all k ≥ ki .

Then π⊥x (t) � yk where k ≥ max{ki : 1 ≤ i < n}, which proves π⊥x (t)� x in
Λn for all t < 1. To finish the proof, let x be any classical state and r : Δn → Λn

the natural retract. We know

• x ∈ Δn
σ ⇒ π⊥x (t) ∈ Δn

σ for all t ∈ [0, 1], and
• r(π⊥x (t)) = π⊥r(x)(t)� r(x) in Λn , for all t < 1,

where the first follows from Proposition 6(i), and the second from what we proved
above. By Prop. 6(ii), these two give π⊥x (t)� x for all t < 1.

(ii) First, for any x ∈ Δn , we have π⊥x (s)� π⊥x (t) whenever s < t . This easily
follows from (i): For p := π⊥x (t) we have

10 A Partial Order on Classical and Quantum States 619

π⊥x (s) = π⊥p(s/t)� p = π⊥x (t).

If x � y, then x � π⊥y(t)� y for some t < 1. Thus,

x � π⊥y(t)� π⊥y((t + 1)/2) � y,

so taking z := π⊥y((t + 1)/2) finishes the proof. ��
The last result demonstrates the existence of a natural approximative structure on

classical states: The dcpo Δn can rightfully be called a domain. As we said at the
start, domains normally have partial elements, and total or ideal elements. We now
explain the relationship between the qualitative notion of approximation� and the
natural intuitive notions of “partiality” and “totality” for classical states.

Intuitively, a classical state x is partial iff it offers no certainty about any outcome
iff (∀i) 0 < xi < 1 iff (∀i) xi > 0. One may object that x = (1/2, 1/2, 0) ∈ Δ3

seems partial but is excluded from the above. However, only “some” of x is partial,
the element p3(x) = ⊥ ∈ Δ2. As a state in Δ3, though, x is not genuinely partial
because it imparts certainty about the third outcome.

On the other hand, if we assume that the order theoretic structure of Δn has cap-
tured our intuitive understanding of classical states, we easily arrive at an alternative
formulation of partiality: An object is partial when it approximates something. The
latter of course is purely qualitative and provides exactly what one hopes for: A
formalization of intuition.

Lemma 13 (Partiality) For each x ∈Δn, the set ↑↑x is nonempty iff xi >0 for all i .

Proof If x � y, there there is t < 1 with x � π⊥y(t). Because t < 1, π⊥y(t)i >0,
so degeneration (Lemma 5) gives xi >0. For the other direction, let xi > 0 for all i .

Intuitively, because x is in the interior of Δn , the line segment from ⊥ to x can
be extended nontrivially to a point y on the boundary of Δn , for which we then have
x � y. Formally now, we can assume x �= ⊥. Then

0 < x− < 1/n ⇒ λ := 1

1− nx−
> 1.

Let y be the classical state defined pointwise by

yi = 1

n
· (1− λ)+ λ · xi

for each 1 ≤ i ≤ n. To see that y is in fact a classical state, notice that

0 = 1

n
· (1− λ)+ λx− ≤ yi ≤

n∑

i=1

yi = 1.

Since 0 ≤ 1/λ < 1, π⊥y(1/λ) = x � y, which proves ↑↑x �= ∅. ��

620 B. Coecke and K. Martin

The “opposite” of partiality is totality: A classical state is total when it imparts
certainty about all of its outcomes. Thus, the total or ideal classical states are exactly
the pure states ei , which we have already characterized qualitatively as being pre-
cisely max(Δn). But the approximation relation can offer additional insight about
the sense in which pure states are total.

To understand the connection between the two, let’s begin by thinking about
x � y, which we could say means that

• All paths (yi) to y must qualitatively exceed x after some finite stage,

which can be read as

• All paths to y essentially begin with x ,

and finally

• A process (yi) can only end up in state y = ⊔ yi provided that it has the infor-
mation represented by x : x is necessary for having y, i.e., the only way to know
y is to first know x .

In each version of� above, some reference to a process is made (a path is assumed
to be generated by some process), providing us with a crucial distinction between
� and �: x � y is a statement about processes, x � y is a statement about
information. The difference between these two becomes clear by considering states
x, y, z with x � y � z but not x � z.

Example 2 Let ⊥ �= x � y := (1/2, 1/2, 0) � z := e1. Then x �� z. Here are two
equivalent perspectives:

(i) In terms of knowledge: We are not required to know that an object is not in box
3 before we can know that it is in box 1.

(ii) In terms of processes:From an initial state of⊥, one way to conclude the object
is in box 1 is to begin by ruling out box 3 as a possibility, and then look in
one of the others—but this does not describe all ways. We could just look in
box 1.

Thus, � makes statements about potential evolutions of state; � is concerned
with what we must know in order to obtain information using the process of
observation.

This example suggests that� is capable of expressing a characteristic of totality:
The only time we expect the implication

(∀y, z) y ∈ ↑↑x and y � z ⇒ z ∈ ↑↑x

to hold nontrivially is when x is a state from which a unique outcome is likely, i.e.,
x approximates a unique pure state. When ↑↑x satisfies the implication above, it is
called an upper set.

10 A Partial Order on Classical and Quantum States 621

Proposition 7 (Approximation of pure states) Let n ≥ 2

(i) For all x ∈ Δn, x � ei iff x = π⊥ei (t) for some t < 1.
(ii) For all x ∈ Δn, ↑↑x is an upper set iff it is empty, all of Δn, or contains a unique

pure state.

Proof (i) For n = 2 this is clear. Assume n ≥ 3. Because x � ei , there is s < 1
with x � π⊥ei (s). By degeneration, (∃a > 0)(∀k �= i)(xk = a), which now makes
the claim obvious.

(ii) For (⇒), every nonempty upper set contains at least one maximal element.
By (i), either x = ⊥, or ↑↑x contains a unique pure state.

For the other direction, we need to prove that ↑↑x is an upper set when it contains
a unique pure state ei . Suppose x � y � z. First, because x � ei , it is routine to
show that xi = x+ and xk = x− for all k �= i . Because ↑↑x contains a unique pure
state, x �= ⊥, which means x+ > x− > 0. To apply Proposition 6(ii), we first show
z ∈ Δn

σ ⇒ x ∈ Δn
σ .

Let z · σ be monotone. Because x � z, x · σ � z · σ , which means there is an
index k with (x · σ)k = x+ ≤ (z · σ)k = z+. By the monotonicity of z · σ and
degeneration,

(z · σ)k = (z · σ)1 = z+ ≥ x+ > 0 �⇒ (x · σ)k = (x · σ)1 = x+ > 0,

which means x · σ is monotone, since the only other value it assumes is x−.
To finish, we need to show r(x) � r(z) in Λn . First, r(z)2 > 0, since otherwise

r(z) = e1, for which we already know r(x)� r(ei) = e1 = r(z). By degeneration,
this also means r(y)2 > 0. Because r(x) � r(y) in Λn, there is t < 1 with
r(x) � π⊥r(y)(t). Thus,

r(x)1

r(x)2
≤ (1/n)(1− t)+ tr(y)1

(1/n)(1− t)+ tr(y)2
<

r(y)1

r(y)2
≤ r(z)1

r(z)2
,

where the strict inequality follows from r(y)1 > r(y)2 > 0 (which is a conse-
quence of degeneration using r(x)1 > r(x)2 > 0 and r(x) � r(y)). Because
r(x)i/r(x)i+1 = 1 for 1 < i < n, it is clear that r(x) � r(z) in Λn . ��

An approximation a of a pure state x defines a region ↑↑a of Δn known in domain
theory as a Scott open set.

Definition 12 A subset U of a dcpo D is Scott open if

• U is an upper set: (∀x ∈ U)(∀y ∈ D) x � y ⇒ y ∈ U, and
• U is inaccessible by directed suprema: For any directed set S ⊆ D,

⊔
S ∈ U ⇒ S ∩U �= ∅ .

The collection of all Scott open subsets of D is σD .

622 B. Coecke and K. Martin

Notice that a map f : D → E between dcpo’s is Scott continuous in the sense
defined earlier iff f −1(U) is Scott open in D whenever U is Scott open in E .

Lemma 14 For all x ∈ Δn, ↑↑x is an upper set iff it is Scott open.

Proof If z = ⊔ S ∈ ↑↑x , then by interpolation (Theorem 4), there is y ∈ Δn with
x � y � z. Thus, by y � z, there is s ∈ S with y � s, and since ↑↑x is an upper
set, s ∈ ↑↑x . Interestingly, one can also show that ↑↑x is Scott open iff ↑(↑↑x) is Scott
open.

The relation between approximation, partiality and purity can now be summa-
rized as follows:

(i) The partial elements are those x ∈ Δn with ↑↑x �= ∅.
(ii) For a partial element x ∈ Δn , ↑↑x is Scott open iff x = π⊥ei (t) for some i and

some t < 1 iff (x = ⊥ or x approximates a unique pure state).

Thus, the “totality” of a pure state x is largely explained by the fact that ↑↑a is Scott
open whenever a � x . To complete the picture,

Lemma 15 A subset U ⊆ Δn is Scott open iff

• Any monotone path from x ∈ U to a pure state lies in U, and
• The line from ⊥ to x ∈ U has a segment contained in U,

and for pure states x , there is an equivalence between “approximation of x” and
“Scott open set containing x”: Given any a � x , the set ↑↑a is Scott open, while
given any Scott open U with x ∈ U , we can (by exactness) find an approximation
a ∈ U of x with x ∈ ↑↑a ⊆ U .

Approximation can also describe things of a more concrete nature. Because of its
close connection to the mixing law, which is especially evident in the case of pure
states (Proposition 7(i)), we can sometimes reinterpret mixing as approximation.
This, for instance, can be useful when one seeks to explain the sense in which certain
forms of noise work “against” the state σ of a system.

Example 3 The depolarization channel The map dp : Δn → Δn by

dp(σ) = p⊥+ (1− p)σ

describes the process by which a state σ ∈ Δn is depolarized with probability p > 0
(has all bias and hence all information removed from it) and is otherwise unaltered.
But notice:

dp(σ) = π⊥σ (1− p),

which means dp(σ) � σ for p > 0. In particular, the effect of depolarization on a
state is qualitative.

10 A Partial Order on Classical and Quantum States 623

To say that the effect of noise is qualitative essentially means that while the state
of the system has suffered, it has not been “degraded beyond recognition.” This is
not always the case: Some forms of noise are more destructive than others and the
order on classical states can at times capture this.

Example 4 Classical bit flipping A state σ ∈ Δ2 suffering the effect of a magnetic
field is “flipped” with probability p and otherwise left alone

f p(σ) = pσ ∗ + (1− p)σ,

where ∗ is the involution (x, y)∗ = (y, x). In this case, we have

(∀σ. f p(σ)� σ)⇔ 0 < p ≤ 1/2,

i.e., the effect of the noise is qualitative iff the field is weak enough.

Those familiar with classical information theory may know what we call classical
bit flipping by another name, the binary symmetric channel. In this important exam-
ple, a bit (a “0” or a “1”) is transmitted correctly through a channel with probability
1− p and reversed with probability p:

1 11 − p

p

0 0
1 − p

p

Given that information is sent through the binary symmetric channel, we want to
determine the information that is actually received. The information sent is modelled
by σ = (x, y) ∈ Δ2, where x is the probability that 0 is sent and y is the probability
that 1 is sent. The effect that the channel has on information passing through it (σ)
is captured by its channel matrix

[
1− p p

p 1− p

]

To determine the information received when (x, y) is sent, we calculate a distribu-
tion for the output using the channel matrix as follows:

[
1− p p

p 1− p

]

·
[

x
y

]

=
[
(1− p)x + py
px + (1− p)y

]

All of this is implicit in the operator f p(σ) = pσ ∗ + (1 − p)σ of Example 4: The
distribution for the output is f p(σ), the 0 bit is e1 = (1, 0), the 1 bit is e2 = (0, 1),
and reversing σ means applying the involution ∗ to obtain σ ∗.

624 B. Coecke and K. Martin

10.2.5 Entropy, Content and Partiality

We have already seen how the use of� on Δn enables a precise formulation of what
it means to say that a classical state is “information.” One of the advantages in taking
this approach to defining information is that the structure of a domain can then be
used to define the notion “information content,” i.e., we can say what it means to
measure the content of information.

The idea introduced in [8] is this: Assuming that information is formally spec-
ified as a domain, measuring content means measuring partiality, i.e., the amount
of partiality in an object. The importance of this conceptually is that partiality, as
we have already seen, is intimately connected to the order theoretic structure of a
domain.

To slightly motivate the formal definition we are about to see, suppose that μ :
Δn → [0,∞) is a measure of content on classical states. Then μx is the amount of
uncertainty (or partiality) in x . As we move up in the order � on Δn , states become
more informative, so uncertainty decreases:

x � y ⇒ μx ≥ μy.

That is, as a map from Δn to [0,∞)∗, μ is monotone. If μ is defined in terms of the
usual formulae from physics (arithmetic, logarithms, other elementary functions),
then it is continuous in the sense of analysis, and hence Scott continuous from Δn

to [0,∞)∗.
The essence of the distinction between content and a random continuous map on

a domain is subtle. Consider a pure state x ∈ max(Δn) and one of its approximations
a � x , so that a is information any process must have before it can evolve to x .
Then we also expect a � y provided that

(i) y is a state from which it is possible to evolve to x , and
(ii) y is “close enough” to x in content.

The first translates as “y � x”; the second translates as “|μx − μy| < ε,” on the
assumption that μ measures information content. Putting everything together now,
if μ is a measure of content, then we expect that

x ∈ ↑↑a ⇒ (∃ε > 0)(y � x & |μx − μy| < ε ⇒ y ∈ ↑↑a).

Because x is pure, we can replace ↑↑a with a Scott open set U ⊆ Δn , as we saw in
the last section.

Definition 13 A Scott continuous map μ : D → [0,∞)∗ on a dcpo is said to
measure the content of x ∈ D if

x ∈ U ⇒ (∃ε > 0) x ∈ με(x) ⊆ U,

whenever U ∈ σD is Scott open and

10 A Partial Order on Classical and Quantum States 625

με(x) := {y ∈ D : y � x & |μx − μy| < ε}

are the elements ε close to x in content. The map μ measures X if it measures the
content of each x ∈ X .

In order for a map μ to be regarded “a measure of content,” it must minimally
be capable of distinguishing those elements which it claims are maximally informa-
tive. That is, μ must measure all of the objects which it regards as possessing no
uncertainty ker μ := {x : μx = 0}.
Definition 14 A measurement is a Scott continuous map μ : D → [0,∞)∗ on a
dcpo that measures ker μ := {x ∈ D : μx = 0}.

The measurement formalism [8] teaches that the ability to measure content is
indicative of a purely structural relationship that exists between two classes of infor-
mative objects. Neither class need consist of numbers. This relationship is formally
expressed by a map μ : D → E whose general nature is to reflect properties of
simpler objects E onto more complex objects D.

The motivation for the idea stems from the empirical fact that it is often easier to
reason about D in terms of E rather than deal with D directly [8]. Hence the reflec-
tive nature of μ: It confirms that we actually can learn about x ∈ D by studying the
properties of its simplification μx ∈ E .

Definition 15 A Scott continuous map μ : D → E between dcpo’s is said to mea-
sure the content of x ∈ D if

x ∈ U ⇒ (∃ε ∈ σE) x ∈ με(x) ⊆ U,

whenever U ∈ σD is Scott open and

με(x) := μ−1(ε)∩ ↓x

are the elements ε close to x in content. The map μ measures X if it measures the
content of each x ∈ X .

Definition 16 A measurement is a Scott continuous map μ : D → E between
dcpo’s that measures ker μ := {x ∈ D : μx ∈ max(E)}.

These definitions are easily seen to be equivalent to the quantitative formulations
we saw earlier by setting E = [0,∞)∗. To establish the reflective nature of content,
we use the following relationship between the order � on a dcpo D and its Scott
open sets σD:

x � y ⇔ (∀U ∈ σD)(x ∈ U ⇒ y ∈ U).

Proposition 8 Let μ : D → E be a measurement and x an object that it measures.

(i) If μx ∈ max(E), then x ∈ max(D).

626 B. Coecke and K. Martin

(ii) If μx = ⊥, then x = ⊥, provided ⊥ ∈ D exists.
(iii) If y � x and μx = μy, then x = y.
(iv) If xn � x and (μxn) is directed with supremum μx, then

⊔
xn = x.

In addition, the composition of measurements is again a measurement.

Proof The proofs here are essentially taken verbatim from [8], where other proper-
ties of content can be found.

(i) Let x ∈ U . Then y ∈ με(x) ⊆ U , for some ε ∈ σE . Since U was arbitrary,
x � y. By antisymmetry, x = y.

(ii) If x � y, then μx = μy, since μx ∈ max(E), which gives y ∈ ker μ. Since μ

is a measurement, it measures y, so x = y by (iii).
(iii) First, μ(⊥) � μx = ⊥, so μ(⊥) = ⊥ = μx . Since ⊥ � x , we can apply (i)

to obtain x = ⊥.
(iv) Let xn � u for all n. If x ∈ U , then x ∈ με(x) ⊆ U , which means

μx =
⊔

μxn ∈ ε,

and so μxn ∈ ε for some n, which gives xn ∈ U and hence u ∈ U . Since U
was arbitrary, x � u. Thus,

⊔
xn = x .

Finally, if we have measurements D
μ−→ E

λ−→ F , then λμ measures ker λμ as
follows. First, if x ∈ ker λμ and x ∈ U ∈ σD , then x ∈ ker μ so there is ε ∈ σE

with x ∈ με(x) ⊆ U . Then, since μx ∈ ε and μx ∈ ker λ, there is δ ∈ σF with
μx ∈ λδ(μx) ⊆ ε. We have

x ∈ (λμ)−1(δ)∩ ↓x ⊆ με(x) ⊆ U,

which finishes the proof. ��
With the benefit of the abstract formulation of content, let us take a second look

at uncertainty (E = [0,∞)∗). By Proposition 8(i), we know that

μx = 0 ⇒ x ∈ max(D),

for any measurement μ : D → [0,∞)∗. That is, quantitative certainty implies
qualitative certainty. As a case in point, if D = Δn , then, as we will see shortly,
Shannon entropy μ : D → [0,∞)∗ given by

μx = −
n∑

i=1

xi log xi

is a measurement. Thus, any classical state x with entropy μx = 0 is pure. But now
we have an explanation for why such properties hold:

10 A Partial Order on Classical and Quantum States 627

(i) In the sense of the measurement formalism, μ is a measure of content between
the domains Δn and [0,∞)∗, and

(ii) Measures of content between domains always reflect maximality.

The same is true of the von Neumann entropy on quantum states (that we will see
later). But the moral of the last result is what is most important: Subject to moderate
hypotheses, information behaves in the same manner as its content.

Proposition 9 The natural retraction r : Δn → Λn is a measurement.

Proof To start, notice that ker r = max(Δn). Let U ⊆ Δn be a Scott open set that
contains the pure state x . By exactness, there is ⊥ �= a � x with a ∈ U . By
Prop. 6(ii), r(a)� r(x) in Λn . Because x is pure, ε := ↑↑r(a) is a Scott open subset
of Λn (a corollary of Theorem 4 and Proposition 7). We claim x ∈ rε(x) ⊆ ↑↑a ⊆ U
as follows.

First, x ∈ rε(x) by r(a) � r(x). Then, if y ∈ rε(x), we have r(a) � r(y) in
Λn and y � x . To prove that a � y in Δn and finish the proof, we must show
y ∈ Δn

σ ⇒ a ∈ Δn
σ .

For this subtle point, a takes its maximum at a unique index, because a �= ⊥
and it approximates a pure state (Proposition 7(i)). Then r(a) does as well. Since
r(a) � r(y), degeneration implies the same is true of r(y) and hence of y. Thus,
because y takes its maximum at a unique index, and because y � x ∈ max(Δn), we
have y ∈ Δn

σ ⇒ x ∈ Δn
σ , while a � x then implies a ∈ Δn

σ . ��
We have made intuitive use of this fact numerous times: Whenever we prove a

statement about classical states by first proving it for monotone states, we are implic-
itly appealing to the fact that r(x) provides a decent measure of the content of x .

Example 5 The standard variable v : Δn → [0,∞)∗ given by

v(x) = 1− x+

is a measurement with ker v = max(Δn). To prove as much, we need only show
that its restriction to Λn , λ := v|Λn , is a measurement, since then v = λ ◦ r must be
another.

To this end, let U ⊆ Λn be a Scott open set and x ∈ ker λ. Because U is Scott
open, there is t < 1 with a := π⊥x (t) ∈ U . We then have

x ∈ λε(x) ⊆↑a ⊆ U,

where

ε := 1

2
· a2

a1 + a2
> 0 .

Example 6 The entropy s : Δn → [0,∞)∗ given by

s(x) = − log x+

628 B. Coecke and K. Martin

is a measurement with ker s = max(Δn). First, s(x) ≥ v(x), using the classic
inequality log t ≤ t − 1 for t > 0. Thus,

x ∈ sε(x) ⊆ vε(x),

for any pure state x and ε > 0. Because v is a measurement, so is s.

Now for Shannon entropy.

Lemma 16 Let x � y be monotone classical states in Δn. Then there is k ∈
{1, . . . , n} such that

(i) (∀i < k) xi ≤ yi , and
(ii) (∀i ≥ k) xi ≥ yi .

Proof First, since x � y, we have by induction that xi yi+ j ≤ yi xi+ j , for each
j ∈ {0, . . . , n − i}. Thus, if xi ≥ yi , then xi+ j ≥ yi+ j for each j ∈ {0, . . . , n − i}.
Now let k be the least integer 1 ≤ k ≤ n with xk ≥ yk . Notice that such a k exists
since xn ≥ yn . This finishes the proof.

The relative Shannon entropy of y given x is

μ(y‖x) :=
n∑

i=1

yi log(yi/xi)

where x, y ∈ Δn . This quantity is always nonnegative and is zero iff x = y.

Theorem 5 Let μ : Δn → [0,∞)∗ be the Shannon entropy on classical states

μx = −
n∑

i=1

xi log xi

where the logarithm is natural. Then μ is a measurement. In addition,

(i) For all x, y ∈ Δn, if x � y and μ(x) = μ(y), then x = y.
(ii) For all x ∈ Δn, we have μ(x) = 0 iff x ∈ max(Δn).

(iii) For all x ∈ Δn, we have μ(x) = log n iff x = ⊥.

Proof Because μ is symmetric, its Scott continuity follows if we show that its
restriction to the dcpo Λn is Scott continuous. First we prove its monotonicity into
[0,∞)∗.

Let x � y be monotone classical states. By Lemma 16, there is an integer
k ∈ {1, . . . , n} such that xi ≤ yi for i < k and xi ≥ yi for i ≥ k. Then

n∑

i=1

(yi − xi) log xi =
∑

i<k

(yi − xi) log(xi/xk)+
∑

i>k

(yi − xi) log(xi/xk) ≥ 0.

10 A Partial Order on Classical and Quantum States 629

Notice that if xk = 0 then the sum of the i > k vanishes, while the sum of the i < k
blows up, but is nevertheless nonnegative. From the nonnegativity of this sum, we
have

μx ≥ −
n∑

i=1

yi log xi ≥ μy,

where the second inequality follows from μ(y‖x) ≥ 0. This proves that μ is mono-
tone into [0,∞)∗.

If in addition to x � y we also have μx = μy, then the inequality above imme-
diately gives μ(y‖x) = 0, which implies x = y. This establishes that μ is strictly
monotone. For its Scott continuity, if (xi) is increasing, then

μ
(⊔

xi

)
= μ(lim

i→∞π1(xi), . . . , lim
i→∞πn(xi))

= lim
i→∞μ(π1(xi), . . . , πn(xi))

= lim
i→∞μxi ,

where the first equality uses Proposition 12 and the second uses the continuity of μ

with respect to the Euclidean topology. By Lemma 1, μ is Scott continuous. Finally,
μ is a measurement: For x ∈ Δn , we have

μx ≥ −x+ log x+ ≥ 1

n
· v(x),

using log t ≤ t−1 for t > 0 and x+ ≥ 1/n, where v is the variable from Example 5.
Since v is a measurement, (1/n) ·v is a measurement, which means that μ is as well.

�

It is important to realize that the minimal account of content given here is more
substantial than it may seem: There are natural mappings which do not measure
content.

Example 7 Numbers are not enough. For n ≥ 3, consider

f : Δn → [0,∞)∗ :: x �→ x−.

It is Scott continuous, symmetric and assumes its order theoretic minimum at ⊥.
Furthermore, even though f (x) = 0 for all x ∈ max(Δn), f does not measure the
content of a single pure state.

For instance, suppose f measured the content of e1 ∈ Δ3. Then given any open
U ⊆ Δn with e1 ∈ U , there would exist ε > 0 with e1 ∈ fε(e1) ⊆ U . Then
(1/2, 1/2, 0) ∈ U . But because this applies to any open set U , we now have a proof
that e1 � (1/2, 1/2, 0).

630 B. Coecke and K. Martin

More intuitively: Many states are assigned maximal measure by f which are not
pure. For instance f (x, y, 0) = 0 on Δ3, even though the only time (x, y, 0) is pure
is when x = 1 or y = 1.

Here is a summary.

Example 8 Canonical measures of content on Δn

(i) The maps Δn → [0, 1] :: x �→ x+ and Δn → [0, 1]∗ :: x �→ 1− x+.
(ii) Entropy s(x) = − log x+.

(iii) The natural retraction r : Δn → Λn .
(iv) Shannon entropy

μx = −
n∑

i=1

xi log xi .

10.3 Quantum States

We now pursue the idea which motivated our study of the Bayesian order on classi-
cal states: The spectral order on quantum states. Later we will see that the spectral
order can be characterized in a manner completely analogous to the order on classi-
cal states:

• The inductive formulation, in terms of quantum projections, and
• The symmetric formulation, in terms of unitary transformations.

These two accounts of the quantum order, when restricted to a class of states exhibit-
ing classical behavior, are equivalent to the inductive and symmetric characteriza-
tions of the Bayesian order on classical states studied in the last section.

10.3.1 Essentials

An n-dimensional complex Hilbert space Hn is an n-dimensional vector space over
C with specified inner product 〈· | ·〉.
Definition 17 A base of Hn is a sequence (ψi)

n
i=1 of unit vectors,

〈ψi | ψi 〉 = 1,

which are mutually orthogonal:

i �= j ⇒ 〈ψi | ψ j 〉 = 0.

We write x ⊥ y to express the orthogonality of two vectors x, y ∈ Hn , and as is
customary, extend this notation to subspaces of Hn as follows:

10 A Partial Order on Classical and Quantum States 631

Ψ ⊥ Φ ⇔ ∀ψ ∈ Ψ \ {o},∀φ ∈ Φ \ {o} : ψ ⊥ φ

where o is the zero of Hn .

Definition 18 A linear operator ρ : Hn → Hn is self-adjoint if

〈φ | ρψ〉 = 〈ρφ | ψ〉,

for all φ,ψ ∈ Hn , positive when

〈ψ | ρψ〉 ≥ 0

for all ψ ∈ Hn , and idempotent when ρ2 := ρ ◦ ρ = ρ.

The spectral theorem of von Neumann [12], roughly speaking, states that each
self-adjoint operator on a Hilbert space decomposes into a sum of simple operators
called projections.

Definition 19 A projection or projector is a self-adjoint, linear, idempotent operator.
The set of projections is denoted P

n . A projection P ∈ P
n is fully characterized by

its subspace of fixed points fix(P) ⊆ Hn .

All we need here is the finite dimensional case of the spectral theorem.

Theorem 6 A self-adjoint linear operator ρ : Hn → Hn decomposes uniquely into
a linear combination of mutually orthogonal projections

ρ =
∑

λ∈spec(ρ)

λ · Pλ
ρ with

∑

λ∈spec(ρ)

Pλ
ρ = I

whose images span Hn. The set spec(ρ) ⊆ R is called the spectrum of ρ.

We write the fact that the images of the projections span Hn as

span

⎛

⎝
⋃

λ∈spec(ρ)

fix(Pλ
ρ)

⎞

⎠ = Hn , (10.1)

where by idempotence we have fix(P) = Im(P) = P(Hn).

Definition 20 The trace of a linear operator ρ on Hn is

tr(ρ) :=
∑

i

〈ψi | ρψi 〉,

where {ψi } is any base of Hn . If A is any matrix representation of ρ, then tr(ρ) =∑
Aii is the sum of the elements on the diagonal of A.

632 B. Coecke and K. Martin

The standard kinematical account of a quantum system includes both a descrip-
tion of the states a system can take, and of its observables, i.e., the measurements
that can be performed on the system.

Definition 21 A density operator ρ on Hn is a self-adjoint, positive, linear operator
with tr(ρ) = 1. A quantum n-state is a density operator. The class of quantum
n-states is denoted Ωn .

Definition 22 A quantum state ρ is pure if spec(ρ) ⊆ {0, 1}. The set of pure states
is written Σn .

A classical state is a distribution on the set of pure states max(Δn). Similarly,
Gleason’s theorem [5] establishes that density operators encode precisely the mea-
sures on the closed subspaces of Hn , i.e., density operators are distributions on the
set of pure states.

Definition 23 A quantum n-measurement is a self-adjoint linear operator e : Hn →
Hn .

For instance, if e is the energy observable, then its spectrum spec(e) contains the
actual energy values a system can assume. According to quantum mechanics, if the
density operator of a system is ρ, then a measurement of the observable e yields
λ ∈ spec(e) as the result with probability

probλ
e (ρ) := tr(Pλ

e · ρ).

Now what we want to do is rewrite all of this in a form more amenable to the
task at hand.

Definition 24 L
n is the set of closed subspaces of Hn .

By the spectral theorem, we can write a self-adjoint operator e as

eψ =
∑

λ∈spec(e)

(λ · Pλ
e)ψ.

By mutual orthogonality, eψ = λψ ⇔ Pλ
e ψ = ψ , so the eigenspaces

eλ := {ψ ∈ Hn | eψ = λψ} = fix(Pλ
e)

give rise to a labeled collection of mutually orthogonal subspaces

De := {eλ | λ ∈ spec(e)}

which span Hn .

Definition 25 A decomposition of Hn is a family of mutually orthogonal subspaces
of Hn of dimension at least one which span Hn . The decompositions of Hn are
denoted D

n .

10 A Partial Order on Classical and Quantum States 633

We will also refer to the union
⋃

D of a decomposition D as being the decom-
position itself since the first characterizes the latter.

Definition 26 A spectral decomposition of Hn is an injective function f : X → L
n

defined on a nonempty set X ⊆ R with f (X) ∈ D
n . The domain of f is written

spec(f) = X and called the spectrum of f .

Equivalently, a spectral decomposition is a partial injection f : R ⇀ L
n with

Im(f) ∈ D
n and spec(f) := dom(f).

Lemma 17 There is a one to one correspondence between self-adjoint operators on
Hn and spectral decompositions of Hn.

Thus, we frequently use the operator and decomposition language interchange-
ably. For example, here is an alternate formulation of quantum states:

Definition 27 A density operator is a spectral decomposition r with

∑

λ∈spec(r)

λ · dim(rλ) = 1

and spec(r) ⊆ [0,∞).

In particular, a pure state r ∈ Σn is a decomposition r : {0, 1} → L
n with

∑

λ∈{0,1}
λ · dim(rλ) = 1.

From this equation we see that the subspace r1 is one-dimensional. In fact, r1 serves
to characterize r , since r0 must then be a certain n−1 dimensional subspace known
as the orthocomplement of r1,

r0 = r⊥1 := {ψ ∈ Hn | ψ ⊥ r1} .

We have proven the following.

Lemma 18 The pure states on Hn are in bijective correspondence with the one
dimensional subspaces of Hn.

So much for states. For observables, we will consider only those e on Hn with
the maximum number of distinguishable outcomes n. By simple renaming then,
we can take spec(e) = {1, . . . , n}. This convention highlights the role played by
measurements: They are labelings, i.e., to each outcome 1 ≤ i ≤ n, a measurement
assigns those states ei of the system for which observable e has value i with certainty
(probability one).

Definition 28 A labeling is a spectral decomposition

e : {1, . . . , n} → L
n.

634 B. Coecke and K. Martin

Notice that non-degeneration of spec(e) implies that the decomposition De con-
sists only of one-dimensional subspaces (pure states), i.e., De cannot be refined any
further:

Definition 29 A decomposition D is a refinement of decomposition D′ iff

⋃
D ⊆

⋃
D′ .

Finally, the probabilities. Recall that the probability of obtaining outcome i in a
measurement of observable e on a system with density operator r is given by

probi
e(r) := tr(Pi

e · r) .

For a state r and a labeling e, 〈r |ei 〉 denotes the i th diagonal element of the matrix
representation of r when expressed in a base B in which all Pi

e diagonalize, and thus,
by the spectral decomposition theorem, in which e itself diagonalizes. Writing Pi

e ·r
in base B then yields

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
. . . 0

0
1

0

0
. . .

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈r |e1〉
. . . ?
〈r |ei 〉

?
. . .

〈r |en〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ?
. . .

... 0
0 ?

? · · · ?〈r |ei 〉? · · · ?
? 0

0
...

. . .

? 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and thus

tr(Pi
e · r) = 〈r |ei 〉 ,

from which we conclude

probi
e(r) = 〈r |ei 〉 . (10.2)

In particular, 〈r |ei 〉 does not depend on B, but only on r and ei , since it is equal to
tr(Pi

e · r). Further, since tr(r) = 1,

n∑

i=1

〈r |ei 〉 = 1,

which simply says that a measurement for observable e yields some outcome i ∈
spec(e) with probability one.

Definition 30 For a state r and labeling e, we define

spec(r |e) := (〈r |e1〉, . . . , 〈r |en〉) ∈ Δn .

10 A Partial Order on Classical and Quantum States 635

Notice that spec(r |e) is a list, while spec(r) is a set.

In general, spec(r |e) may not consist of eigenvalues of r , i.e., elements of
spec(r). However, if r also diagonalizes in base B, then its diagonal consists of
eigenvalues of r . And this is the case we are most interested in.

Definition 31 A state r admits a labeling e if

Im(spec(r |e)) = spec(r).

Any state admits at least n! labelings, corresponding with different permutations
of spec(r |e). More generally, the following result tells us exactly when a labeling
yields the spectrum of a state.

Proposition 10 The following are equivalent for state r and labeling e:

• r admits labeling e.
• De is a refinement of Dr .
• r diagonalizes in a base B in which e is diagonal.
• r and e commute, that is, [r, e] = r · e − e · r = 0.

The following are equivalent for states r and s:

• They admit a joint labeling e.
• They admit joint refinement D.
• They diagonalize in a common base B.
• They commute, that is, [r, s] = 0.

Additionally, states r and s admit labeling e iff

[r, s] = [r, e] = [s, e] = 0 .

In particular we have in all the above cases that

B ⊂
⋃

De ⊆
⋃

D ⊆
⋃

Dr ∩
⋃

Ds ⊆
⋃

Dr

whenever one of the inclusions applies.

Proof Given a base B, for all ψ ∈ B we have ψ ∈ ⋃De iff all ψ ∈ B are
eigenvectors of e iff e diagonalizes in the base B. Thus, any self-adjoint operator
e diagonalizes in a base B iff B ⊆⋃De .

We already showed above that r admits labeling e when there exists a base B in
which both r and e diagnalize, that is, whenever B is included both in

⋃
Dr and⋃

De and as such

B ⊆
⋃
{span(ψ) | ψ ∈ B} ⊆

⋃
Dr

where since e is non-degenerated we have

636 B. Coecke and K. Martin

{span(ψ) | ψ ∈ B} = De

and thus
⋃

De ⊆⋃Dr . Two states r and s then admit a joint labeling e whenever

⋃
De ⊆

⋃
Dr ∩
⋃

Ds .

The converses of these derivations is obvious. Whenever r and s admit diagonal-
ization in a common base B, when representing them in B commutation reduces to
commutation of reals. For the other results with respect to commutation, in par-
ticular the fact that self-adjoint operators diagonalize in a common base if they
commute, we refer to relevant literature.

Lemma 19 Let r be a state and e be a labeling with [r, e] = 0. Then

〈r |ei 〉 = λ⇔ ψi ∈ rλ ⇔ ei ⊆ rλ (10.3)

and

dim(rλ) = card({1 ≤ i ≤ n | 〈r |ei 〉 = λ}) . (10.4)

In particular, dim(rλ) does not depend on the choice of e, so neither do the multi-
plicities of eigenvalues.

Finally, the following result is indispensable and we will appeal to it time and
time again (often implicitly).

Lemma 20 (Definability) For any labeling e and classical state x, there is a unique
quantum state r ∈ Ωn with [r, e] = 0 and spec(r |e) = x.

Although the notions decomposition, refinement and labeling as well as the rep-
resentation of states and measurements as maps that label subspaces in terms of
spectra are not standard in orthodox quantum theory [12], they prove to be useful in
our setting since they highlight degeneration of spectra, a fundamental ingredient in
the ordering of both classical and quantum states.

10.3.2 A Partial Order on Quantum States

Here is the spectral order on quantum states Ωn .

Definition 32 For states r, s ∈ Ωn , we write r � s iff there exists a labeling e such
that

• e is admitted both by r and s,
• spec(r |e) � spec(s|e) in Δn .

10 A Partial Order on Classical and Quantum States 637

Though the order on quantum states only requires that there exist a single joint
labeling, it nevertheless applies to all labels shared by r and s. This is like the way
that x � y for classical states implies x ·σ � y ·σ , for any σ ∈ S(n) with x, y ∈ Δn

σ .

Proposition 11 If r � s in Ωn, then spec(r |e) � spec(s|e) in Δn, for any labeling
e with [r, e] = [s, e] = 0.

Proof We prove the equivalent statement that

spec(r |e) � spec(s|e) ⇔ spec(r |e′) � spec(s|e′) (10.5)

whenever [r, e] = [s, e] = [r, e′] = [s, e′] = 0. Since

⋃
Dr ∩

⋃
Ds =

⋃
{rλ | λ ∈ spec(r)} ∩

⋃
{sλ′ | λ′ ∈ spec(s)}

=
⋃
{rλ ∩ sλ′ | λ ∈ spec(r) , λ′ ∈ spec(s)} ,

and, since whenever [r, e] = [s, e] = 0 we have

⋃
De ⊆

⋃
Dr ∩

⋃
Ds

by Proposition 10, it follows that

⋃
De ⊆

⋃
{rλ ∩ sλ′ | λ ∈ spec(r) , λ′ ∈ spec(s)} ,

where, since rλ ⊥ rλ′ and sλ ⊥ sλ′ for λ �= λ′, the subspaces rλ ∩ sλ′ are mutually
orthogonal for non-coincideng labels (λ, λ′) and thus mutually exclusive. Since their
union includes

⋃
De they span Hn , so they constitute a decomposition

Dr,s := {rλ ∩ sλ′ | λ ∈ spec(r) , λ′ ∈ spec(s)}

with De as a refinement.

Dr :: rλ

Ds :: sλ′

Dr,s :: rλ ∩ sλ′

Since De is a refinement of Dr,s it also follows that

dim(rλ ∩ sλ′) = card
({

i ∈ {1, . . . , n} ∣∣ ei ⊆ rλ ∩ sλ′
})

where the quantity on the left does not depend on e. Since,

638 B. Coecke and K. Martin

ei ⊆ rλ ∩ sλ′ ⇔ ei ⊆ rλ, ei ⊆ sλ′

⇔ λ = 〈r |ei 〉, λ′ = 〈s|ei 〉
⇔ (〈r |ei 〉, 〈s|ei 〉) = (λ, λ′)

for (λ, λ′) ∈ spec(r)× spec(s), we have

card
({

i ∈ {1, . . . , n} ∣∣ (〈r |ei 〉, 〈s|ei 〉) = (λ, λ′)
}) = dim(rλ ∩ sλ′) .

Thus, writing

spec(r, s|e) =
(
(〈r |e1〉, 〈s|e1〉) , . . . , (〈r |en〉, 〈s|en〉)

)

it follows that the list spec(r, s|e) contains a fixed collection of elements

(
. . . , (λ, λ′) , . . . , (λ, λ′)
︸ ︷︷ ︸

, . . .
)

,

dim(rλ ∩ sλ′)

where all (λ, λ′) ∈ spec(r)× spec(s), independent on the choice of e except for
the order of the elements in this list, that is, given e and e′ such that [r, e] = [s, e] =
[r, e′] = [s, e′] = 0 we have

spec(r, s|e′) = spec(r, s|e) · σ

for some permutation σ : {1, . . . , n} → {1, . . . , n} and thus

spec(r |e′) = spec(r |e) · σ and spec(s|e′) = spec(s|e) · σ .

But these are classical states, so

spec(r |e) � spec(s|e) ⇔ spec(r |e) · σ � spec(s|e) · σ,

from which implication (10.5) follows. ��
The last result uses one of the two fundamental properties possessed by the

Bayesian order on Δn : It is symmetric, i.e., the map

Δn → Δn :: x �→ x · σ

is an order isomorphism, for any σ ∈ S(n). This label independence of the Bayesian
order is a simple case of a more general notion satisfied by the spectral order which
we will study in the section on symmetries. To hint at the connection: The equation

spec(r |e) · σ = spec(r |e · σ)

10 A Partial Order on Classical and Quantum States 639

indicates that permuting the classical state spec(r |e) is the same as permuting the
subspaces (ei)

i=n
i=1 of the labeling e.

The second crucial property of the Bayesian order on Δn is that it is degenerative:

x � y ⇒ (yi = y j > 0 ⇒ xi = x j > 0).

Here is the quantum version of the degeneration lemma for classical states.

Lemma 21 If r � s in Ωn then

r0 ⊆ s0 (10.6)

and

⋃
s>0 ⊆

⋃
r>0 , (10.7)

where

r>0 := Dr \ {r0} and s>0 := Ds \ {s0} .

Proof Since r � s they admit a labeling e such that spec(r |e) � spec(s|e) and
thus by degeneration for classical states (Lemma 5), we have

{1 ≤ i ≤ n | 〈r |ei 〉 = 0} ⊆ {1 ≤ i ≤ n | 〈s|ei 〉 = 0}

so eq. (10.6) follows. Analogously, for

〈s|ei 〉 ∈ spec0(s) := spec(s) \ {0}

classical degeneration again yields

{1 ≤ j ≤ n | 〈s|e j 〉 = 〈s|ei 〉} ⊆ {1 ≤ j ≤ n | 〈r |e j 〉 = 〈r |ei 〉}

so eq. (10.7) follows. ��
Recall that an increasing sequence (xi) of classical states must be confined to

some region Δn
σ . Here is the analogous result for the spectral order.

Lemma 22 Let (ri)i≥1 be a sequence such that for all i ≥ 1 we have that ri � ri+1.
Then there exists a joint refinement D(ri) of (Dri)i≥1 and thus the states (ri)i≥1
admit joint labeling.

Proof We agree that the first index for states refers to the sequence index and that
the second refers to eigenvalues. First note that by Lemma 21, since ri � ri+1 we
have

ri,0 ⊆ ri+1,0 (10.8)

640 B. Coecke and K. Martin

⋃
ri+1,>0 ⊆

⋃
ri,>0 . (10.9)

We now proceed by induction.
As base case we take r1 as its own refinement. Note that the spectrum of a state r

decomposes in a zero and a non-zero part to which we refer as spec0(r). Let Di be
the constructed joint refinement for (r1, . . . , ri). Set

Di+1 = (D ∪ E ∪ F) \ {o} ,

where

D = {a ∩ ri,0 | a ∈ Di }
E = {a ∩ ri+1,0 | a ∈ ri,>0}

F = ri+1,>0 .

Graphically, in terms of decompositions of Hn in subspaces,

r1,0
⋃

r1,>0

·
·
·

ri,0
⋃

ri,>0

ri+1,0
⋃

ri+1,>0
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

D E F

We now prove that Di+1 is a joint refinement for (r1, . . . , ri+1). Since ri � ri+1
they admit a joint refinement G so we have by Proposition 10 that

⋃
G⊆
⋃

Dri ∩
⋃

Dri+1

=
(

ri,0 ∪
⋃

ri,>0

)
∩
(

ri+1,0 ∪
⋃

ri+1,>0

)

=
(

ri,0 ∩ ri+1,0

)
∪
(⋃

ri,>0 ∩ ri+1,0

)
∪
(⋃

ri,>0 ∩
⋃

ri+1,>0

)

= ri,0 ∪
(⋃

ri,>0 ∩ ri+1,0

)
∪
⋃

ri+1,>0

by Eqs. (10.8) and (10.9) and since

ri,0 ∩
⋃

ri+1,>0 = ∅ .

10 A Partial Order on Classical and Quantum States 641

We moreover have

span
(⋃

ri,>0 ∩ ri+1,0

)
= span

(⋃
{a ∩ ri+1,0 | a ∈ ri,>0}

)

= span
(⋃

E
)

Since Di is a refinement for Dri it also follows that

span(ri,0) = span
(⋃

{a ∩ ri,0 | a ∈ Di }
)

= span
(⋃

D
)

.

Thus,

Hn = span(
⋃

G)

= span
(⋃

Dri ∩
⋃

Dri+1

)

= span
(⋃

D ∪
⋃

E ∪
⋃

F
)

= span
(⋃

Di+1

)
.

The elements in D, E and F are mutually orthogonal since Di , ri,>0 and ri+1,>0
consist of mutually orthogonal elements. Moreover, the sets

⋃
D,
⋃

E and
⋃

F are
themselves mutually orthogonal since

• ⋃F =⋃ ri+1,>0 ⊥ ri+1,0 ⊇⋃ E ,
• ⋃D ⊆ ri,0 ⊥⋃ ri,>0 ⊇⋃ E , and,
• ⋃D ⊆ ri,0 ⊥⋃ rn,>0 ⊇⋃ ri+1,>0 =⋃F ,

where the last inclusion follows from Eq. (10.9). Thus, Di+1 is a decomposition of
Hn . Since

• ⋃F =⋃ ri+1,>0,
• ⋃ E = ri+1,0, and,
• ⋃D ⊆ ri,0 ⊆ ri+1,0,

by eq. (10.8), it follows that
⋃

Di+1 ⊆ ri+1,0 ∪
⋃

ri+1,>0 =
⋃

Dri+1

so Di+1 is a refinement of Dri+1 . Since

• ⋃ E = ⋃ ri+1,>0 ⊆ ⋃ ri,>0 ⊆ ⋃Dn , by Eq. (10.9) and the inductive assump-
tion,

• ⋃F ⊆⋃ ri,>0 ⊆⋃Di , and,
• ⋃D ⊆⋃Di ,

it follows that Di+1 is a refinement of Di and thus of all Dr j for 1 ≤ j ≤ i .

642 B. Coecke and K. Martin

Finally, consider an infinite sequence (ri)i≥1 such that for all i ≥ 1 we
have that ri � ri+1 and let (Di)i≥1 be the corresponding series of refinements,
each member being the above constructed common refinement of (Dr1 , . . . ,Dri).
Note that (

⋃
Di)i≥1 is decreasing with respect to intersection. Then, since Hn is

n-dimensional, there can only be n distinct decompositions contained in (Di)i≥1,
that is n − 1 non-trivial refinements steps Di �→ Di+1. Thus,

⋃
D(ri) :=

⋂

i≥1

⋃
Di

is equal to the intersection of a finitely many decreasing sets and thus must be equal
to its smallest member, which is a common refinement for (Dri)i≥1. ��
Theorem 7 Ωn is a partially ordered set for each n ≥ 2. Its maximal elements are
the pure states,

max(Ωn) = Σn,

while its least element is the completely mixed state

⊥ :=
⎛

⎜
⎝

1/n 0
. . .

0 1/n

⎞

⎟
⎠ .

Proof For reflexivity, consider any labeling e admitted by state r . Then, due to
reflexivity in Δn (Theorem 2), reflexivity in Ωn follows.

For anti-symmetry assume that r � s and s � r . By Lemma 22 there exists a
joint labeling e and thus by definition 32 we have

spec(r |e) � spec(s|e) and spec(s|e) � spec(r |e) .

Due to anti-symmetry in Δn we obtain spec(r |e) = spec(s|e) so r = s by
Lemma 20.

For transitivity assume that r � s and s � t . By Lemma 22 there exists a joint
labeling e and thus we have

spec(r |e) � spec(s|e) and spec(s|e) � spec(t |e) .

Thus, due to transitivity in Δn we obtain spec(r |e) � spec(t |e) and thus by Defi-
nition 32 we have r � t .

Since spec(r) = {0, 1} for any r ∈ Σn , when s ∈ Ωn satisfies r � s it follows
for any labeling e admitted by r and s that we have

spec(r |e) = (1, 0, . . . , 0) · σ � spec(s|e)

10 A Partial Order on Classical and Quantum States 643

in Δn for some permutation σ , so spec(r |e) = spec(s|e) since spec(r |e) ∈
max(Δn), and thus r = s.

Conversely, for any state r ∈ Ωn expressed in a base B ∈ De in which it diago-
nalizes, we have

spec(r |e) � (1, 0, . . . , 0) · σ

in Δn for some permutation σ , so r has a pure state above it, and thus the pure
quantum states are the only maximal elements of Ωn .

Since spec(⊥) = {1/n} we have D⊥ = Hn and thus ⊥ admits any labeling.
Given r ∈ Ωn and labeling e admitted by e we then have

spec(⊥|e) = (1/n, . . . , 1/n) � spec(r |e) ,

so ⊥ � r and thus ⊥ is the least element of Ωn . ��
Examining the proofs given so far reveals that the technique used in defining the

spectral order serves to distinguish an interesting class of partial orders on classical
states for which the Bayesian order is the canonical member.

Corollary 3 If � is a symmetric and degenerative partial order on Δn, then the
relation in Definition 32 is a partial order on Ωn. Moreover,

• max(Ωn) = Σn whenever max(Δn) = {ei : 1 ≤ i ≤ n}, and
• The completely mixed state is the bottom of Ωn whenever (1/n, . . . , 1/n) is the

bottom of Δn.

By Lemma 20, we can define a quantum state r by specifying two pieces of
information: (i) a labeling e which it admits, that is [r, e] = 0, and (ii) a classical
state x for which spec(r |e) := x . We use this idea in what follows.

Proposition 12 The quantum states Ωn are a dcpo. In more detail,

(i) If (ri)i≥1 is an increasing sequence, then its supremum
⊔

i≥1 ri exists and is
implicitly defined by

spec
(⊔

i≥1

ri

∣
∣
∣ e
)
=
(

lim
i→∞〈ri |e1〉, . . . , lim

i→∞〈ri |en〉
)

(10.10)

for some and thus any joint labeling e of (ri)i≥1.
(ii) Every directed subset of Ωn contains an increasing sequence with the same

supremum.

Proof By Lemma 22 there exists a joint labeling e for (ri)i≥1 and thus by Defini-
tion 32 it follows that (spec(ri |e))i≥1 is an increasing sequence in Δn . Then by
Proposition 12 we know that the pointwise limit

644 B. Coecke and K. Martin

lim
i→∞ spec(ri |e) :=

(
lim

i→∞〈ri |e1〉, . . . , lim
i→∞〈ri |en〉

)

exists. We define a state r implicitly via

spec(r |e) = lim
i→∞ spec(ri |e) .

We first show that this state r is independent on the choice of e. Since

⋃
D(ri) =

⋂

i

⋃
Dri =

⋂

i

⋃
{ri,λi |λi ∈ spec(ri)}

=
⋃{⋂

i

ri,λi

∣
∣
∣ ∀i : λi ∈ spec(ri)

}
,

where we leave the proof of the first equality to the reader (straightforward verifica-
tion via the inductive definition of D(ri)), so

D(ri) =
{⋂

i

ri,λi

∣
∣
∣ ∀i : λi ∈ spec(ri)

}
.

Note that by
⋃

D(ri) =
⋂

i
⋃

Dri it also follows that for any joint labeling e of
(ri)i≥1, since

∀i ≥ 1 :
⋃

De ⊆
⋃

Dri ⇒
⋃

De ⊆
⋂

i

⋃
Dri ,

we have
⋃

De ⊆⋃D(ri), that is,
⋃

D(ri) contains all joint labelings of (ri)i≥1 (and
only those, so it is maximal with respect to this property).

If e is a joint labeling of (ri)i≥1 and
⋂

i ri,λi �= ∅, where

(λi)i≤1 ∈
∏

i≤1

spec(ri) ,

then there exists some e j ∈ De such that e j ⊆⋂i ri,λi for which we have

e j ⊆
⋂

i

ri,λi ⇔ ∀i : e j ⊆ ri,λi

⇔ ∀i : 〈ri |e j 〉 = λi

⇔ (〈ri |e j 〉
)

i≥1 = (λi)i≥1 .

Since limi→∞〈ri |e j 〉 exists, limi→∞ λi exists and is equal to it. However, (λi)i≥1
does not depend on any labeling so neither does its limit limi→∞ λi . can define r
now as follows without any reference to a labeling:

10 A Partial Order on Classical and Quantum States 645

spec(r) :=
{

lim
i→∞ λi

∣
∣
∣
∣ (λi)i≤1 ∈

∏

i≤1

spec(ri) ,
⋂

i

ri,λi �= ∅
}

,

r : spec(r)→ L
n :: lim

i→∞λi �→
⋂

i

ri,λi .

Next we prove that r is an upper bound of (ri)i≥1. By Proposition 12 we have

⊔

i≥1

spec(ri |e) =
⊔

i≥1

(
〈ri |e1〉, . . . , 〈ri |en〉

)

= lim
i→∞ spec(ri |e)

= spec(r |e) .

so for all i ≥ 1 we have spec(ri |e) � spec(r |e) and thus by definition of the order
on quantum states it follows that ri � r for all i ≥ 1.

We now show that r is the least upper bound of (ri)i≥1. Let s be any upper
bound of the sequence (ri)i≥1, i.e., for all i ≥ 1, ri � s. We now prove that r �
s. By the proof of Lemma 22 we know that there exists a finite subsequence of
(ri)i≥1 (of which we can assume that it has n members) which yields the same
common refinement of (ri)i≥1 for the given construction—since there are only n−1
refinement steps possible. Denote this finite subsequence by (ri j)

j=n
j=1. Then, since

ri1 � . . . � rin � s

they admit a common refinement and thus a common labeling e, which is also a
common labeling for the whole sequence (ri), and which we can assume to be the
one by means of which we defined r since the definition of r does not depend on the
choice of labeling. In this labeling we then have for each i ≥ 1 that

spec(r |e) =
⊔

i≥1

spec(ri |e) � spec(s|e)

in Δn since for all i ≥ 1 we have spec(ri |e) � spec(s|e). Thus r � s by definition
of the order on quantum states.

We conclude r =⊔i≥1 ri from which Eq. (10.10) then follows.

(ii) The map Ωn → [0, 1] :: r �→ max(spec(r)) preserves suprema of increas-
ing sequences and is strictly monotone. ��

Thus, we can think of spec(·|·) as being Scott continuous in its first argument:
For any observable e,

spec
(⊔

ri |e
)
=
⊔

spec(ri |e)

whenever (ri) is an increasing sequence in Ωn .

646 B. Coecke and K. Martin

10.3.3 Symmetries for Quantum States

We introduce symmetries, the quantum analogue of permutations for classical states.

Definition 33 A unitary transformation is a surjective linear operator U : Hn →
Hn which preserves angles:

〈Uφ | Uψ〉 = 〈φ | ψ〉 ,

for all ψ, φ ∈ Hn . U is called a quantum n-symmetry.

In particular, the inverse U−1 of a unitary operator U is unitary.

Lemma 23 Let U be a quantum symmetry on Hn. For any labeling e,

U · e : {1, . . . , n} → L
n :: i �→ {U (ψ) ∈ Hn | ψ ∈ ei }

is a labeling, while for any state r ,

U · r : spec(r)→ L
n :: λ �→ {U (ψ) ∈ Hn | ψ ∈ rλ}

is a state with spec(U · r) = spec(r).

In both cases only the action of U on subspaces comes into play. Thus, two
unitary operators U and U ′ related by U = reiθ · U ′ with r > 0 and θ ∈ [0, 2π)

should be thought of as equivalent. The linearity of the maps, in conjuction with the
coincidence of the action of U and U ′ on subspaces does force them to essentially
be the same [4], e.g. span(eiθψ) = span(ψ), though for ψ �= φ and both nonzero
we find span(φ + eiθψ) �= span(φ + ψ) for θ �= 0. Thus, a quantum n-symmetry
should be conceived of as a class of unitary operators on Hn with equivalent action
on subspaces. We will freely represent such a class by one of its representatives.

Lemma 24 For a state r and a labeling e with [r, e] = 0,

〈r |(U · e)i 〉 = 〈U−1 · r |ei 〉 . (10.11)

Proof First note that

(U · e)i = {U (ψ) ∈ Hn | ψ ∈ ei } = {ψ ∈ Hn | U−1(ψ) ∈ ei }

and

(U−1 · r)λ = {U−1(ψ) ∈ Hn | ψ ∈ rλ} = {ψ ∈ Hn | U (ψ) ∈ rλ} .

Next, following Eq. (10.3) we have

10 A Partial Order on Classical and Quantum States 647

〈r |(U · e)i 〉 = λ ⇔ (U · e)i ⊆ rλ

⇔ ∀ψ ∈ Hn : U−1(ψ) ∈ ei ⇒ ψ ∈ rλ

⇔ ∀ψ ∈ Hn : ψ ∈ ei ⇒ U (ψ) ∈ rλ

⇔ ei ⊆ (U−1 · r)λ

⇔ 〈U−1 · r |ei 〉 = λ,

which completes the proof. ��
Now we give a symmetric characterization of the spectral order analogous to

the symmetric characterization of the Bayesian order on classical states. Equa-
tion (10.11) leads us to the following dual formulations, which we call the active
and passive (cfr. active and passive transformations in classical mechanics are those
acting on the system and the reference frame, respectively). We assume for both
theorems that a labeling e has been fixed in advance.

Theorem 8 (Active) For r, s ∈ Ωn, we have r � s iff there exists a quantum sym-
metry U : Hn → Hn such that

• spec(U · r |e) and spec(U · s|e) are monotone
• [r, e] = [s, e] = 0

and

〈U · r |ei 〉〈U · s|ei+1〉 ≤ 〈U · r |ei+1〉〈U · s|ei 〉

for all i with 1 ≤ i < n.

Theorem 9 (Passive) For r, s ∈ Ωn, we have r � s iff there exists a quantum
symmetry U : Hn → Hn such that

• spec(r |U · e) and spec(s|U · e) are monotone
• [r, U · e] = [s, U · e] = 0

and

〈r |(U · e)i 〉〈s|(U · e)i+1〉 ≤ 〈r |(U · e)i+1〉〈s|(U · e)i 〉

for all i with 1 ≤ i < n.

Proof Any labeling e′ can be obtained from a given one e as U · e for some unitary
transformation U . Indeed, in terms of linear operators this correspondence translates
as e′ = U ◦ e ◦ U−1 so e · ψ = i ψ iff e′ · U (ψ) = i U (ψ), that is, ψ ∈ ei ⇔
U (ψ) ∈ e′i yielding the definition of U · e in terms of labelings. The result then
straightforwardly follows from Theorem 3 and Lemma 24. ��

The following is now merely an observation.

Proposition 13 The map (U · −) : Ωn → Ωn is an order isomorphism for any
quantum symmetry U : Hn → Hn.

648 B. Coecke and K. Martin

Theorem 8 is the quantum counterpart of Theorem 3 for classical states: The
action on states (U · −) : Ωn → Ωn in terms of a unitary transformation U
corresponds to the action on states (− · σ) : Δn → Δn in terms of a permuta-
tion σ . But what is the classical analogue of the passive formulation of the spectral
order?

Definition 34 A classical labeling is an injective function

e : {1, . . . , n} → max(Δn).

The standard labeling is 1 defined by 1(i) = ei .

Like the quantum case, we can write a classical state x from the point of view of
a classical labeling e as

spec(x |e) := (〈x |e1〉, . . . , 〈x |en〉),

where 〈·|·〉 is the standard inner product on R
n . For e = 1, spec(x |1) = x . Notice

too that 〈ei |e j 〉 = 0 for i �= j , so the image of a classical labeling e is by definition
a mutually orthogonal collection of pure states.

A classical labeling e induces a permutation 1−1 ◦ e ∈ S(n). Thus, a classical
labeling is merely a way of rearranging a fixed set of n orthogonal pure states
max(Δn). By contrast, a quantum labeling corresponds to selecting n orthogonal
pure states from an infinite set of potential pure states and arranging the n pure
states chosen.

Because classical labelings and symmetries are essentially the same, Theorem 3
is the passive formulation of the Bayesian order when we fix the standard classical
label 1 as our reference frame. All other classical labels e can be written as e = 1◦σ
for some σ ∈ S(n), analogous to the quantum case. To summarize:

Classically Quantum

Labeling Permutation e
Self-adjoint operator e

with spectrum {1, . . . , n}
Symmetry Permutation σ Unitary transformation U

The equivalence of “symmetry” and “labeling” for classical states suggests the
following analogy: Symmetries are to classical states as labelings are to quantum
states. Though this is not entirely conceptually satisfying, it is a useful mathematical
view of things. To illustrate, notice the strong resemblance between the following
characterization of the spectral order, in terms of labels, and the symmetric charac-
terization of the Bayesian order.

Theorem 10 For r, s ∈ Ωn, we have r � s iff there is a quantum labeling e such
that

• spec(r |e) and spec(s|e) are monotone
• [r, e] = [s, e] = 0

10 A Partial Order on Classical and Quantum States 649

and

〈r |ei 〉〈s|ei+1〉 ≤ 〈r |ei+1〉〈s|ei 〉

for all i with 1 ≤ i < n.

Compared to Theorem 8 and Theorem 9, in this result it is the act of labeling itself
that transforms a state into a monotone classical state. In the classical case, it is
obviously a permuation (classical label) which converts a state to monotone form.

As a second example, first recall that the symmetric group S(n) divides Δn into
order isomorphic regions,

Δn :=
⋃

σ∈S(n)

Δn
σ ,

where Δn
σ � Λn . Similarly, quantum states are divided into order isomorphic

regions by the class of measurement operators:

Ωn :=
⋃

e

Ωn|e,

where Ωn|e := {r ∈ Ωn : [r, e] = 0}, i.e., the set of quantum states admitted by
measurement e. Here is the quantum version of Proposition 4.

Proposition 14 Let n ≥ 2. Then

(i) For each labeling e, Ωn |e is closed under directed suprema.
(ii) For an increasing sequence (ri), there is a labeling e with ri ∈ Ωn|e for all i .

(iii) The natural map

q : Ωn → Λn

is Scott continuous, strictly monotone and restricts to a retraction

re : Ωn|e � Δn → Λn

for each e.

Proof The precise definition of q is as follows: For s ∈ Ω|e, we define q(s) :=
r(spec(s|e)), where r : Δn → Λn is the natural retraction. ��

In particular, the Bayesian order on classical states is an instance of the spectral
order on quantum states, which is realized whenever we specify a labeling e. It may
interest the reader to know that both authors claim that q : Ωn → Λn cannot be
factored into a composition of monotone maps

Ωn ?→ Δn r→ Λn,

where ? : Ωn → Δn denotes a monotone map that probably doesn’t exist.

650 B. Coecke and K. Martin

10.3.4 Approximation of Quantum States

Like classical states, the ability to approximate quantum states order theoretically is
a consequence of the mixing law.

Proposition 15 If r � s in Ωn, then

r � (1− p)r + ps � s

for all p ∈ [0, 1].
Proof First, (1− p)r + ps is a density operator. Because r � s, there is a labeling
e with [r, e] = [s, e] = 0. Then

[(1− p)r + ps, e] = ((1− p)r + ps)e − e((1− p)r + ps)

= (1− p)[r, e] + p[s, e]
= 0.

Next,

spec((1− p)r + ps|e) = (1− p)spec(r |e)+ p · spec(s|e),

because (1− p)r + ps, r and s are diagonal when written in the base e. The result
now follows from the mixing law for classical states. ��

Like the classical case, the mixing law is equivalent to saying that the path πrs :
[0, 1] → Ωn from r to s given by

πrs(t) = (1− t)r + ts

is Scott continuous iff r � s.

Lemma 25 If r � s in Ωn and spec(s) ⊆ (0,∞), then

[s, e] = 0 ⇒ [r, e] = 0,

for any labeling e.

Proof First recall that [s, e] = 0 means that De is a refinement of Ds . But the
spectrum of s is positive, so Lemma 21 implies that Ds is a refinement of Dr . Thus,
De is a refinement of Dr , which means [r, e] = 0.

The last result is the quantum analogue of Lemma 12(i) for classical states. The
next few results further demonstrate the parallel between Δn

σ for classical states and
Ωn|e for quantum states.

Proposition 16 Let n ≥ 2.

(i) If r, s ∈ Ωn|e, then πrs(t) ∈ Ωn |e for all t ∈ [0, 1].

10 A Partial Order on Classical and Quantum States 651

(ii) For r, s ∈ Ωn, we have r � s iff for any labeling e, if s ∈ Ωn |e, then r ∈ Ωn |e
and spec(r |e)� spec(s|e) in Δn.

Proof (i) This was established in the proof of the mixing law.
(ii) (⇒) Let r � s. Then for some t < 1, r � π⊥s(t). If [s, e] = 0, then by (i),

[π⊥s(t), e] = 0 for all t , since we always have [⊥, e] = 0. However, because t < 1,
the spectrum of π⊥s(t) is positive, which is clear since

spec(π⊥s(t)|e) = (1− t)⊥+ t · spec(s|e).

By Lemma 25, [r, e] = 0. The other part is obvious.
(ii)(⇐) Suppose s =⊔ si for an increasing sequence (si). Then there is a label-

ing e with [si , e] = 0 for all i and [s, e] = 0. By assumption, [r, e] = 0, and since

spec(r |e)� spec(s|e) =
⊔

i≥1

spec(si |e) in Δn,

we have spec(r |e) � spec(si |e) for some i , and hence r � si . Thus, r � s. ��
Ωn is a domain: A dcpo with an intrinsic notion of approximation.

Theorem 11 The quantum states Ωn are exact. In addition,

(i) For all r ∈ Ωn, π⊥r (t)� r for all t < 1.
(ii) The approximation relation � is interpolative: If r � s in Ωn, then there is

q ∈ Ωn with r � q � s.

Proof (i) By Prop. 16(i), [π⊥r (t), e] = 0 whenever [r, e] = 0. Since

spec(π⊥r (t)|e) = (1− t)⊥+ t · spec(r |e)� spec(r |e) in Δn,

Proposition 16 (ii) gives π⊥r (t)� r for all t < 1.
The map π⊥r is Scott continuous, so r is the supremum of an increasing sequence

of approximations. This implies that ↓↓r is directed with supremum r , proving the
exactness of Ωn .

(ii) Mimic the argument for classical states to show π⊥r (t1) � π⊥r (t2) whenever
t1 < t2. ��

The notion of partiality derivable from � on Ωn is worth taking a brief look at.
As before, we call r ∈ Ωn partial iff ↑↑r �= ∅.

Lemma 26 (Partiality) For r ∈ Ωn, the set ↑↑r �= ∅ iff spec(r) ⊆ (0,∞).

Proof The only direction which requires proof is (⇐). Let e be a labeling with
[r, e] = 0. Let x := spec(r |e) ∈ Δn . From the proof of Lemma 13 for classical
states, there is y ∈ Δn such that π⊥y(t) = x for some t < 1.

652 B. Coecke and K. Martin

Let s ∈ Ωn with [s, e] = 0 and spec(s|e) = y. First, π⊥s(t) = r , since
π⊥s(t), r ∈ Ωn |e and

spec(π⊥s(t)|e) = π⊥y(t) = x = spec(r |e).

Because t < 1, r = π⊥s(t)� s in Ωn . ��
Thus, a quantum state which is partial cannot be pure. In addition, by exactness,

all quantum states r arise as the supremum of an increasing sequence

(π⊥r (1− 1/n))n≥1

of partial states which approximate r .

Lemma 27 (Approximation of pure states) Let n ≥ 2 and ψ ∈ max(Ωn) be a
pure state. For all r ∈ Ωn, r � ψ ⇔ r = π⊥ψ(t) for some t < 1.

Proof Let r � ψ . Let e be any labeling with [ψ, e] = 0. Then [r, e] = 0 and

x := spec(r |e)� y := spec(ψ |e) ∈ max(Δn) .

Thus, by Prop. 7,

(∃t < 1) x = π⊥y(t).

But π⊥ψ(t) ∈ Ωn |e and spec(π⊥ψ(t)|e) = π⊥y(t) = x = spec(r |e), so r =
π⊥ψ(t), since each is diagonal in e and their spectra are equal. ��

Thus, the order theoretic approximations of pure states ψ are precisely the
mixtures of ψ with the completely mixed ensemble ⊥.

Example 9 The depolarization channel dp : Ωn → Ωn describes the process
by which the density operator of a system has all bias removed from it with
probability p

dp(r) = p · I/n + (1− p)r.

It can be rewritten as

dp(r) = p⊥+ (1− p)r,

very similar to the classical case we considered earlier. Just as in the classical case,
we also have dp(r)� r for p > 0.

10.3.5 Entropy

The word “measurement” is used in domain theory and in quantum mechanics. They
are related as follows: Domain theoretically, to measure the content of an object x ,

10 A Partial Order on Classical and Quantum States 653

we must do something to x that will convert the information it represents into a
simpler form μx that can be understood. Physically, as it turns out, the content of a
quantum state r can be measured by selecting an appropriate quantum measurement
e that converts r into a monotone classical state spec(r |e). (We might think of e as
a way of extracting classical information from r .) This defines the map

q : Ωn → Λn,

completely analogous to r : Δn → Λn for classical states, which is a measurement
in the sense of domain theory.

Proposition 17 The map q : Ωn → Λn is a measurement.

Proof First, q is Scott continuous, strictly monotone, and preserves and reflects
maximal elements. To show that it measures ker q = max(Ωn), let ψ ∈ Ωn and
U ⊆ Ωn be Scott open with ψ ∈ U .

Then there is 0 < t < 1 with a := π⊥ψ(t) ∈ U . Because a � ψ in Ωn ,
q(a) � q(ψ) in Λn , which means ε := ↑↑q(a) is a Scott open subset of Λn . We
claim that ψ ∈ qε(ψ) ⊆↑a ⊆ U . That ψ ∈ qε(ψ) is clear.

Now let s ∈ qε(ψ). Then there is a labeling e with [s, e] = [ψ, e] = 0. Because
a � ψ , we must have [a, e] = 0. But we also know

⊥ �= r(spec(a|e)) = q(a) � q(s) = r(spec(s|e)),

where r : Δn → Λn is the natural retraction. Now the proof that r is a measurement
gives

spec(a|e) � spec(s|e) in Δn,

which implies that a � s, and thus s ∈ U , finishing the proof. ��
In particular, we can measure the content of a quantum state with a classical state.

Example 10 The content of a density operator ρ can also be measured with its largest
eigenvalue,

ρ �→ max(spec(ρ)).

This is a measurement into [0, 1] since it factors as q(ρ)+. Similarly,

ρ �→ 1− q(ρ)+

and

ρ �→ − log q(ρ)+

are measurements into [0,∞)∗.

654 B. Coecke and K. Martin

The measures of content in the last example are the quantum versions of the maps
x �→ x+, x �→ 1 − x+ and x �→ − log x+ on classical states. The extension of
Shannon entropy to quantum states is called von Neumann entropy.

Theorem 12 Let σ : Ωn → [0,∞)∗ be the von Neumann entropy on quantum
states

σ(r) = −tr(r · log r)

where the logarithm is natural. Then σ is a measurement in the sense of domain
theory. In addition,

(i) For all r, s ∈ Ωn, if r � s and σ(r) = σ(s), then r = s.
(ii) For all r ∈ Ωn, we have σ(r) = 0 iff r ∈ max(Ωn) = Σn.

(iii) For all r ∈ Ωn, we have σ(r) = log n iff r = ⊥.

Proof The von Neumann entropy σ factors as

σ = μ ◦ q

where q : Ωn → Λn assigns to a quantum state its monotone spectrum, and
μ : Λn → [0,∞)∗ is Shannon entropy. Since q and μ have all the properties men-
tioned in this result, so does σ . ��

By now it is clear that quantum information is more intricate than classical infor-
mation, if for no other reason than the superficial observation that a density operator
is “more complicated” than a classical state. What we now want is a precise formu-
lation of the intuitive idea that there is more information in the quantum than in the
classical.

One hint is provided by Proposition 14: We can associate each classical state to
a quantum state in such a way that information is conserved:

conservation of information

=
(qualitative conservation)+ (quantitative conservation)

=
(order embedding)+ (preservation of entropy).

And this is what we now prove: While each classical state can be associated to a
quantum state in such a way that information is conserved, the converse is never
true.

Theorem 13 Let n ≥ 2. Then

• There is an order embedding φ : Δn → Ωn such that σ ◦ φ = μ.
• For m ≥ 2, there is no order embedding φ : Ωn → Δm with μ ◦ φ = σ .

10 A Partial Order on Classical and Quantum States 655

Proof For the first, Proposition 14 gives an embedding which preserves entropy.
For the second, if there is an embedding of Ωn into Δm which preserves entropy, it
yields an injection of max(Ωn) into max(Δm), which is impossible since the first of
these sets is infinite, while the latter is finite.

The reader may be interested to know that the authors both claim that the above
result holds independent of entropic considerations.

10.4 Synthesis

We now obtain a unified perspective on classical and quantum which leads to a
methodology applicable in any setting where one has (i) a notion of state and (ii) a
notion of state update as the result of observation.

10.4.1 Classical Projections

We first turn back to classical states to show that they admit a more general class
of projectors and that the inductive definition of the Bayesian order extends to this
larger class. First note that a classical projection

pi : Δn+1 ⇀ Δn

is undefined in the singleton

fix(pi)
⊥ := {x ∈ Δn+1 | xi = 1}

and has as “fixed points”

fix(pi) := {x ∈ Δn+1 | xi = 0} .

Any projection pi moreover has a complementary projector, namely

p⊥i : Δn+1 ⇀ Δ1 : x �→ (1)

which is undefined in

fix(pi)
⊥ := {x ∈ Δn+1 | xi = 0} .

This projector expresses the update that the observer experiences when he looks in
box i and the object of his desire is actually there. Equivalently, this corresponds to
looking in all boxes except box i and not finding the object. The condition

x � y ⇒ p⊥i (x) � p⊥i (y)

656 B. Coecke and K. Martin

is however trivially satisfied whenever p⊥i is defined both in x and y. As such,
one could have included it in Definition 2.7 providing an interpretation “whatever
outcome we obtain when looking in box i , the corresponding collapse of knowledge
preserves the partial order”.

We define general projectors, encoding knowledge update when looking in sev-
eral boxes at once. Let n ≥ 2 and 1 ≤ k ≤ n. The map which collapses all i1, . . . , i th

k
outcomes is

pi1,...,ik : Δn ⇀ Δn−k

pi1,...,ik (x) = 1

1−∑ j xi j

(x1, . . . , x̂i1 , . . . , x̂i j , . . . , x̂ik , . . . , xn)

for 1 ≤ i1, . . . , ik ≤ n and 0 ≤ xi1 , . . . , xi j , . . . , xik < 1. The projector correspond-
ing to “looking in all boxes except” is

p⊥i1,...,ik
: Δn ⇀ Δn−k

p⊥i1,...,ik
(x) = 1

∑
j xi j

(x̂1, . . . , xi1 , . . . , xi j , . . . , xik , . . . , x̂n)

for 1 ≤ i1, . . . , ik ≤ n.
The set of projectors as defined constitute a Boolen algebra isomorphic to the

powerset P({1, . . . , n}) when we adjoin the empty map

p1,...,n : Δn ⇀ ∅

and the identity

p : Δn → Δn .

In particular we have

p⊥
1,...î1,...,î j ,...,îk ,...,k

= pi1,...,ik ,

that is, projections inherit orthogonality from the complementation of the Boolean
algebra P({1, . . . , n}).
Proposition 18 Let x, y ∈ Δn+1. Then

x � y ⇔ (∀ {i1, . . . , ik} ⊆ {1, . . . , n}) pi1,...,ik (x) � pi1,...,ik (y).

Proof Given pi : Δn ⇀ Δn−1 define p̃i : Δn ⇀ Δn via

p̃i : Δn pi
⇀ Δn−1 ιi→ Δn

10 A Partial Order on Classical and Quantum States 657

where

π j (ιi (x)) = x j for j < i
π j (ιi (x)) = 0 for j = i
π j (ιi (x)) = x j+1 for j > i .

Analogously we introduce the map

p̃i1,...,ik = ιi1,...,ik · pi1,...,ik : Δn ⇀ Δn

where

π j (ιi (x)) = x j+l−1 for il−1 < j < il
π j (ιi (x)) = 0 for j = il
π j (ιi (x)) = x j+l for il < j < il+1

when assuming that i1, . . . , ik is monotone and formally setting i0 = 0 and ik+1 =
n + 1. We then have

p̃i1,...,ik = p̃i1 · . . . · p̃ik

from which the result follows by induction. ��
Clearly, we rely on the following.

Proposition 19 Projections commute with respect to composition.

In particular, the Boolean algebra of projections is defined from concatenated
action of projections

p̃ ≤ q̃ ⇔ p̃ · q̃ = p̃

where p̃ and q̃ are defined as in the proof of Proposition 18.

10.4.2 Quantum Projections

We now show that the projective structure of classical states and its corresponding
inductive definition of the Bayesian order are preserved by the natural embeddings
of Δn into Ωn . In particular, the classical projections become instances of Hilbert
space projectors.

The Hilbert space projectors P
n also constitute an orthocomplemented lattice for

the partial order

P ≤ Q ⇔ P · Q = P .

658 B. Coecke and K. Martin

This lattice is however no longer distributive, e.g. [2, 3], and as such is not a Boolean
algebra. Related to this, commutativity for projections as we have in Proposition 19
is not valid anymore for Hilbert space projectors.

Analogous to the introduction of p̃ given p in order to be able to compose pro-
jections, we now will have to do the converse for Hilbert space projectors in order
to state an inductive definition of the partial ordering ofthe quantum states.

Any projector P ∈ P
n can be equivalently represented as a partial surjective map

P : Hn ⇀ fix(P)

which is undefined in fix(P)⊥. When an isomorphism

h : fix(P)→ Hk

is specified, with 0 ≤ k = dim(fix(P)) ≤ n, we can define

P↓ : Hn P
⇀ fix(P)

h→ Hk

of which the codomain does not depend on P anymore.
Note that such a map P↓ as well as P itself is fully characterized by its kernel,

thus these maps are in bijective correspondence with the subspaces L
n via

P
n → L

n : P �→ fix(P)

and also with {0, 1}-labeled decompositions, or equivalently, two element ordered
decompositions, via

P �→ (fix(P), fix(P)⊥
)
.

Abstracting over the {0, 1}-labeling we set

DP :=
{
fix(P), fix(P)⊥

}
.

Proposition 20 The following are equivalent for state r and projector P:

• They admit joint labeling e.
• Dr and DP admit a joint refinement D.
• They diagonalize in a common base B.
• [r, P] = 0.

The following are equivalent for states r and s and projector P:

• They admit joint labeling e, i.e., Dr , Ds and DP admit a joint refinement D, i.e.,
they diagonalize in a common base B.

• They pairwise admit joint labeling, i.e., Dr , Ds and DP pairwise admit joint
refinement, i.e., they pairwise diagonalize in a common base.

• [r, P] = [s, P] = [r, s] = 0.

10 A Partial Order on Classical and Quantum States 659

Proof Equivalence of the first four conditions follows from Proposition 10 since P
is a state up to normaliztion, that is,

1

dim
(
fix(P)

) P ∈ Ωn .

Given a joint refinement D for r, s and P any labeling e such that
⋃

De = ⋃D
is a joint labeling, and a base B ∈ ⋃De yields joint diagonalization. At its turn,
given a base B in which r, s and P diagonalize then

⋃
{span(ψ) | ψ ∈ B}

is a joint refinement.
Whenever we have a joint refinement, a joint labeling or a joint base for s, t

and P then we have pairwise existence of one too. For the converse statement we
provide a proof. We are going to prove a more general statement however, namely,
that whenever we have a set of decompositions {Di | i ∈ I }, for technical simplicity
envisioned as being finite, and such that for all i, j ∈ I we have that Di and D j

admits a joint refinement, then {Di | i ∈ I } as a whole admits one. (This fact
is implied by well-known results in the study of quantum structures [2, 3, 7, 13],
though the terminology there is different from ours. For the sake of a self-contained
discussion, we provide a complete proof.)

We call a, b ∈ L
n compatible, denoted a ↔ b, iff {a, a⊥} and {b, b⊥} admit

joint refinement—in lattice terms this means that they generate a subalgebra of L
n

which is Boolean [3]. Then we have that

span
(

a ∩ b , a ∩ b⊥
)
= a . (10.12)

Indeed, existence of a joint refinement for {a, a⊥} and {b, b⊥} implies

Hn= span
(
(a ∪ a⊥) ∩ (b ∪ b⊥)

)

= span
(
(a ∩ (b ∪ b⊥)) ∪ (a⊥ ∩ (b ∪ b⊥))

)

= span
(
span
(

a ∩ (b ∪ b⊥)
)

, span
(

a⊥ ∩ (b ∪ b⊥)
))

and since

span
(

a ∩ (b ∪ b⊥)
)
⊆ a and span

(
a⊥ ∩ (b ∪ b⊥)

)
⊆ a⊥

are subspaces of Hn this forces Eq. (10.12).
The fact that each Di is a decomposition, implying mutual orthogonality of its

members, and that we have pairwise existence of a joint refinement for all decom-
positions in {Di | i ∈ I }, implies that

660 B. Coecke and K. Martin

∀a, b ∈
⋃
{Di | i ∈ I } : a ↔ b .

We will now construct a joint refinement inductively, that is, we build a series
(di) containing all elements of

⋃{Di | i ∈ I } and construct a joint refinement
Ek+1for (d1, . . . , dk+1) given a joint refinement Ek for (d1, . . . , dk), taking as base
case E1 := {d1, d⊥1 }. Set

Ek+1 := {a ∩ dk+1, a ∩ d⊥k+1 | a ∈ Ek} \ {o} .

It clearly follows that
⋃

Ek+1 ⊆⋃ Ek so we obtain a decreasing sequence.
We then also have that

• span(E1) = Hn , and,
• span(Ek+1) = span

({a ∩ dk+1, a ∩ d⊥k+1 | a ∈ Ek}
) = span (Ek)

due to Eq. (10.12), what proves that the inductive procedure preserves spanning Hn .
Mutual orthogonality of the elements in Ek+1 also follows construction.

It remains to be proven that

⋂

j∈I

⋃
E j ⊆
⋃

Di

for all i ∈ I . Let #(di) be the length of (di). From the construction it follows that the
elements of E#(di) are of the form a1 ∩ . . . ∩ a#(di) where a j ∈ {d j , d⊥j }. For every
Di there is a subsequence of elements ai j such that di j ∈ Di . Let ai1 ∩ . . .∩ai#Di

be
the corresponding subterm. We claim that the only non-empty such terms are those
for which there is exactly one 1 ≤ j ≤ #Di such that ai j = di j and for all others
k �= j we have ai j = d⊥ik

. That there is at most one follows from the fact that the
elements in Di are mutually orthogonal. That there is necessarily one follows from
the fact that we otherwise have d⊥i1

∩ . . . ∩ d⊥i#Di
as this subterm what implies that

any vector contained in it should be orthogonal to all di j ∈ Di , what is impossible
since Di spans Hn . So every subterm ai1 ∩ . . . ∩ ai#Di

and thus also every term
a1 ∩ . . . ∩ a#(di) contains di j ∈ Di and thus

a1 ∩ . . . ∩ a#(di) ⊆
⋃

Di

so

⋂

j∈I

⋃
E j =
⋃

E#(di) ⊆
⋃

Di

for all i ∈ I what completes the proof. ��
It is well-known that projectors on Hn induce maps on Ωn in terms of Luders’

rule [11], that is

10 A Partial Order on Classical and Quantum States 661

P[−] : Ωn ⇀ Ωn : r �→ P · r · P

tr(P · r)

for tr(P · r) > 0. Note that P : Ωn ⇀ Ωn is still idempotent since

P · (P · r · P) · P = P · r · P ,

so we can set

fix(P[−]) := {P · r · P | r ∈ Ωn} .

Given an isomorphism

g : fix(P[−]) → Ωk,

with 0 ≤ k = dim(fix(P)) ≤ n, and possibly induced by an isomorphism h on the
underlying Hilbert spaces, we can define a map

Ωn P[−]
⇀ fix(P[−]) g→ Ωk . (10.13)

This will be of our view of projectors in this section, except for an additional
extension of the kernel to those density matrices that do not commute with P .

• By a projector P↓[−] : Ωn ⇀ Ωk we refer to the partial map induced by P ∈ P
n

which has as kernel those states x ∈ Ωn which are such that either

– tr(P · x) = 0
– [x, P] �= 0

and with the images defined by Eq. (10.13).

When writing down P↓[−] we as such assume that an isomorphism h, or equiva-
lently, g has been specified.

We introduce some dialectics analogous to that of labelings.

• A state r admits a projector P↓[−] iff P↓[r] is defined.

Then by Proposition 20 P and r admit joint labeling.
Let I(k, n) be the collection of monotone maps of the form

ι : {1, . . . , k} → {1, . . . , n}

for 0 ≤ k ≤ n, where the monotonicity is with respect to the usual order on natural
numbers, and let

I
n =
⋃
{I(k, n) | 0 ≤ k ≤ n} .

662 B. Coecke and K. Martin

Let

ι∗ : {1, . . . , n} ⇀ {1, . . . , k}

be the partial inverse for any given ι and let P
n|e be the projectors P ∈ P

n that admit
a given labeling e, that is,

P
n |e :=

{
P ∈ P

n
∣
∣
∣
⋃

De ⊆
⋃

DP

}
.

Lemma 28 Given a labeling e of Hn then P
n|e ∼= I

n .

Proof Given I ⊆ {1, . . . , n} define ι ∈ I
n such that I is its range. It then follows

that

P({1, . . . , n}) ∼= I
n

via I �→ ι due to monotonicity of ι.
We moreover have that P ∈ P

n|e iff
⋃

De ⊆ ⋃{fix(P), fix(P)⊥} iff there
exists IP ⊆ {1, . . . , n} such that ei ∈ fix(P) ⇔ i ∈ IP , and thus we have
P

n|e ∼= P({1, . . . , n}) via P �→ IP .

In Proposition 18, we characterized the Bayesian order in terms of projections.
Here is the formulation for the spectral order in terms of quantum projections.

Theorem 14 Let n ≥ 2. For r, s ∈ Ωn, we have

r � s ⇔ P↓[r] � P↓[s] (10.14)

• for all projectors P↓[−] admitting both r and s, and,
• provided there are enough projectors admitting both r and s,

where we adopt the base cases

• Ω0 := ∅ ;
• Ω1 := {(1)} with (1) � (1) ;
• For r, s ∈ Ω2 we have r � s iff there exist p, q ∈ [0, 1] with p ≤ q and a pure

state t ∈ Σn such that

r = (1− p)⊥+ pt s = (1− q)⊥+ qt ,

with

⊥ :=
(1

2 0
0 1

2

)

.

Proof Any self-adjoint operator on H2 either has a non-degenerated spectrum or is
⊥. Excluding the latter case, given r ∈ Ω2 there exists a unique labeling e (up to
permutation of the labels) such that r admits e. This labeling is obtained by setting

10 A Partial Order on Classical and Quantum States 663

e1 = r+ and e2 = r⊥+ , where r+ are the eigenvectors for eigenvalue max(spec(r)).
In view of Definition 32, it then follows that if e is admitted both by r and s and
spec(r |e) � spec(s|e) then

〈r |e1〉 = max(spec(r)) ≤ max(spec(s)) = 〈s|e1〉

with s+ = r+ is necessary and sufficient for r � s. Defining p, q ∈ [0, 1] by

p = 2〈r |e1〉 − 1 and q = 2〈s|e1〉 − 1 ,

and the pure state t ∈ Ωn such that t1 = e1 we obtain

(1− p)⊥+ pt = (1− p)

(1
2 0
0 1

2

)

+ p

(
1 0
0 0

)

=
(〈r |e1〉 0

0 1− 〈r |e1〉
)

= r

and (1− q)⊥+ qt =
(〈s|e1〉 0

0 1− 〈s|e1〉
)

= s

what encodes s+ = r+ and 〈r |e1〉 ≤ 〈s|e1〉 provided that p ≤ q.
Let r � s according to Definition 32. We need to prove that r and s admit enough

projectors and that they satisfy Eq. (10.14) with respect to those admitted. So let us
first define what we mean by enough projectors.

We mean by this having at least enough to consitute a family of mutually orthog-
onal projectors {Pi

e | 1 ≤ i ≤ n} that support the spectral decomposition of a
labeling

e =
∑

i

i Pi
e .

One verifies that this is equivalent to saying that there exists a family of mutually
orthogonal projectors {Pi | 1 ≤ i ≤ n} such that

⋂
i
⋃

DPi is the decomposition
of some labeling e. It is moreover not restrictive to assume that for all i we have
dim(fix(Pi)) = n − 1.

Since r � s they admit a joint labeling e that admits projectors P
n |e, among

which we have those defined by fix(Pi) = ei . Then De = ⋂i
⋃

DPi so r and s
admit enough projectors.

We now show that r � s implies P↓[r] � P↓[s] provided P↓[−] is admitted
both by r and s. By Proposition 20 we have, since there exists a pairwise common
refinement for r , s and P , that they all together admit a joint labeling e for which
we then moreover have spec(r |e) � spec(s|e) ∈ Δn . Let

IP := {1 ≤ i ≤ n | ei ∈ fix(P)}

and set I⊥P := {0, . . . , 1} \ IP . By Proposition 18 we then have that

pI⊥P
(spec(r |e)) � pI⊥P

(spec(s|e)) .

664 B. Coecke and K. Martin

Let ι ∈ I(k, n) with k = dim(fix(P)) such that it range coincides with IP . Next,
given any isomorphism h : fix(P) → Hk , and thus also a corresponding one on
states

g : fix(P[−])→ Ωk

choose a labeling (e′i) of Hk such that h(eι(i)) = e′i —we slightly abusively refer
to a base vector by the subspace of the labeling in which it is contained. We obtain
commutation of the following maps

where h̃ : L
n ⇀ L

k is here the partial surjective map arising when h : fix(P) →
Hk is applied pointwisely to those one-dimensional a ∈ L

n which are such that
a ⊆ fix(P). Indeed, we have

i
ι�→ ι(i)

e�→ eι(i)
h̃�→ e′i .

Since due to
⋃

De ⊆⋃DP we have

P↓(r) = g

(
1

tr(P · r)
P · r · P

)

= 1
∑

i∈IP
〈r |ei 〉

⎛

⎜
⎝

〈r |eι(1)〉 0
. . .

0 〈r |eι(k)〉

⎞

⎟
⎠ in (e′i)

It then follows that

π j

(
pI⊥P

(spec(r |e))
)
= 1
∑

i∈IP
〈r |ei 〉 〈r |eι(j)〉

=
〈
P↓(r)

∣
∣
∣ e′j
〉

= π j

(
spec(P↓(r)|e′)

)

so

pI⊥P
(spec(r |e)) = spec(P↓(r)|e′)

and thus

10 A Partial Order on Classical and Quantum States 665

spec(P↓(r)|e′) � spec(P↓(s)|e′) .

We then conclude P↓(r) � P↓(s).
Conversely, assume that there exists mutually orthogonal projectors

{Pi | 1 ≤ i ≤ n} such that
⋂

i
⋃

DPi is the decomposition of some labeling e and
for which we have P↓[r]i � P↓[s]i . Since r and s are admitted by all Pi we have
by the proof of Proposition 20 that there exists a joint labeling for r and s and all
Pi , which as such can only be e itself due to De = ⋂i

⋃
DPi . By constructing the

isomorphisms

he : Ωn|e → Δn and he′ : Ωn−1|e′ → Δn−1

for each projector Pi such that we have commutation of

Ωn |e he � Δn

Ωn−1|e′

P↓i
�

he′� Δn−1

pi

�

taking into account the isomorphisms gi : fix(Pi [−]) → Ωk that are different for
each Pi , we can embed the quantum case for projectors Pi and states r and s that
admit a fixed labeling e in the classical one with projectors pi . Then r � s follows
from spec(r |e) � spec(s|e) ∈ Δn which itself results from the inductive definition
for classical states. ��

Denote by P
n• projectors on n − 1 dimensional subspaces of Hn . We have the

following analogy between classical and quantum states:

Classical Quantum
States Δn Ωn

Pure states max(Δn) Σn

Primitive projections { pi | 0 ≤ i ≤ n} Pn
•

General projections { pi 1,...,i k
| 0 ≤ i1, . . . , i k ≤ n} Pn

10.4.3 The Lattices of Birkhoff and Von Neumann

In the spectral order, quantum states are ordered by requiring of a labeling e that it
commute with the states r and s under consideration. In the corresponding induc-
tive formulation, a condition of commutation with states is imposed on projections.
Knowing the structural importance of non-commutativity of observables in quantum
mechanics, it may surprise the reader to learn that the lattices of Birkhoff and von
Neumann [2], the powerset P{1, . . . , n} and the collection L

n of subspaces of Hn

666 B. Coecke and K. Martin

ordered by inclusion, can be recovered from Δn and Ωn in a purely order theoretic
manner.

Recall here that the fundamentally different nature of quantum versus classical
observables can also be explained in order theoretic terms, roughly, by the distribu-
tivity of P{1, . . . , n} versus the non-distributivity of L

n [3, 7, 13]. The relation
between observables and these lattices is as follows.

A (real-valued) observable of a classical system, with pure states Σn
cl
∼=

{1, . . . , n}, is a map a : Σn
cl → R with range spec(a) that assigns to each pure state

the value of that observable. As a consequence, any proposition about the system of
the form

“The value of classical observable a is contained in E ⊆ spec(a)”

encodes as the set a−1(E). By considering all observables, that is, all such maps a,
we obtain P{1, . . . , n} ∼= P(Σn

cl) as the algebra of propositions about the system.
Inclusion of sets encodes implication of propositions.

Envision the pure states Σn
qm of a quantum system as the one-dimensional sub-

spaces of Hn , that is, a pure state is the set of fixed points r1 of a density operator r
with spec(r) ⊆ {0, 1}. For an observable on a quantum system, i.e., a self-adjoint
operator A with spectrum spec(A), any proposition about the system of the form

“The value of quantum observable A is contained in E ⊆ spec(A)”

encodes as the fixed points of the projector P E
A , since the states included in it will

yield an outcome in E in a measurement of the observable A (the probability of all
other outcomes is zero). This set of fixed points is a subspace of Hn . By considering
all observables, that is, all self-adjoint operators A, we obtain L

n ⊂ P(Σn
qm) as the

algebra of propositions about the system. And once again, inclusion of subspaces
encodes implication of propositions.

And so now, to briefly state things, in this section we establish the following:
Though the domain of quantum states is grounded in commutativity, it is neverthe-
less a genuine quantum structure in the sense of present day theoretical physics.

Definition 35 Let D be a dcpo. An element x ∈ D is irreducible if

∧(↑ x ∩max(D)
) = x .

The set of irreducible elements in D is Ir(D).

Our first result establishes that the irreducible states in Δn have an unmistakable
operational significance: They are precisely the states one derives by applying all
possible combinations of projections pi to the initial state ⊥ ∈ Δn .

Lemma 29 For x ∈ Δn, the following are equivalent:

(i) The state x is irreducible.

10 A Partial Order on Classical and Quantum States 667

(ii) For all i ∈ {1, . . . , n}, either xi = x+ or xi = 0.
(iii) There is a nonempty subset X ⊆ max(Δn) with x =∧ X.

Proof Recall from Proposition 1(ii) that for any classical state x and any index i ,
x � ei ⇔ xi = x+. This fact is used implicitly in what follows.

(i) ⇒ (ii): Let x be irreducible. Let y ∈ Δn be the classical state with yi =
y+ ⇔ ei ∈ ↑ x ∩ max(Δn) and yi = 0 otherwise. Then y is a lower bound for
↑ x ∩max(Δn), so y � x . We claim that y = x . If y+ < x+, then

n∑

i=1

xi ≥
∑

xi=x+
xi >

∑

yi=y+
yi = 1,

which contradicts the fact that x is a classical state. Then y+ ≥ x+. But since y � x ,
we know y+ ≤ x+. Thus, x+ = y+, which gives x = y. This proves (ii).

(ii) ⇒ (i): The proof is by induction. It is true for n = 2. Assume it for Δn , and
let x ∈ Δn+1 be a state of the desired form. We can assume x is not pure, since
otherwise x is clearly irreducible.

Let y ∈ Δn+1 be a lower bound for the set ↑ x ∩ Δn+1. Because x is not pure,
y cannot be pure either. Let i be any index with 1 ≤ i ≤ n + 1. Then pi (x) has
the form mentioned in (ii), so it is irreducible by the inductive hypothesis. The state
pi (y) is a lower bound of ↑ pi (x) ∩ max(Δn), so the irreduciblity of pi (x) gives
pi (y) � pi (x). Then y � x . This puts x ∈ Ir(Δn+1).

(iii) ⇒ (i): Let y be the state with yi = y+ iff ei ∈ X and yi = 0 otherwise. By
(i)=(ii), y is irreducible, while X = ↑ y ∩max(Δn) gives

x =
∧

X =
∧(↑ y ∩max(Δn)

) = y,

which shows that x is irreducible. ��
(i)⇒ (iii): Obvious.

Now we prove that P{1, . . . , n} is recoverable from the irreducible elements of
Δn . Specifically, Ir(D) in the order it inherits from D is order isomorphic to a subset
of P
(
max(D)

)
ordered by reverse inclusion, so we must consider Ir(D) in its dual

order, Ir(D)∗. Second, since every x ∈ D has a maximal element above it, the empty
set is not represented in Ir(D)∗, so we adjoin a least element 0 to obtain the poset

Ir(D)∗⊥ := Ir(D)∗ ∪ {0} .

Proposition 21 For any n ≥ 2,

Ir(Δn)∗⊥ � P{1, . . . , n}.

Proof Let e : {1, . . . , n} → max(Δn) be the natural bijection that takes an outcome
i to its associated pure state e(i) = ei . An order isomorphism

668 B. Coecke and K. Martin

ϕ : Ir(Δn)∗ → P{1, · · · , n} \ {∅}

is then given by

ϕ(x) = e−1(↑ x ∩max(Δn)
)
.

First, ϕ is surjective: Given ∅ �= X ∈ P{1, . . . , n},

ϕ
(∧

e(X)
)
= X,

using Lemma 29(iii). Next, it is an order embedding: For x, y ∈ Ir(Δn)∗,

x � y ⇔ ↑ x ∩max(Δn) ⊆ ↑ y ∩max(Δn)

⇔ e−1(↑ x ∩max(Δn)
) ⊆ e−1(↑ y ∩max(Δn)

)

⇔ ϕ(x) ⊆ ϕ(y).

Now we simply extend ϕ to an order isomorphism from Ir(Δn)∗⊥ to P{1, · · · , n} by
setting ϕ(0) = ∅, and the proof is finished. ��

We turn now to the analogous result for quantum states. To stress the analogy
with classical states we denote pure states now as max(Ωn) rather than as Σn .

First we prove the analogue of Proposition 1(ii) for quantum states. Denote by
r+ the subspace of eigenvectors for the largest eigenvalue, that is r+ = rλ for
λ = max

(
spec(r)

)
.

Lemma 30 For r ∈ Ωn and t ∈ max(Ωn), we have

r � t ⇔ t1 ⊆ r+

and thus

r+ =
⋃
{t1 | t ∈↑r ∩max(Ωn)} .

Proof Let t ∈ max(Ωn) be such that t1 ⊆ r+. Define a labeling e that satisfies

• e1 = t1,
• e2, . . . , edim(r+) ∈ r+ ∩ t⊥1 , and,
• edim(r+)+1, . . . , en ∈⋃Dr ∩ (r+)⊥.

By Proposition 1(ii) we then have spec(r |e) � spec(t |e) and thus r � t .
Conversely, let t ∈ max(Ωn) be such that r � t . Then there exists labeling e

such that [r, e] = [t, e] = 0, that is
⋃

De ⊆ ⋃Dr ∩⋃Dt , which implies since
Dt = {t⊥1 , t1} with t1 one-dimensional that there exists i ∈ {1, . . . , n} such that
t1 = ei , say i = 1. Then

10 A Partial Order on Classical and Quantum States 669

spec(r |e) � spec(t |e) = (1, 0, . . . , 0)

in Δn . By Prop. 1(ii) it then follows that 〈r |ei 〉 = spec(r |e)+ so ei ⊆ r+ and thus
t1 ⊆ r+. ��

A quantum state is irreducible iff its spectrum can be viewed as an irreducible
classical state.

Lemma 31 For r ∈ Ωn, the following are equivalent:

(i) The state r is irreducible.
(ii) There is a labeling e with [r, e] = 0 and spec(r |e) ∈ Ir(Δn).

(iii) Either there exists λ ∈ (0, 1] such that spec(r) = {0, λ} or r = ⊥.

In either case, spec(r |e) ∈ Ir(Δn) for any labeling e with [r, e] = 0.

Proof By Lemma 29, (ii) ⇔ (iii) is obvious. The rest of the proof essentially relies
on the analogous result for classical states.

(i)⇒ (iii) Let r be irreducible and e be a labeling with [r, e] = 0. Let

X = {spec(t |e) : t ∈↑r ∩max(Ωn) ∩ (Ωn|e)}.

By Lemma 29(iii), the infimum of X is an irreducible classical state, and we use this
to implicitly define a quantum state s ∈ Ωn by

spec(s|e) :=
∧

X ∈ Ir(Δn).

By the definition of spec(s|e), we immediately have spec(r |e) � spec(s|e), which
implies r � s in Ωn .

We claim that r = s. To prove this, we need only show that

↑r ∩max(Ωn) ⊆↑s ∩max(Ωn),

for then we have

r � s ⇒ ↑r ∩max(Ωn) =↑s ∩max(Ωn)

⇒ r =
∧
↑r ∩max(Ωn) =

∧
↑s ∩max(Ωn)

⇒ s � r

using the irreducibility of r .
Let t ∈↑ r ∩ max(Ωn). By Lemma 30, t1 ⊆ r+, and since r+ ⊆ s+, t1 ⊆ s+,

which again by Lemma 30 gives t ∈↑s ∩max(Ωn). But why do we have r+ ⊆ s+?
This is the crucial part of the argument: Since [r, e] = 0,

⋃
De ⊆ ⋃Dr , so De

contains a subset S of cardinality dim(r+) whose union is contained in r+. Each
element of S is a one dimensional subspace of Hn , so the usual bijection allows us
to treat S as a collection of pure states.

670 B. Coecke and K. Martin

For each pure state t ∈ S, we have [t, e] = 0, since t1 ∈ De, and
t ∈ ↑r ∩max(Ωn), using Lemma 30 and t1 ⊆ r+. Then by the definition of s,
s � t , while Lemma 30 gives t1 ⊆ s+. But then, because s+ is a subspace, we
clearly have

r+ = span({t1 : t ∈ S}) ⊆ s+,

which proves r = s. Thus, spec(r |e) = spec(s|e) is irreducible in Δn .
(iii) ⇒ (i) Let r = ⊥. Then ↑ ⊥ ∩ max(Ωn) = max(Ωn). If s � max(Ωn)

(pointwisely) then by Lemma 30 it follows that

Hn = {t1 | t ∈ max(Ωn)} ⊆ s+ .

Thus s = ⊥ so s � r and as such since trivially ⊥ � max(Ωn) (pointwisely) we
conclude ⊥ =∧(↑⊥ ∩max(Ωn)

)
.

Let spec(r) = {0, λ}. First, r �↑ r ∩ max(Ωn) (pointwisely) is again trivial.
Second, let s �↑r ∩max(Ωn) (pointwisely). Then,

↑r ∩max(Ωn) ⊆↑s ∩max(Ωn)

so it follows by Lemma 30 that

r+ =
⋃
{t1 | t ∈↑r ∩max(Ωn)}

⊆
⋃
{t1 | t ∈↑s ∩max(Ωn)}

= s+ .

Now define a labeling e that satisfies

• e1, . . . , ek ⊆ r+ for k := dim(r+),
• ek+1, . . . , ek+l ⊆ (r+)⊥ ∩ s+ for l := dim(s+)− dim(r+), and,
• ek+l+1, . . . , en ⊆ (s+)⊥ where 1− l − k = 1− dim(s+).

We have [r, e] = [s, e] = 0, while Lemma 29 gives spec(s|e) � spec(r |e) since
spec(r |e) is irreducible in Δn . Thus, s � r . ��
Theorem 15 For any n ≥ 2,

Ir(Ωn)∗⊥ � L
n.

Proof An order isomorphism ϕ : Ir(Ωn)∗ → L
n \ {0} is given by

ϕ(r) = r+.

10 A Partial Order on Classical and Quantum States 671

For its surjectivity, given any A ∈ L
n \ {0}, define an irreducible quantum state

r : {0, λ} → L
n by rλ = A and r0 = A⊥, where λ = 1/dim(A) > 0. Then

ϕ(r) = A. The fact that it is an order isomorphism follows straightforwardly from
quantum degeneration (Lemma 21).

The particular nature of this proof, which essentially relies on how we recover
P{1, . . . , n} from Δn , exhibits how much of the structure of Ωn is already present
in the partial order on Δn .

To summarize, we are able to recover L
n , the basic quantum structure from which

all other are derivable, from the domain of quantum states in a purely order theoretic
manner. Here is an analogy worth remembering: Ωn is to L

n as density operators
are to pure states. More to the point, in view of the fact that

• The canonical order theoretic structure corresponding to quantum mechanics in
terms of only pure states is L

n ,

we are tempted to claim that

• The canonical order theoretic structure corresponding to quantum mechanics in
terms of density operators is Ωn .

In short, because the density operator formulation offers a more complete picture
than simply working with pure states, the domain Ωn offers a more complete picture
than the lattice L

n .
Finally, let us add one last twist to the story: Not only does this more complete

picture emerge as the result of commutative considerations, but any natural approach
to ordering states which allows non-commutativity seems destined to fail!

Fact 1 If we define r � s for r, s ∈ Ωn by either

(i) “there exists a labeling e such that spec(r |e) � spec(s|e) in Δn,” or
(ii) “for all labelings e we have spec(r |e) � spec(s|e) in Δn,”

where e does not necessarily commute with r and s, then in both cases, the relation
� is not an information order.

Justification We will only provide explicit proofs of the following partial statements
for the case of n = 2 (arguments in higher dimensions are essentially of the same
nature):

• In case (i), all states (including bottom) are above all pure states.
• In case (ii), no state (including bottom) is strictly below a pure state.

Let r be a pure state with ψ ∈ r1 and let ψ⊥ ∈ r0. Then there exists a labeling e such
that ψ +ψ⊥ ∈ e1 and ψ −ψ⊥ ∈ e2. For this labeling e we have 〈r |e1〉 = 〈r |e2〉 =
1/2, that is, spec(r |e) = ⊥ in Δ2. Thus, for all s ∈ Ω2 we have spec(r |e) �
spec(s|e) in Δ2. In case (i) this implies r � s in Ω2. In case (ii) this implies that
we cannot have s � r in Ω2. ��

672 B. Coecke and K. Martin

Thus, the commutativity implied by the existence of a joint labeling in the spec-
tral order seems unavoidable if one wants to obtain a non-trivial partial order. This
can be physically explained as follows: Quantum mechanics bears as one of its most
fundamental principles that the maximal knowledge an observer can have about a
system at a single point in time amounts to knowing the values of a class of observ-
ables that constitute a maximally commuting family; any knowledge beyond this is
forbidden. Thus, on the assumption that a partial order on quantum states should
make statements about knowledge we possess about a system, commutativity at
some level is probably unavoidable.

10.5 Applications

We consider some basic applications of classical and quantum states.

10.5.1 A Calculus for Noise

One of the basic ideas in the measurement formalism [8] is that one can differ-
entiate functions f : D → E between collections of informative objects with
respect to underlying notions of content. Speaking abstractly, it offers a definition
of “informatic rate of change,” i.e., the rate at which (the content of) the output of a
process changes with respect to (the content of) its input.

As we have seen, the domains of classical and quantum states have many natural
notions of content, so in principle we ought to be able to study informatic rates
of change in these settings as a means of improving our understanding about the
behavior of various phenomena.

One such example arises easily in the study of noise: By modelling the effect
of noise as a selfmap on classical or quantum states, we can apply the informatic
derivative with respect to a preferred notion of content μ to gain a precise measure
of the effect a given form of noise f has on a given state σ . For ease of exposition,
we illustrate the idea on Δ2. Here are some natural candidates for μ:

• μx = 1− x+
• μx = 2x+x−
• μx = −x+ log x+ − x− log x− (Shannon entropy)

We’ll use the first since it is the simplest.

Definition 36 A noise operator is a function f : Δ2 → Δ2 such that f σ � σ .

The intuition in this definition is that noise qualitatively increases uncertainty.
Now, suppose a system is in state σ when it suffers an unwanted interaction with its
environment, which changes its state to f σ . How can we measure the effect of the
noise on the state of the system?

First, we write down a “grammar” which allows for the description of noise: A
simple class of noise operators N is

10 A Partial Order on Classical and Quantum States 673

• ⊥, 1 ∈ N

• f, g ∈ N ⇒ f ◦ g ∈ N

• f, g ∈ N ⇒ p f + (1− p)g ∈ N for p ∈ [0, 1],
• f, g ∈ N & f � g ⇒ p f ∗ + (1− p)g ∈ N for p ∈ [0, 1/2],
where ∗ is the involution (x, y)∗ = (y, x). It is straightforward to check that the
class of noise operators on Δ2 are closed under the operations mentioned above.

Now the effect that channel f ∈ N has on state σ can be systematically calculated
as follows:

Theorem 16 If f, g ∈ N, then

• d(⊥)μ(σ) = 0,
• d(1)μ(σ) = 1,
• d(f ◦ g)μ(σ) = d fμ(gσ) · dgμ(σ),
• d(p f + (1− p)g)μ(σ) = pd fμ(σ)+ (1− p)dgμ(σ),
• d(p f ∗ + (1− p)g)μ(σ) = (1− p)dgμ(σ)− pd fμ(σ),

for any σ �= ⊥.

This theorem allows us to verify inductively that d fμ(σ) is a measure of reliabil-
ity. For instance, if d fμ(σ) = 0, then the noise f has had a very strong effect on σ

(as a channel, f is unreliable for the transmission of σ), while if d fμ(σ) = 1, we
intuitively expect f (σ) = σ , i.e., f is completely reliable.

Lemma 32 If f is a noise operator and f σ = σ , then either d fμ(σ) ≥ 1 or it does
not exist.

We now have a fun and systematic approach to an interesting problem: Deter-
mining the states that a particular type of noise does not affect.

Example 11 Consider the depolarization of a classical state,

f σ = p⊥+ (1− p)σ.

For σ �= ⊥, we have

d fμ = pd(⊥)μ + (1− p)d(1)μ = 1− p,

so the only unaffected state is ⊥ for p > 0.

Example 12 The effect of a magnetic field on data stored on a disk is

f σ = pσ ∗ + (1− p)σ.

For σ �= ⊥, we have

d fμ = −pd(1)μ + (1− p)d(1)μ = 1− 2p.

Thus, if you are a state, it is better to be depolarized than flipped.

674 B. Coecke and K. Martin

In quantum mechanics, the study of noise and how to beat it is called decoher-
ence. In the quantum case, some neat measures of content arise, corresponding to
the classical ones:

• μx = 1− x+ �⇒ μρ = 1− spec(ρ)+,
• μx = 2x+x− �⇒ μρ = 1− tr(ρ2),
• μx = −x+ log x+ − x− log x− �⇒ μρ = −tr(ρ log ρ).

For consistency, we use the first one here as well.

Example 13 Depolarization of quantum states is

f (r) = t · I

n
+ (1− t)r = t⊥+ (1− t)r.

Once again, d fμ(r) = 1 − t . But the reason is physical. For instance, in the two
dimensional case we have

f (r) = (1− t)r + t

3
(σxrσx + σyrσy + σzrσz)

It affects the entire state in a uniform way. Quantum bit/phase flipping, by contrast,
only affects “part” of r . Things get more interesting then.

10.5.2 The Axioms of Domain Theory

This work led to the introduction of a new class of domains, the exact domains.
We will show in this section that exact domains offer a new perspective on the
more traditional, continuous domains [1]. With the benefit of this new point of view,
it then becomes possible to ask certain foundational questions that some domain
theorists may find intriguing.

Recall that in the study of approximation on classical states, we learned that
x � y is a statement which implicitly carries a specific context. In order to conclude
x � z when y � z, we need to know that the statement y � z is being made in
the same context as x � y. Aside from the case when x approximates a pure state
(Prop. 7), there is another way of ensuring this: If all entities involved (x, y, z) can
be regarded as necessary for a single state (↑↑z �= ∅).

Proposition 22 (Context) For all x, y, z ∈ Δn, if x � y � z and ↑↑z �= ∅, then
x � z.

Proof First we prove that if x, y, z ∈ Λn with x � y � z in Λn and zi > 0 for all
i , then x � z in Λn . Let z = ⊔wk where (wk)k≥1 is increasing in Λn . Now we
proceed just as in the proof of Theorem 4. For xi = xi+1 > 0, we can take ki = 1,
since the monotonicity of wk implies

xi

xi+1
= 1 ≤ πi (wk)

πi+1(wk)

10 A Partial Order on Classical and Quantum States 675

for all k, while in the case of xi > xi+1 > 0, degeneration (Lemma 5) gives
yi > yi+1 > 0, which accounts for the strict inequality in

xi

xi+1
<

yi

yi+1
≤ zi

zi+1
= lim

k→∞
πi (wk)

πi+1(wk)
.

The definition of limit again makes it clear that the required ki exists.
More generally, if x � y � z � w in Δn , we use Proposition 6(ii) to prove

x � z. First, z ∈ Δn
σ ⇒ x ∈ Δn

σ follows from Lemma 12(i) since zi > 0 for all
i using Lemma 13 and z � w. And second, since Proposition 6(ii) gives r(x) �
r(y) � r(z) in Λn , our opening argument now applies leaving r(x)� r(z) in Λn .

The value of this observation is that it provides a theoretical explanation for why
the approximation relation on Δn is interpolative:

Lemma 33 If D is an exact dcpo such that for all x, y, z ∈ D,

x � y � z ⇒ x � z,

whenever ↑↑z �= ∅, then � is interpolative. Moreover, a dcpo is continuous iff it is
exact and x � y � z ⇒ x � z for all x, y, z ∈ D.

Proof The proof given in [1] applies unchanged. ��
From this we can see that exact domains require precision when reasoning about

approximation. By contrast, the single most important aspect of approximation on
a continuous domain is not that it is interpolative [1], but rather that it is context
independent. The present work seems to provide sufficient impetus for investigating
domains beyond the continuous variety.

10.5.3 Qualitative Measures of Entanglement

Quantum entanglement is the essential feature in quantum communication schemes
and quantum cryptographic protocols that distinguishes them from their classical
counterparts. For the particular dialectics used here we refer to the standard literature
on the matter.

We illustrate by means of a series of examples how the results of this paper can
be applied to the study of entanglement. A full development on the matter is in
preparation.

Example 14 Measures of entanglement of bipartite quantum systems. Let Hn be a
n-dimensional complex Hilbert space. According to Schmidt’s biorthogonal decom-
position theorem [15], any bipartite state Ψ ∈ Hn ⊗Hn can be rewritten as

Ψ =
∑

i

ciψi ⊗ φi

676 B. Coecke and K. Martin

with (ψi) and (φi) orthonormal bases of Hn and (ci) positive real coifficients which
are as a set uniquely defined. In particular we have

∑
i c2

i = 1 due to normalization
of Ψ , so every Ψ ∈ Hn⊗Hn defines a unique classical state c := (c2

i). We can then
qualitatively measure entanglement using the dcpo Λn as

Ent : Hn ⊗Hn → Λn : Ψ �→ r(c)

where r is the usual retraction on classical states.
Moreover, every measure of content

μ : Λn → [0, 1]∗

gives rise to a quantitative measure of entanglement

μ · Ent : Hn ⊗Hn → [0, 1]∗ .

When taking as μ Shannon entropy we find the usual quantitative measure of entan-
glement for bipartite quantum systems.

The maximal element of Λn then encodes the non-entangled states, that is, the
pure tensors ψ ⊗φ. The minimal element of Λn then encodes the maximally entan-
gled state, that is

∑

i

1√
n
ψi ⊗ φi ∈ Hn ⊗Hn

which does not depend on the choice of bases.
Since μ : Λ2 → [0, 1]∗ is a duality, using Λ2 rather than in [0, 1]∗ doesn’t teach

us much for the case n = 2, that is, for a pair of qubits. For qutrits however, n = 3,
we capture essential qualitative differences by valuating in Λ3.

Consider for example the state

S := 1√
2
(ψ1 ⊗ φ1 + ψ2 ⊗ φ2) ∈ H3 ⊗H3,

that is,

S = 1√
2
(|00〉 + |11〉).

The state S is entangled but this entanglement has essentially a qubit nature, that is,
we can express the state by only using a subbase of H3 that contains two vectors. In
particular, the entanglement coincides with that of the EPR or singlet state so it is
maximal as qubit entanglement.

On the other hand, the states

10 A Partial Order on Classical and Quantum States 677

Tq := q(ψ1 ⊗ φ1)+ 1− q

2
(ψ2 ⊗ φ2 + ψ3 ⊗ φ3) ∈ H3 ⊗H3

for 1/3 < q < 1, that is,

Tq := q(|00〉)+ 1− q

2
(|11〉 + |22〉) ,

exhibits genuine qutrit entanglement.
Unfortunately, for q ranging in (1

3 , 1) Shannon entropy ranges in (0, 1) so some
Tq have entropy higher than S and some have entropy less than S. The valuation
μ · Ent as such doesn’t capture the qualitative feature that distinquishes between
maximal qubit-type entanglement and essentially qutrit type entanglement.

However, Λ3 does. Indeed, consider

Ent(S) = r

(
1

2
,

1

2
, 0

)

and Ent(Tq) = r

(

q,
1− q

2
,

1− q

2

)

,

that is,

•Ent(S)

Ent(Tq)
Λ3

in graphical terms. Since there is no value for q ∈ (1
3 , 1) for which we have that

(1/2, 1/2, 0) and (q, (1− q)/2, (1− q)/2) compare in Λ3, it follows for all Tq

with q ∈ (1
3 , 1) that

Ent(S) �� Ent(Tq) and Ent(Tq) �� Ent(S) .

The states Ψ ∈ H3 ⊗H3 for which we have Ent(Ψ) � Ent(S) are those which
are such that

Ent(Ψ) = r

(

q,
1− q

2
,

1− q

2

)

for 0 ≤ q ≤ 1/3, that is, that are convex combinations of S and the maximally
entangled state in H3 ⊗H3,

1√
3
(|00〉 + |11〉 + |22〉) ,

678 B. Coecke and K. Martin

for which we set

* := Ent
(

1√
3
(|00〉 + |11〉 + |22〉)

)

.

Graphically,

•Ent(S)

Λ3

•
⊥

↓ Ent(S)

where ↓Ent(S) is the lower set of Ent(S) in Λ3.
The states Ψ ∈ H3 ⊗H3 for which we have Ent(S) � Ent(Ψ) are those which

are such that

Ent(Ψ) = r (q, 1− q, 0)

for 0 ≤ q ≤ 1/2, that is, convex combinations of S and the minimally entangled
state in H3 ⊗H3 (the pure tensor |00〉), for which we set

* := Ent(|00〉) .

Graphically,

⊥

•Ent(S)

Λ3

•

•

↑ Ent(S)

where ↑Ent(S) is the upper set of Ent(S) in Λ3.

10 A Partial Order on Classical and Quantum States 679

We can now refine our qualitative representation of entanglement for bipartite
states using the order on quantum states.

Example 15 Qualitative entanglement of bipartite quantum systems In Example 14,
the quantitative valuation μ · Ent with μ Shannon entropy, that is, the usual val-
uation attributed to a bipartite quantum system in order to measure entanglement,
can equivalently be defined as the von Neumann entropy of one of the quantum
states ρ1(Ψ) or ρ2(Ψ) for Ψ ∈ Hn ⊗ Hn that arise by tracing over the other
system.

Explicitly, for Ψ =∑i ciψi ⊗ φi we obtain

ρ1(Ψ) := tr2(Ψ) =
⎛

⎜
⎝

c2
1 0

. . .

0 c2
n

⎞

⎟
⎠ in (ψi)

ρ2(Ψ) := tr1(Ψ) =
⎛

⎜
⎝

c2
1 0

. . .

0 c2
n

⎞

⎟
⎠ in (φi) .

Since the diagonals coincide, von Neumann entropy coincides and in either case
gives the same value.

This implies that we can refine the valuation of entanglement Ent in Example 14
as

EntΩ : Hn ⊗Hn → Ωn ×Ωn : Ψ �→ (ρ1(Ψ), ρ2(Ψ))

where Ωn ×Ωn is ordered pointwisely, that is,

(r1, r2) � (s1, s2) ⇔ r1 � r2 and s1 � s2 .

On Ωn ×Ωn we can then define as a measure of content

μ1,2 : Ωn ×Ωn → [0, 1]∗ : (r1, r2) �→ μ(r1)+ μ(r2)

2

where μ is von Neumann entropy. This results in a quantitative measure of entan-
glement on Hn ⊗Hn that exactly coincides with the usual one. Indeed,

μ1,2

(
EntΩ(Ψ)

)
= μ1(ρ1(Ψ))+ μ2(ρ2(Ψ))

2
= μ(ρ1(Ψ)) = μ(ρ2(Ψ)) .

Note here in particular that EntΩ “almost” turns the states in Hn ⊗ Hn into a
domain by setting

Ψ � Φ ⇔ EntΩ(Ψ) � EntΩ(Φ) .

680 B. Coecke and K. Martin

We obtain a preorder that has pure tensors as maximal elements and that has ⊥ as a
minimum.

We however lose some anti-symmetry in this passage. In particular, when consid-
ering the Schmidt base, the order loses track of relative phases between base vectors.
Indeed,

EntΩ (ψ1 ⊗ φ1 + ψ2 ⊗ φ2) = EntΩ (ψ1 ⊗ φ1 + iψ2 ⊗ φ2)

although

ray (ψ1 ⊗ φ1 + ψ2 ⊗ φ2) �= ray (ψ1 ⊗ φ1 + iψ2 ⊗ φ2)

so these vectors do not encode the same state.
However, this can be fixed by taking into account their phases in defining the

order. We will provide the details in a future paper.
Pure tensors avoid this since

ψ ⊗ (iφ) = (iψ)⊗ φ = i(ψ ⊗ φ)

for which we have

ray (iψ ⊗ φ) = ray (ψ ⊗ φ) .

The maximally entangled states do not depend on the bases at all.
The essential difference between the qualitative valuations EntΩ and Ent is the

fact that EntΩ takes into account the identity of pure tensors above.

Example 16 Qualitative entanglement of multipartite quantum systems In Example
14 we measured entanglement of bipartite quantum systems using unicity of the
coefficients in the Schmidt biorthogonal decomposition. There however does not
exist a similar construction for arbitrary multipartite sytems, that is, there is no
Schmidt-type decomposition theorem for arbitrary Hn ⊗ . . .⊗Hn .

In particular, up to now there was not even a satisfactory notion of maximal
entanglement e.g. see [10]. Indeed, when considering three partite qubit states, for
the Greenberger-Horn-Zeilinger state [6]

GHZ := 1√
2
(|000〉 + |111〉)

and the W-state

W := 1√
3
(|100〉 + |010〉 + |001〉)

there are conflicting arguments about which one is maximally entangled. The gen-
eral favourite is however GHZ in particular in view of its maximal violation of
certain type of inequalities (e.g. Bell’s) that are characteristic for entanglement.

The solution of this conflict lies in specification of a context with respect to which
one measures entanglement, in the sense of Example 15.

10 A Partial Order on Classical and Quantum States 681

We propose here a qualitative measure for multipartite entanglement that favours
GHZ as the maximally entangled state, allong the lines of the valuation in Exam-
ple 15 for bipartite entanglement.

Define

EntΩ : Hn ⊗ . . .⊗Hn → Ωn × . . .×Ωn : Ψ �→
(
ρ1(Ψ), . . . , ρm(Ψ)

)

where ρi (Ψ) arises by tracing over all systems except the i th. We can do this for
example by considering the Schmidt decomposition for Hn ⊗ (Hn ⊗ . . .⊗Hn)

where the single Hilbert space encodes the i th system.
We then obtain for the above examples that

EntΩ(GHZ) =
((

1/2 0
0 1/2

)

,

(
1/2 0
0 1/2

)

,

(
1/2 0
0 1/2

))

since we have

GHZ = 1√
2
(|0〉|00〉 + |1〉|11〉)

with respect to the 1st component and

EntΩ(W) =
((

2/3 0
0 1/3

)

,

(
2/3 0
0 1/3

)

,

(
2/3 0
0 1/3

))

since for example

W :=
√

2√
3
|0〉
(

1√
2

(|10〉 + |01〉)
)

+ 1√
3
|1〉|00〉

and as such it follows that

EntΩ(GHZ) � EntΩ(W) .

Depicting only the part of Ω2 containing the relevant pure states |0〉 and |1〉 here,
that is, a copy of Δ2, this represents graphically as EntΩ(GHZ)

versus EntΩ(W)

682 B. Coecke and K. Martin

where the maps π1, π2 and π3 represent the components of EntΩ .
We can define a quantitative measure of entanglement on Hn ⊗ . . . ⊗ Hn via

composition of EntΩ and

μ1,...,m : Ωn × . . .×Ωn → [0, 1]∗ : (r1, . . . , rn) �→ 1

m

∑

i

μ(ri)

where μ is again von Neumann entropy. We obtain as such the desired values on
pure tensors and the maximally entangled state. In particular do we obtain

μ1,2,3

(
EntΩ(GHZ)

)
= 1 .

When one prefers to abstract over the identity of the pure tensors above, it is clear
that all the above still holds by substituting Λn for Ωn , that is, Ent for EntΩ .

Acknowledgments To Samson Abramsky and Prakash Panangaden – who supported the authors
when ideas combining semantics and physics were far less popular than they are today. This paper
appears in its original, unpublished form in tribute to a memorable time and place.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science, vol. III. Oxford University Press, Oxford
(1994) 674, 675

2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843
(1936) 658, 659, 665

3. Coecke, B., Moore, D.J., Wilce, A. (eds.): Current Research in Operational Quantum logic:
Algebras, Categories, Languages. Kluwer Academic Publishers, Dordrecht (2000) 594, 658, 659, 666

4. Faure, Cl.-A., Frölicher, A.: Modern projective Geometry. Kluwer Academic Publishers, Dor-
drecht (2000) 646

5. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–
893 (1957) 632

6. Greenberger, D.M., Horn, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequali-
ties. Am. J. Phys. 58, 1131 (1990) 680

7. Kalmbach, G.: Orthomodular Lattices. Academic Press, New York (1983) 659, 666
8. Martin, K. A foundation for computation. Ph.D. Thesis, Department of Mathematics, Tulane

University (2000) 594, 598, 608, 624, 625, 626, 672
9. Mackey, G.M.: The Mathematical Foundations of Quantum Mechanics. W. A. Benjamin, New

York (1963) 594
10. van Loock, P., Braunstein, S.L.: Multipartite entanglement, 2002. arXiv:quantph/0205068 680

10 A Partial Order on Classical and Quantum States 683

11. Lüders, G.: Über die Zustandsänderung durch den Messprozess (German). Annalen der Physik
8, 322–328 (1951) 660

12. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, New York
(1932); Translation, Mathematical Foundations of Quantum mechanics. Princeton University
Press, Princeton (1955) 631, 636

13. Piron, C.: Foundations of quantum physics. W. A. Benjamin, Reading (1976) 594, 659, 666
14. Ramsey, F.P.: Truth and probability, 1926. In: Braithwaite, R.B. (ed.) The Foundations of

Mathematics and Other Logical Essays, Ch. 7. Routledge, London (1931) 595
15. Schmidt, E.: Math. Ann. 63, 433 (1907) 675
16. Scott, D.: Outline of a mathematical theory of computation. TechnicalMonograph PRG-2.

(November 1970) 594

Part V Spatio-
Temporal Geometry

Chapter 11
Domain Theory and General Relativity

K. Martin and P. Panangaden

Abstract We discuss the current state of investigations into the domain theoretic
structure of spacetime, including recent developments which explain the connection
between measurement, the Newtonian concept of time and the Lorentz distance.

11.1 Introduction

Domains [AJ94, GKK] are special types of posets that have played an important
role in theoretical computer science since the late 1960s when they were discovered
by Dana Scott [Sco70] for the purpose of providing a semantics for the lambda
calculus. They are partially ordered sets that carry intrinsic (order theoretic) notions
of completeness and approximation. The basic intuition is that the order relation
captures the idea of approximation qualitatively. There is an abstract notion of finite
piece of information, or of finite approximation, which plays a key role in the anal-
ysis of computation.

These posets have a number of topologies defined on them: the Scott topology
and the interval topology, in particular. The Scott topology is particularly important
in that continuity with respect to this topology captures some of the information
processing aspects of computability. In particular, a Scott continuous function has
the following property: a finite piece of information about the output requires only
a finite piece of information about the input. While this does not completely reduce
Turing computability to topology it captures a very crucial information processing
aspect of computable functions.

K. Martin (B)
Naval Research Laboratory, Washington, DC, USA
e-mail: keye.martin@nrl.navy.mil

P. Panangaden (B)
School of Computer Science, McGill University, Montreal, QC, Canada
e-mail: prakash@cs.mcgill.ca

Martin, K., Panangaden, P.: Domain Theory and General Relativity. Lect. Notes Phys. 813,
687–703 (2011)
DOI 10.1007/978-3-642-12821-9_11 c© Springer-Verlag Berlin Heidelberg 2011

688 K. Martin and P. Panangaden

General relativity is Einstein’s theory of gravity in which gravity is understood
not in terms of mysterious “universal” forces but rather as part of the geometry of
spacetime. It is profoundly beautiful and beautifully profound from both the physi-
cal and mathematical viewpoints and it teaches us clear lessons about the universe in
which we live that are easily explainable. For example, it offers a wonderful expla-
nation of gravity: if an apple falls from a tree, the path it takes is not determined
by the Newtonian ideal of an “invisible force” but instead by the curvature of the
space in which the apple resides: gravity is the curvature of spacetime. In addition,
the presence of matter in spacetime causes it to “bend” and Einstein even gives us
an equation that relates the curvature of spacetime to the matter present within it.

The study of spacetime structure from an abstract viewpoint—i.e., not from the
viewpoint of solving differential equations—was initiated by Penrose [Pen65] in a
dramatic paper in which he showed a fundamental inconsistency of gravity. It was
known since Chandrasekhar [Cha31] that since everything attracts everything else
a gravitating mass of sufficient size will eventually collapse. What Penrose showed
was that any such collapse eventually leads to a singularity where the mathemat-
ical description of spacetime as a continuum breaks down. This leads to the need
to reformulate gravity. It is hoped that the elusive quantum theory of gravity will
resolve this problem.

Since the first singularity theorems [Pen65, HE73] causality has played a key
role in understanding spacetime structure. The analysis of causal structure relies
heavily on techniques of differential topology [Pen72]. For the past decade Sorkin
and others [Sor91] have pursued a program for quantization of gravity based on
causal structure. In this approach the causal relation is regarded as the fundamental
ingredient and the topology and geometry are secondary.

In a paper that appeared in 2006 [KP], we prove that the causality relation is
much more than a relation—it turns a globally hyperbolic spacetime into what is
known as a bicontinuous poset. The order on a bicontinuous poset allows one to
define an intrinsic topology called the interval topology. On a globally hyperbolic
spacetime, the interval topology is the manifold topology. Theorems that reconstruct
the spacetime topology have been known [Pen72] and Malament [Mal77] has shown
that the class of time-like curves determines the causal structure. We establish these
results as well though in a purely order theoretic fashion: there is no need to know
what “smooth curve” means.

Our more abstract stance also teaches us something new: a globally hyperbolic
spacetime itself can be reconstructed in a purely order theoretic manner, beginning
from only a countable dense set of events and the causality relation. The ultimate
reason for this is that the category of globally hyperbolic posets, which contains the
globally hyperbolic spacetimes, is equivalent to a very special category of posets
called interval domains. This provides a profound connection between domain
theory, first introduced for the purposes of assigning semantics to programming
languages, and general relativity, a theory meant to explain gravity. Even from a
purely mathematical perspective this equivalence is surprising, since globally hyper-
bolic spacetimes are usually not order theoretically complete, but interval domains
always are.

11 Domain Theory and General Relativity 689

Measurements were introduced by Martin in [Mar00a]. One thing they provide is
a way of incorporating quantitative information into domain theory. More recently
we have also shown how the geometry of spacetime can be reconstructed order theo-
retically. The reason is that the Lorentz distance defines a Scott continuous function
on the domain of spacetime intervals. What is even more interesting, though, is
that our setting provides a way to topologically distinguish between Newtonian and
relativistic notions of time. Every global time function defines a measurement on
the domain of spacetime intervals, in particular, it is Scott continuous. The Lorentz
distance is not only Scott continuous, but satisfies a stronger property, that it is
interval continuous. An interval continuous function must assign zero to any element
which approximates nothing. Thus, no interval continuous function on the domain
of spacetime intervals can ever be a measurement and the reason for this has entirely
to do with relativity: a clock moving at the speed of light records no time as having
elapsed, so an interval continuous function is incapable of distinguishing between a
single event and a null interval.

11.2 Domains, Continuous Posets and Topology

A poset is a partially ordered set, i.e., a set together with a reflexive, antisymmetric
and transitive relation.

Definition 1 Let (P,�) be a partially ordered set. A nonempty subset S ⊆ P is
directed if (∀x, y ∈ S)(∃z ∈ S) x, y � z. The supremum of S ⊆ P is the least of all
its upper bounds provided it exists. This is written

⊔
S.

These ideas have duals that will be important to us: a nonempty S ⊆ P is filtered
if (∀x, y ∈ S)(∃z ∈ S) z � x, y. The infimum

∧
S of S ⊆ P is the greatest of all its

lower bounds provided it exists.

Definition 2 For a subset X of a poset P , set

↑X := {y ∈ P : (∃x ∈ X) x � y} & ↓X := {y ∈ P : (∃x ∈ X) y � x}.

We write ↑ x =↑{x} and ↓ x =↓{x} for elements x ∈ X .

A partial order allows for the derivation of several intrinsically defined topolo-
gies. Here is our first example.

Definition 3 A subset U of a poset P is Scott open if

(i) U is an upper set: x ∈ U & x � y ⇒ y ∈ U , and
(ii) U is inaccessible by directed suprema: For every directed S ⊆ P with a supre-

mum,

⊔
S ∈ U ⇒ S ∩ U �= ∅.

690 K. Martin and P. Panangaden

The collection of all Scott open sets on P is called the Scott topology.

Posets can have a variety of completeness properties. The following complete-
ness condition has turned out to be particularly useful in applications.

Definition 4 A dcpo is a poset in which every directed subset has a supremum. The
least element in a poset, when it exists, is the unique element ⊥ with ⊥ � x for
all x .

The set of maximal elements in a dcpo D is

max(D) := {x ∈ D : ↑x = {x}}.

Each element in a dcpo has a maximal element above it.

Definition 5 For elements x, y of a poset, write x � y iff for all directed sets S
with a supremum,

y �
⊔

S ⇒ (∃s ∈ S) x � s.

We set ↓↓x = {a ∈ D : a � x} and ↑↑x = {a ∈ D : x � a}.
For the symbol “�,” read “approximates.”

Definition 6 A basis for a poset D is a subset B such that B ∩↓↓x contains a directed
set with supremum x for all x ∈ D. A poset is continuous if it has a basis. A poset
is ω-continuous if it has a countable basis.

Continuous posets have an important property, they are interpolative.

Proposition 1 If x � y in a continuous poset P, then there is z ∈ P with x �
z � y.

This enables a clear description of the Scott topology,

Theorem 1 The collection {↑↑x : x ∈ D} is a basis for the Scott topology on a
continuous poset.

Definition 7 A continuous dcpo is a continuous poset which is also a dcpo.
A domain is a continuous dcpo.

The next example is due to Scott[Sco70] and worth keeping in mind when we
consider the analogous construction for globally hyperbolic spacetimes.

Example 1 The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] � [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:

11 Domain Theory and General Relativity 691

• For directed S ⊆ IR,
⊔

S = ⋂
S,

• I � J ⇔ J ⊆ int(I), and
• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

The domain IR is called the interval domain.

We also have max(IR) � R in the Scott topology. Approximation can help explain
why:

Example 2 A basic Scott open set in IR is

↑↑[a, b] = {x ∈ IR : x ⊆ (a, b)}.

One of the interesting things about IR is that it is a domain that is derived from an
underlying poset with an abundance of order theoretic structure. Part of this structure
is that the real line is bicontinuous, a fundamental notion in the present work:

Definition 8 A continuous poset (P,≤) is bicontinuous if

• For all x, y ∈ P , x � y iff for all filtered S ⊆ P with an infimum,

∧
S ≤ x ⇒ (∃s ∈ S) s ≤ y,

and
• For each x ∈ P , the set ↑↑x is filtered with infimum x .

Example 3 R, Q are bicontinuous.

Definition 9 On a bicontinuous poset P , sets of the form

(a, b) := {x ∈ P : a � x � b}

form a basis for a topology called the interval topology.

The proof uses interpolation and bicontinuity. In contrast to a domain, a bicon-
tinuous poset P has ↑↑x �= ∅ for each x , so it is rarely a dcpo. We tend to prefer the
notation ≤ for the order on a poset that is known to be bicontinuous. Otherwise, we
use the notation �.

Definition 10 For x, y in a poset (P,≤),

x < y ≡ x ≤ y & x �= y.

In general, < and � are completely different ideas.

11.3 The Causal Structure of Spacetime

A manifold M is a locally Euclidean Hausdorff space that is connected and has a
countable basis. Such spaces are paracompact. A Lorentz metric on a manifold is a
symmetric, nondegenerate tensor field of type (0, 2) whose signature is (− + ++).

692 K. Martin and P. Panangaden

Definition 11 A spacetime is a real four-dimensional1 smooth manifold M with a
Lorentz metric gab.

Let (M, gab) be a time-orientable spacetime. Let �+≤ denote the future directed
causal curves, and �+� denote the future directed time-like curves.

Definition 12 For p ∈ M,

I +(p) := {q ∈ M : (∃π ∈ �+�) π(0) = p, π(1) = q}

and

J+(p) := {q ∈ M : (∃π ∈ �+≤) π(0) = p, π(1) = q}

Similarly, we define I −(p) and J−(p).

We write the relation J+ as

p ≤ q ≡ q ∈ J+(p).

The following properties from [HE73] are very useful:

Proposition 2 Let p, q, r ∈ M. Then

(i) The sets I+(p) and I −(p) are open.
(ii) p ≤ q and r ∈ I +(q) ⇒ r ∈ I +(p)

(iii) q ∈ I +(p) and q ≤ r ⇒ r ∈ I +(p)

(iv) Cl(I +(p)) = Cl(J+(p)) and Cl(I −(p)) = Cl(J−(p)).

We always assume the chronology conditions that ensure (M,≤) is a partially
ordered set. We also assume strong causality which can be characterized as fol-
lows [Pen72]:

Theorem 2 A spacetime M is strongly causal iff its Alexandroff topology is Haus-
dorff iff its Alexandroff topology is the manifold topology.

The Alexandroff topology on a spacetime has {I +(p) ∩ I −(q) : p, q ∈ M} as a
basis [Pen72].2

11.4 Global Hyperbolicity

Penrose has called globally hyperbolic spacetimes “the physically reasonable space-
times [Wal84].”

1 The results in the present paper work for any dimension n ≥ 2 [J93].
2 This terminology is common among relativists but order theorists use the phrase “Alexandrov
topology” to mean something else: the topology generated by the upper sets.

11 Domain Theory and General Relativity 693

Definition 13 A spacetime M is globally hyperbolic if it is strongly causal and if
↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈ M.

Theorem 3 ([KP]) If M is globally hyperbolic, then (M,≤) is a bicontinuous
poset with � = I+ whose interval topology is the manifold topology.

This result motivates the following definition:

Definition 14 A poset (X,≤) is globally hyperbolic if it is bicontinuous and each
interval [a, b] = {x : a ≤ x ≤ b} is compact in the interval topology.

Globally hyperbolic posets have rich enough structure that we can deduce many
properties of spacetime from them without appealing to differentiable structure or
geometry. Here is one such example:

Definition 15 Let (X,≤) be a globally hyperbolic poset. A subset π ⊆ X is a causal
curve if it is compact, connected and linearly ordered. We define

π(0) := ⊥ and π(1) := �

where ⊥ and � are the least and greatest elements of π . For P, Q ⊆ X ,

C(P, Q) := {π : π causal curve, π(0) ∈ P, π(1) ∈ Q}

and call this the space of causal curves between P and Q.

This definition is motivated by the fact that a subset of a globally hyperbolic
spacetime M is the image of a causal curve iff it is the image of a continuous
monotone increasing π : [0, 1] → M iff it is a compact connected linearly ordered
subset of (M,≤).

Theorem 4 ([Mar06]) If (X,≤) is a separable globally hyperbolic poset, then the
space of causal curves C(P, Q) is compact in the Vietoris topology and hence in
the upper topology.

This result plays an important role in the proofs of certain singularity theo-
rems [Wal84], in establishing the existence of maximum length geodesics [HE73],
and in the proof of certain positive mass theorems [Pen93]. Moreover, while events
in spacetime are maximal elements of IM, causal curves are maximal elements
in a higher order domain C(IM), called the convex powerdomain of IM. This is
discussed in more detail in [Mar06].

We can also deduce new aspects of spacetime. Globally hyperbolic posets are
very much like the real line. In fact, a well-known domain theoretic construction
pertaining to the real line extends in perfect form to the globally hyperbolic posets:

Theorem 5 ([KP]) The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}

694 K. Martin and P. Panangaden

ordered by reverse inclusion

[a, b] � [c, d] ≡ [c, d] ⊆ [a, b]
form a continuous domain with

[a, b] � [c, d] ≡ a � c & d � b.

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) � X

where the set of maximal elements has the relative Scott topology from IX.

This observation—that spacetime has a canonical domain theoretic model—
teaches us something new: from only a countable set of events and the causality
relation, one can reconstruct spacetime in a purely order theoretic manner. Explain-
ing this requires domain theory.

11.5 Spacetime from a Discrete Causal Set

An abstract basis is a set (C,�) with a transitive relation that is interpolative from
the—direction:

F � x ⇒ (∃y ∈ C) F � y � x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also interpola-
tive from the + direction:

x � F ⇒ (∃y ∈ C) x � y � F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a � b} =�⊆ C2

whose relation is

(a, b) � (c, d) ≡ a � c & d � b.

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 6 ([KP]) Let C be a countable dense subset of a globally hyperbolic
spacetime M and �= I + be timelike causality. Then

max(IC) � M

where the set of maximal elements have the Scott topology.

11 Domain Theory and General Relativity 695

In “ordering the order” I +, taking its completion, and then the set of maximal
elements, we recover spacetime by reasoning only about the causal relationships
between a countable dense set of events. One objection to this might be that we
begin from a dense set C , and then order theoretically recover the space M—but
dense is a topological idea so we need to know the topology of M before we can
recover it! But the denseness of C can be expressed in purely causal terms:

C dense ≡ (∀x, y ∈ M)(∃z ∈ C) x � z � y.

Now the objection might be that we still have to reference M. We too would like to
not reference M at all. However, some global property needs to be assumed, either
directly or indirectly, in order to reconstruct M.

Theorem 6 is very different from results like “Let M be a certain spacetime with
relation ≤. Then the interval topology is the manifold topology.” Here we iden-
tify, in abstract terms, a process by which a countable set with a causality relation
determines a space. The process is entirely order theoretic in nature, spacetime is
not required to understand or execute it (i.e., if we put C = Q and �=<, then
max(IC) � R). In this sense, our understanding of the relation between causality
and the topology of spacetime is now explainable independently of geometry.

Ideally, one would now like to know what constraints on C in general imply that
max(IC) is a manifold.

11.6 Spacetime as a Domain

The category of globally hyperbolic posets is naturally isomorphic to a special cat-
egory of domains called interval domains.

Definition 16 An interval poset is a poset D that has two functions left :
D → max(D) and right : D → max(D) such that

(i) Each x ∈ D is an “interval” with left(x) and right(x) as endpoints:

(∀x ∈ D) x = left(x) � right(x),

(ii) The union of two intervals with a common endpoint is another interval: For all
x, y ∈ D, if right(x) = left(y), then

left(x � y) = left(x) & right(x � y) = right(y),

(iii) Each point p ∈↑x ∩max(D) of an interval x ∈ D determines two subintervals,
left(x) � p and p � right(x), with endpoints:

left(left(x) � p) = left(x) & right(left(x) � p) = p

left(p � right(x)) = p & right(p � right(x)) = right(x)

696 K. Martin and P. Panangaden

Notice that a nonempty interval poset D has max(D) �= ∅ by definition. With inter-
val posets, we only assume that infima indicated in the definition exist; in particular,
we do not assume the existence of all binary infima.

Definition 17 For an interval poset (D, left, right), the relation ≤ on max(D) is

a ≤ b ≡ (∃ x ∈ D) a = left(x) & b = right(x)

for a, b ∈ max(D).

The axioms of interval posets imply that (max(D),≤) is a poset.

Definition 18 An interval domain is an interval poset (D, left, right) where D is a
continuous dcpo such that

(i) If p ∈ ↑↑x ∩ max(D), then

↑↑(left(x) � p) �= ∅ & ↑↑(p � right(x)) �= ∅.

(ii) For all x ∈ D, the following are equivalent:

(a) ↑↑x �= ∅
(b) (∀y ∈ [left(x), ·])(y � x ⇒ y � right(y) in [·, right(y)])

(c) (∀y ∈ [·, right(x)])(y � x ⇒ y � left(y) in [left(y), ·])

(iii) Invariance of endpoints under suprema:

(a) For all directed S ⊆ [p, ·]

left(
⊔

S) = p & right(
⊔

S) = right(
⊔

T)

for any directed T ⊆ [q, ·] with right(T) = right(S).
(b) For all directed S ⊆ [·, q]

left(
⊔

S) = left(
⊔

T) & right(
⊔

S) = q

for any directed T ⊆ [·, p] with left(T) = left(S).

(iv) Intervals are compact: For all x ∈ D, ↑ x ∩ max(D) is Scott compact.

Interval domains are interval posets whose axioms also take into account the
completeness and approximation present in a domain: (i) says if a point p belongs
to the interior of an interval x ∈ D, the subintervals left(x) � p and p � right(x)

both have nonempty interior; (ii) says an interval has nonempty interior iff all inter-
vals that contain it have nonempty interior locally; (iii) explains the behavior of
endpoints when taking suprema.

11 Domain Theory and General Relativity 697

For a globally hyperbolic (X,≤), we define:

left : IX → IX :: [a, b] �→ [a]

and

right : IX → IX :: [a, b] �→ [b].

Lemma 1 If (X,≤) is a globally hyperbolic poset, then (IX, left, right) is an inter-
val domain.

In essence, this is the only example.

Lemma 2 If (D, left, right) is an interval domain, then (max(D),≤) is a globally
hyperbolic poset.

The equivalence between globally hyperbolic posets and interval domains is as
follows:

Definition 19 The category IN of interval domains and commutative maps is
given by

• objects Interval domains (D, left, right).
• arrows Scott continuous f : D → E that commute with left and right, i.e., such

that both

D
leftD � D D

rightD� D

and

E

f

�

leftE

� E

f

�
E

f

�

rightE

� E

f

�

commute.
• identity 1 : D → D.
• composition f ◦ g.

Definition 20 The category G is given by

• objects Globally hyperbolic posets (X,≤).
• arrows Continuous in the interval topology, monotone.
• identity 1 : X → X .
• composition f ◦ g.

It is routine to verify that IN and G are categories.

698 K. Martin and P. Panangaden

Proposition 3 The correspondence I : G → IN given by

(X,≤) �→ (IX, left, right)

(f : X → Y) �→ (f̄ : IX → IY)

is a functor between categories.

Proposition 4 The correspondence max : IN → G given by

(D, left, right) �→ (max(D),≤)

(f : D → E) �→ (f |max(D) : max(D) → max(E))

is a functor between categories.

Before the statement of the main theorem in this section, we recall the definition
of a natural isomorphism.

Definition 21 A natural transformation η : F → G between functors F : C → D
and G : C → D is a collection of arrows (ηX : F(X) → G(X))X∈ C such that for
any arrow f : A → B in C,

F(A)
ηA� G(A)

F(B)

F(f)

�

ηB

� G(B)

G(f)

�

commutes. If each ηX is an isomorphism, η is a natural isomorphism.

Categories C and D are equivalent when there are functors F : C → D and
G : D → C and natural isomorphisms η : 1C → G F and μ : 1D → FG.

Theorem 7 ([KP]) The category of globally hyperbolic posets is equivalent to the
category of interval domains.

This result suggests that questions about spacetime can be converted to domain
theoretic form, where we can use domain theory to answer them, and then translate
the answers back to the language of physics (and vice-versa). Notice too that the
category of interval posets and commutative maps is equivalent to the category of
posets and monotone maps.

It also shows that causality between events is equivalent to an order on regions
of spacetime. Most importantly, we have shown that globally hyperbolic spacetime
with causality is equivalent to a structure IX whose origins are “discrete.” This is
the formal explanation for why spacetime can be reconstructed from a countable
dense set of events in a purely order theoretic manner.

11 Domain Theory and General Relativity 699

11.7 Time and Measurement

A domain is a partially ordered set with intrinsic notions of completeness and
approximation defined by the order. A measurement is a function μ that to each
informative object x assigns a number μx which measures the information con-
tent of the object x . Let us now define the latter term precisely before discussing it
further.

A function f : D → E between domains is Scott continuous if the inverse image
of a Scott open set in E is Scott open in D. This is equivalent [AJ94] to saying that
f is monotone,

(∀x, y ∈ D) x � y ⇒ f (x) � f (y),

and that it preserves directed suprema:

f
(⊔

S
)

=
⊔

f (S),

for all directed S ⊆ D. In particular, for the domain [0,∞)∗ of nonnegative reals in
their opposite order, a Scott continuous function μ : D → [0,∞)∗ will satisfy

1. For all x, y ∈ D, x � y ⇒ μx ≥ μy, and
2. If (xn) is an increasing sequence in D, then

μ

⎛

⎝
⊔

n≥1

xn

⎞

⎠ = lim
n→∞ μxn.

This is the case of Scott continuity that we are most interested in presently:

Definition 22 A Scott continuous μ : D → [0,∞)∗ is said to measure the content
of x ∈ D if for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ε > 0) x ∈ με(x) ⊆ U

where

με(x) := {y ∈ D : y � x & |μx − μy| < ε}

are called the ε-approximations of x .

We often refer to μ as simply “measuring” x ∈ D or as measuring X ⊆ D when it
measures each element of X . The last definition, as well as the next, easily extend
to maps μ that take values in an arbitrary domain E .

Definition 23 A measurement μ : D → [0,∞)∗ is a Scott continuous map that
measures the content of ker(μ) := {x ∈ D : μx = 0}.

700 K. Martin and P. Panangaden

The order on a domain D defines a clear sense in which one object has “more
information” than another: a qualitative view of information content. The definition
of measurement attempts to identify those monotone mappings μ which offer a
quantitative measure of information content in the sense specified by the order. The
essential point in the definition of measurement is that μ measure content in a man-
ner that is consistent with the particular view offered by the order. There are plenty
of monotone mappings that are not measurements—and while some of them may
measure information content in some other sense, each sense must first be specified
by a different information order. The definition of measurement is then a minimal
test that a function μ must pass if we are to regard it as providing a measure of
information content.

We now consider a few properties that measures of information content have
which arbitrary monotone mappings in general need not have: qualities that make
them ‘different’ from maps that are simply monotone. Other such properties may be
found in [Mar00a].

Theorem 8 ([Mar00a]) Let μ : D → [0,∞)∗ be a measurement.

(i) If x ∈ ker(μ), then x ∈ max(D) = {x ∈ D : ↑x = {x}}.
(ii) If μ measures the content of y ∈ D, then

(∀x ∈ D) x � y & μx = μy ⇒ x = y.

(iii) If μ measures X ⊆ D, then

{↑με(x) ∩ X : x ∈ X, ε > 0}

is a basis for the Scott topology on X.

A global time function t : M → R on a globally hyperbolic spacetime M is a
continuous function such that x < y ⇒ t (x) < t (y) and t−1(r) = � is a Cauchy
surface for M, for each r ∈ R.

Theorem 9 For any global time function t : M → R on a globally hyperbolic
spacetime, the function Δt : M → [0,∞)∗ given by Δt[a, b] = t (b) − t (a)

measures all of I(M). It is a measurement with ker(Δt) = max(I(M)).

Let d : I(M) → [0,∞)∗ denote the Lorentz distance on a globally hyperbolic
spacetime

d[a, b] = sup
πab

len(πab)

where the sup is taken over all causal curves that join a to b.

Definition 24 The interval topology on a continuous poset P exists when sets of the
form

11 Domain Theory and General Relativity 701

(a, b) = {x ∈ P : a � x � b} & ↑↑x = {y ∈ P : x � y}

form a basis for a topology on P .

For bicontinuous posets, this definition of interval topology is equivalent to the
definition considered earlier. A function between continuous posets is interval con-
tinuous when each poset has an interval topology and the inverse image of an inter-
val open set is interval open. By the bicontinuity of M, the interval topology on
I(M) exists, so we can consider interval continuity for functions I(M) → [0,∞)∗.

Theorem 10 The Lorentz distance d : I(M) → [0,∞)∗ has the following
properties:

(i) It is monotone: x ≤ y ⇒ d(x) ≥ d(y),
(ii) It preserves the way below relation: x � y ⇒ d(x) > d(y),

(iii) It is interval continuous and hence Scott continuous.

It does not measure I(M) at any point of ker(d).

That the Lorentz distance is not a measurement is a direct consequence of the
fact that a clock travelling at the speed of light records no time as having elapsed
i.e. the set of null intervals is equal to

ker(d) \ max(I(M)) �= ∅

but measurements always have the property that μx = 0 implies x ∈ max(D)

(Theorem 8).
In fact, no interval continuous function μ : I(M) → [0,∞)∗ can be a measure-

ment: by interval continuity, μx = 0 for any x with ↑↑x = ∅. Just like the Lorentz
distance, an interval continuous μ will also assign 0 to “null intervals.” In this way,
we see that interval continuity captures an essential aspect of the Lorentz distance.
In addition, since Δt is a measurement, it cannot be interval continuous. This pro-
vides a surprising topological distinction between the Newtonian and relativistic
concepts of time: d is interval continuous, Δt is not. Put another way, Δt can be
used to reconstruct the topology of spacetime (Theorem 8(iii)), while d is used to
reconstruct its geometry.

11.8 Spacetime Geometry from a Discrete Causal Set

Let us return now to the reconstruction of spacetime (Sect. 11.5) from a countable
dense set (C,�). Specifically, we take the rounded ideal completion I(C)of the
abstract basis of intervals

int(C) = {(a, b) : a � b} =�⊆ C2

702 K. Martin and P. Panangaden

whose relation is

(a, b) � (c, d) ≡ a � c & d � b.

We are then able to recover spacetime as

max(IC) � M

where the set of maximal elements have the Scott topology. Let us now suppose that
in addition to int(C) that we also begin with a countable collection of numbers lab

chosen for each (a, b) ∈ int(C) in such a way that the map

int(C) → [0,∞)∗ :: (a, b) �→ lab

is monotone. Then in the process of reconstructing spacetime, we can also construct
the Scott continuous function d : IC → [0,∞)∗ given by

d(x) = inf{lab : (a, b) � x}.

In the event that the countable number of lab chosen are the Lorentz distances lab =
d[a, b], then the function d constructed above yields the Lorentz distance for any
spacetime interval, the reason being that both are Scott continuous and are equal on
a basis of the domain.

Thus, from a countable dense set of events and a countable set of distances, we
can reconstruct the spacetime manifold together with its geometry in a purely order
theoretic manner.

11.9 Conclusions

We have seen the following ideas in this paper:

1. how to reconstruct the spacetime topology from the causal structure using purely
order-theoretic ideas,

2. an abstract order-theoretic definition of global hyperbolicity,
3. that one can reconstruct spacetime, meaning its topology and geometry, from a

countable dense subset,
4. an equivalence of categories between the category of interval domains and the

category of globally hyperbolic posets.
5. a topological distinction between Newtonian and relativistic notions of time.

11 Domain Theory and General Relativity 703

References

AJ94. Abramsky, S., Jung, A.: Domain theory. In Maibaum, T.S.E., Abramsky, S.,
Gabbay, D. M. (eds.), Handbook of Logic in Computer Science, vol. III. Oxford Uni-
versity Press, Oxford (1994) 687, 699

Beem. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. CRC Press, Boca
Raton (1996)

Cha31. Chandrasekhar, S.: The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82
(1931) 688

Faj00. Fajstrup, L.: Loops, ditopology and deadlocks: Geometry and concurrency. Math. Struct.
Comput. Sci. 10(4), 459–480 (2000)

GFR98. Goubault, E., Fajstrup, L., Raussen, M.: Algebraic topology and concurrency. Depart-
ment of Mathematical Sciences RR-98–2008, Aalborg University, 1998. Presented at
MFCS 1998 London

GKK. Gierz, G., Hoffman, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continu-
ous lattices and domains. Number 93 in Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge (2003) 687

HE73. Hawking, S.W., Ellis, G.F.R. The large scale structure of space-time. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, Cambridge (1973) 688, 692, 693

J93. Joshi, P.S.: Global aspects in gravitation and cosmology. International Series of Mono-
graphs on Physics 87. Oxford Science Publications, Oxford (1993) 692

Mal77. Malement, D.: The class of continuous timelike curves determines the topology of space-
time. J. Math. Phys. 18(7), 1399–1404 (1977) 688

Mar00a. Martin, K.: A foundation for computation. PhD thesis, Department of Mathematics,
Tulane University (2000) 689, 700

Mar00b. Martin K.: The measurement process in domain theory. In: Proceedings of the 27th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’00), Number
1853 in Lecture Notes In Computer Science, pp. 116–126. Springer, New York (2000)

Mar06. Martin, K. Compactness of the space of causal curves. J. Class. Quant. Grav. 23, 1241–
1251 (2006) 693

KP. Martin, K., Panangaden, P.: A domain of spacetime intervals in general relativity. Com-
mun. Math. Phys. 267(3), 563–586 (November 2006) 688, 693, 694, 698

Pen65. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14,
57–59 (1965) 688

Pen72. Penrose, R.: Techniques of differential topology in relativity. Society for Industrial and
Applied Mathematics (1972) 688, 692

Pen93. Penrose, R., Sorkin, R.D., Woolgar, E.: A positive mass theorem based on the
focusing and retardation of null geodesics. Submitted to Commun. Math. Phys.,
arXiv:grqc/9301015 (1993) 693

Sco70. Scott, D.: Outline of a mathematical theory of computation. Technical Monograph
PRG-2, Oxford University Computing Laboratory (1970) 687, 690

Sor91. Sorkin, R.: Spacetime and causal sets. In: D’Olivo J. et. al. (eds.) Relativity and Gravita-
tion: Classical and Quantum. World Scientific, Singapore (1991) 688

SW96. Sorkin, R.D., Woolgar, E.: A causal order for spacetimes with c 0 Lorentzian metrics:
Proof of compactness of the space of causal curves. Class. Quant. Grav. 13, 1971–1994
(1996)

Wal84. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984) 692, 693

Chapter 12
Process, Distinction, Groupoids and Clifford
Algebras: an Alternative View of the Quantum
Formalism

B.J. Hiley

Abstract In this paper we start from a basic notion of process, which we structure
into two groupoids, one orthogonal and one symplectic. By introducing additional
structure, we convert these groupoids into orthogonal and symplectic Clifford alge-
bras respectively. We show how the orthogonal Clifford algebra, which include the
Schrödinger, Pauli and Dirac formalisms, describe the classical light-cone struc-
ture of space-time, as well as providing a basis for the description of quantum
phenomena. By constructing an orthogonal Clifford bundle with a Dirac connec-
tion, we make contact with quantum mechanics through the Bohm formalism which
emerges quite naturally from the connection, showing that it is a structural fea-
ture of the mathematics. We then generalise the approach to include the symplectic
Clifford algebra, which leads us to a non-commutative geometry with projections
onto shadow manifolds. These shadow manifolds are none other than examples of
the phase space constructed by Bohm. We also argue that this provides us with a
mathematical structure that fits the implicate-explicate order proposed by Bohm.

12.1 The Algebra of Process

Traditionally basic theories of quantum phenomena are described in terms of
the dynamical properties of particles-in-interaction, or more basically, fields-in-
interaction built on an a priori given manifold. Special relativity demands this man-
ifold is a Minkowski space-time, while general relativity demands a more general
manifold with a metric carrying the properties of the gravitational field. In this paper
we explore the possibility of starting from a primitive notion of process, in which
flux, activity or movement is taken as basic and from which physical phenomena in
general and quantum phenomena in particular emerge. Indeed we expect the space-
time manifold itself to arise from this basic process.

B.J. Hiley (B)
Birkbeck College, University of London, London, UK
e-mail: b.hiley@bbk.ac.uk

Hiley, B.J.: Process, Distinction, Groupoids and Clifford Algebras: an Alternative View of the
Quantum Formalism. Lect. Notes Phys. 813, 705–752 (2011)
DOI 10.1007/978-3-642-12821-9_12 c© Springer-Verlag Berlin Heidelberg 2011

706 B.J. Hiley

The problem with the traditional view is that it is mechanistic and reductionist in
spirit and is in stark contrast to the perception and deep insights of Bohr [1], who has
already argued that it is the notion of wholeness that is essential to our understanding
of quantum processes, a notion that he felt could only be handled mathematically
through the abstract quantum algorithm, together with the principle of complemen-
tarity. We will argue that ideas based on a fundamental notion of process offers an
alternative, more coherent view which will also provide an ontology.

The hope of finding a better understanding of Nature through a process phi-
losophy is not new. Already Whitehead [2] carries this analysis much further and
proposes that reality is essentially an organism in which the whole determines the
properties of the parts rather than the parts determining the whole. Less well known
is the work of Bohm [3] who carries these ideas much further in general terms, as
well as attempting to articulate them in a mathematical form [4, 5]. Apart from the
well known conceptual difficulties presented by the usual approach to quantum phe-
nomena, a strong motivation and support for these ideas comes from the entangled
state phenomenon known as quantum non-locality. Here the properties of groups of
individual systems cannot be derived from a priori given individual properties, but
inherit properties derived from the whole system, supporting Whitehead’s use of the
term “ogranic”.

How then are we to start to build such a theory and develop it into a sound
mathematical structure? I believe that Grassmann [6] and Hamilton [7] had already
begun to show us how this might be achieved in terms of basic elements that form
an algebra. Indeed Grassmann was motivated by a notion of becoming, a notion that
eventually led him to what we now call a Grassmann algebra. This structure plays
an important role in physics today. However the full possibilities of Grassmann’s
ideas have been lost because the original motivation has been forgotten. With this
loss, the exploitation of this potentially rich structure has been stifled [8–10].

Grassmann began his discussion by drawing a distinction between form and mag-
nitude. Today’s physics is all about magnitude, about measured values in a given
form, but for Grassmann it was about exploring and developing new forms. The
notion of form is very broad and more commonly occurs in ‘thought’ or ‘thought
form’ as Grassmann put it [11]. Now thought is about becoming and becoming
yields a continuous form. Essentially we could ask how one thought becomes
another? Is the new thought independent of the old or is there some essential depen-
dence? The answer to the first question is clearly “no”, because the old thought
contains the potentiality of the new thought, while the new thought contains a trace
of the old. Hence again as Grassmann puts it “the continuous form is a twofold act
of placement and conjunction, the two are united in a single act and thus proceed
together as an indivisible unit”. Why not a similar idea for the unfolding of material
processes? If we succeed we will have the possibility of removing the difference
between material processes and thought.

Let us try to formalise Grassmann’s ideas and regard T1 and T2 as the opposite
distinguishable poles of an indivisible process. Notice however we have made a
distinction in the overall process as Kauffman [13] would put it. Making a dis-
tinction does not deny the implicit indivisibility of the process, it simply notes the

12 Process, Distinction, Groupoids and Clifford Algebras 707

Fig. 12.1 One-simplex

differences. Therefore let us write the mathematical expression for this process as
[T1T2], the brace emphasising its indivisibility. We can represent this brace in the
form of a diagram (see Fig. 12.1).

The arrow emphasises that T1 and T2, although distinguishable, cannot be sepa-
rated.

When applied to space, we will write [P1 P2], where each distinguishable region
of space will be denoted by Pi . Grassmann called this brace an extensive. Thus we
will call quantities like [A B] extensions. They denote the activity of one region
transforming into another. For more complex structures, we can generalise these
basic processes to those shown in Fig. 12.2.

In this way we have a field of extensives which can be related and organised into
a multiplex of relations of process, activity, movement.1 The sum total of all such
relations constitutes what Bohm and I have called the holomovement [15]. Thus for
Grassmann, space was a particular realisation of the general notion of process.

Let us now consider the meaning of [P P] where there is only one region.
This implies that region P is continually transforming into itself. It is a dynamic
entity essentially remaining the same, yet continually transforming into itself. It
is an invariant feature in the total flux. Mathematically it is an idempotent as
[P P] • [P P] = [P P]. We will see that idempotents play a central role in our
approach.

Notice we are working with quite general notions and anything that remains
invariant in a dynamical process can be treated as an idempotent. Thus an atom is,
on one level, an entity, not of “rock-like” existence, but a process continually trans-
forming into itself. But on another level it is composed of sub-processes, electrons,

Fig. 12.2 One, two and three-simplexes

1 The term “movement” is being used, not to describe movements of objects but in a more general
sense, implying more subtle orders of change, development and evolution of every kind [14].

708 B.J. Hiley

nucleons, quarks and so on, each of which can be represented by idempotents.
A group of molecules that remain stable can also be treated as a relative idempotent
in a more complex structure of process. Clearly this can be extended to viruses,
animals, plants right up to human beings and beyond.

At any level the idempotent can be thought of as a “point” which has structure,
but what are the consequences if it is taken to be a point in some geometry? Here
the notion of a point becomes a dynamic entity and not the changeless entity of
classical geometry. The geometry is dynamic. It is just what we want, for example,
in general relativity, showing that there is no separation between the “geometry” and
the “matter” it contains. If we consider space to be made up of “points” then space
itself cannot be a static receptacle for matter. It is a dynamic, flowing structure of
process or activity. This is the holomovement. In this sense it has much in common
with the quantum vacuum from which quasi-invariant structures emerge and into
which quasi-invariant structures decay.

Let us now introduce some mathematical structure. Let us assume these processes
form an structure over the real field2 in the following sense:

• multiplication by a real scalar denotes the strength of the process.
• the process is assumed to be oriented. Thus [P1 P2] = −[P2 P1].
• next we introduce an inner multiplication defined by

[P1 P2] • [P2 P3] = ±[P1 P3] (12.1)

This can be regarded as the order of succession. The choice of + or − will turn
out ultimately to do with what is conventionally called the metric of the space
constructed from the processes. We will develop this idea as we go along.

• to complete the notion of an algebra we need to define a notion of addition of two
processes to produce a new process. A mechanical analogy of this, although inad-
equate in many ways, is the motion that arises when two harmonic oscillations
at right angles are combined. It is well-known that these produce an elliptical
motion when the phases are adjusted appropriately. This addition process can be
regarded as an expression of the order of co-existence completing our Leibnizian
view of process. We will clarify what addition means for the physics as we go
along.

We can show that the product is associative and that the mathematical structure we
have defined is a Brandt groupoid [16], the details of which will be discussed in
Sect. (12.3.1).

We now turn our attention to showing how the symmetries of space-time are
carried by an algebra and, indeed, to show how the points are ordered into an overall
structure. For the sake of simplicity we will consider how we may order a discrete
structure process [17].

2 We assume the real field for convenience and leave open the possibility for a more fundamental
structure.

12 Process, Distinction, Groupoids and Clifford Algebras 709

12.2 Some Specific Algebras of Process

12.2.1 Quaternions

Now that we have a definition of a product to denote succession, we can sharpen up
what we mean by a “point”. Recall a point is something that continually turns into
itself, so that [P0 P0] • [P0 P0] = [P0 P0]. Thus [P0 P0] represents the point P0. Thus
the “point” is an idempotent as we have discussed above. It is interesting to note that
this general notion of an element of existence was first introduced by Eddington [18].

We are working in a domain of continuous process or activity. To make a distinc-
tion we must have a form that is stable, and what makes a better stable process than
that process that turns continually into itself. Mathematically it is the idempotent, ε,
that continually turns into itself, εε = ε hence εε . . . ε = ε.

Now let us move on to consider two independent processes [P0 P1] and [P0 P2].
Suppose we want to turn [P0 P1] into [P0 P2]. How is this done? Introduce a process
[P1 P2], then using the product rule we get

[P0 P1] • [P1 P2] = [P0 P2]

Here we are using the + in the product. In Sect. 12.2.2 will show when it is appro-
priate to use the minus. We can also show

[P0 P2] • [P1 P2] = −[P0 P1]
[P0 P1] • [P0 P2] = −[P1 P2]
[P0 P1] • [P0 P1] = −[P0 P0] = −[P1 P1] = −1

[P0 P2] • [P0 P2] = −[P0 P0] = −[P2 P2] = −1

Note we have put [P0 P0] = [P1 P1] = [P2 P2] = 1 because in the algebra, the point
behaves like the identity. Thus there exists three two-sided units in our algebra. The
multiplication table now closes and can be written as

1 [P0 P1] [P0 P2] [P1 P2]
[P0 P1] −1 −[P1 P2] [P0 P2]
[P0 P2] [P1 P2] −1 −[P0 P1]
[P1 P2] −[P0 P2] [P0 P1] −1

This structure is isomorphic to the quaternion algebra C0,2. To show this let us make
the following identification:- [P0 P1] = i, [P0 P2] = j and [P1 P2] = k where the
{i, j, k} are the quaternions. The multiplication table above then becomes

1 i j k
i −1 −k j
j k −1 −i
k − j i −1

which should be immediately be recognised as the quaternion algebra.

710 B.J. Hiley

Rather than use the traditional notation for the quaternions, let us use the notation
that is now standard in Clifford algebra texts such as Lounesto [19]. Thus we will
write [P0 P1] = e1, [P0 P2] = e2 and [P1 P2] = e21. Here e21 = e2e1. We use this
notation from now on.

Having established that the essentials of quaternion Clifford algebra lies at the
heart of our process algebra, and we know that the quaternions generate rotations
when applied to a vector space. To link with these ideas, let us first notice that C0,2
is normal and simple so that every automorphism is inner. Thus all automorphisms
are inner. Thus we can write

A′ = g(θ)Ag−1(θ) (12.2)

where g(θ) is an element of the Clifford group and θ is some parameter which turns
out to be an angle. A typical element of this group is given by

g(θ) = cos(θ/2) + e12 sin(θ/2) (12.3)

In the simple structure we are considering here, all elements of the group are of this
form.

Suppose we choose a specific rotation with θ = π/2, then we find

g(π/2) = (1 + e12)/
√

2; g−1(π/2) = (1 − e12)/
√

2

With these two expressions we can show exactly why the rules introduced above
actually work. Take for example A = e1, and put θ = π/2, then

g(π/2)e1g−1(π/2) = e1g−2(π/2) = −e1e1e2 = e2.

Translating this back into the original notation this gives

[P0 P1] • [P1 P2] = [P0 P2]

which is where we started.
Clearly what we have constructed is a method of rotating through right angles

in a plane. However if we allow θ to take continuous values 0 ≥ θ ≥ 2π , we can
create a continuum of points on a circle, since

e′
1 = g(θ)e1g−1(θ) = cos2(θ/2) − sin2(θ/2)e1 + 2 cos(θ/2) sin(θ/2)e2

or

e′
1 = cos(θ)e1 + sin(θ)e2

Of course this relation looks very familiar but notice we are approaching things from
a different point of view. We can formalise this by introducing a mapping from our
algebra of process, our Clifford algebra, C0,2 to a Euclidean vector space V , viz:

12 Process, Distinction, Groupoids and Clifford Algebras 711

η : C → V such that e1 = ê1 and e2 = ê2

where {ê1, ê2} is a pair of othonormal basis vectors in V satisfying ê2
i = 1; (ê1.ê2) =

0. The inner automorphism in C0,2 then induce rotations in V . Thus we have reversed
the traditional argument of starting from a given vector space and constructing an
algebra. We claim that it is also possible and, for our purposes, profitable to construct
a vector space from the group of movements, or processes. This is a more primitive
example of the Gel’fand construction [12]. We suggest that this possibility would
be worth exploring when investigating so called quantum space-times.

So far we have confined our attention to a very simple case where we only have
two degrees of freedom. In Sect. 12.2.3 we will show how the above rules can be
generalised and applied to three basic movements [P0 P1], [P0 P2] and [P0 P3] to
produce the Pauli Clifford, which in turn produces a 3-dimensional vector space,
R3,0. The processes here are all of a polar kind.

Let us now generalise our approach by including processes of a temporal kind,
so that we are led to Lorentz-type Clifford groups. In the next sub-section we show
exactly how this can be done, again by simply considering two basic processes
[P0 P] and [P0T], the latter being a temporal process. This may come as a surprise
as it is usual to think of “succession” as a succession in time. However here we
use “succession” in a more general way, implying a general notion of order as in a
“succession of points”.

12.2.2 Lorentz Group

Let us illustrate how to generalise our approach by considering one movement in
space and one in time. We will show that this results in the Clifford algebra C1,1
which will enable us to construct the mini-Minkowski space R1,1.

In this case the basic processes are [P0 P] and [P0T]. We will follow Kauffman
[13] and call [P0 P] a polar extensive while [P0T] will be called a temporal exten-
sive. We now extend the product to

[P0 P] • [P0 P] = −[P0 P] • [P P0] = −[P0 P0] = −1

[P0T] • [P0T] = −[P0T] • [T P0] = +[P0 P0] = +1

Here we have used the relations [P0 P0] = 1; [P P] = 1 while [T T] = −1. The
difference in sign between these two terms will ultimately emerge in the signature
of the metric gi j when constructed. Thus we have [P P] = gP P and [T T] = gT T .

We then get the multiplication table

1 [P0T] [P0 P] [P T]
[P0T] 1 [P T] [P0 P]
[P0 P] −[P T] −1 [P0T]
[P T] −[P0 P] −[P0T] 1

712 B.J. Hiley

If we identify [P0T] = e0, [P0 P] = e1 and [P T] = e10, we see this multiplication
table is isomorphic to the multiplication table of the Clifford algebra C1,1.

In this algebra it is of interest to examine the sum, [P0T] + [P0 P], and the dif-
ference [P0T] − [P0 P]. Here

[
[P0T] ± [P0 P]

]
• [P T] = −[P0T] • [T P] ± [P0 P] • [P T] =

[
[P0T] ± [P0 P]

]

In other words
[
[P0T] ± [P0 P]

]
transforms into itself. Now writing this in a more

familiar form, we have

[
[P0T] ± [P0 P]

]
= e0 ± e1

η−→ t ± x

which we should immediately recognise as the light cone co-ordinates used by

Kauffman [13]. In our approach
[
[P0T] + [P0 P]

]
= η corresponds to a movement

along one light ray, while
[
[P0T] − [P0 P]

]
= ξ corresponds to a movement along

a perpendicular light ray as shown in Fig. 12.3.
Since we have a movement in time and a movement in space, how then do we

envisage the notion of velocity? In other words can we give a meaning to dividing
one vector by another? Suppose we first form the reciprocal 1/[P0T]. Then clearly

[P0T]−1 = 1

[P0T] × [P0T]
[P0T] = [P0T]

[P0T] × 1

[P0T] = [P0T]

But this leaves us with a problem. Do we write for the velocity

[P0 P] • [P0T]−1 = −[P T] or [P0T]−1 • [P0 P] = [P T]?

The conventional approach in the Dirac theory identifies the positive direction of
the velocity with α1 = γ01. In our simple Clifford algebra C1,1, the equivalent to α1
is e01 = [P0 P] • [P0T]−1. We then identify e01 with the positive direction of the
velocity.3 With this identification we can write an element of the Clifford group as

Fig. 12.3 Light cone coordinates

3 Note this immediately gives us an explanation as to why we identify α0i with the velocity in the
Dirac theory.

12 Process, Distinction, Groupoids and Clifford Algebras 713

g±(λ) = cosh(λ/2) ± e01 sinh(λ/2)

where λ, the rapidity is given by tanh(λ) = v/c. In terms of these transformations
it is easily shown that

e′
0 + e′

1 = g(e0 + e1)g
−1 = k−1(e0 + e1)

and

e′
0 − e′

1 = g(e0 − e1)g
−1 = k(e0 − e1)

where k =
√

1+v
1−v

. Since we can write

e0
η−→ t and e1

η−→ x

we see that

t ′ + x ′ = k−1(t + x) and t ′ − x ′ = k(t − x)

This is just the defining expression for the k-calculus from which Kauffman [13]
extracts all the transformations required for special relativity. This result also holds
when C1,1 is generalised to C1,3. Thus we provide an alternative but complemen-
tary approach to the Kauffman approach. We will discuss Kauffman’s approach to
special relativity a little further later in the paper.

12.2.3 The Pauli Clifford

Let us now move onto generating the Pauli Clifford. As we have already remarked
we need three basic polar extensives [P0 P1], [P0 P2], [P0 P3]. We require these to
describe three independent movements. We also require three movements, one to
take us from [P0 P1] to [P0 P2], another to take form [P0 P1] to [P0 P3] and a third to
take us from [P0 P2] to [P0 P3]. Call these movements [P1 P2], [P1 P3] and [P2 P3].

If we are to construct the Pauli algebra we need to assume the following relations,

[P0 P0] = 1; [P1 P1] = [P2 P2] = [P3 P3] = −1

We should notice the change in sign in this case. This is to take account of the
different metric we are choosing and because of that we need to ensure [P0 P1] •
[P0 P1] = [P0 P2] • [P0 P2] = [P0 P3] • [P0 P3] = 1. At this stage the notation is
looking a bit clumsy so it will be simplified by writing the six basic movements as
[a], [b], [c], [ab], [ac], [bc].

714 B.J. Hiley

We now use the order of succession to establish

[aa] = [bb] = [cc] = 1

[ab] • [bc] = [ac]
[ac] • [cb] = [ab]
[ba] • [ac] = [bc]

where the rule for the product is self evident. There exist in the algebra, three two-
sided units, [aa], [bb], and [cc]. For simplicity we will replace these elements by
the unit element 1. This can be justified by the following results [aa] • [ab] = [ab];
[ba] • [aa] = [ba]; [bb] • [ba] = [ba], etc.

Now

[ab] • [ab] = −[ab] • [ba] = [aa] = −1

[ac] • [ac] = −[ac] • [ca] = [cc] = −1

[bc] • [bc] = −[bc] • [cb] = [bb] = −1

There is the possibility of forming [abc]. This gives

[abc] • [abc] = −[abc] • [acb] = [abc] • [cab] = −[ab] • [ab] = −1

[abc] • [cb] = −[ab] • [b] = [a], etc.

In the last expression we need to know that [P0 Pi] • [Pj Pk] = [Pj Pk] •
[P0 Pi] ∀ i �= j �= k. Thus the algebra closes on itself. If we now change the
notation to bring it in line with standard Clifford variables we have

[P0 Pi] = ei ; [Pi Pj] = e ji ; [abc] = −e123

then it is straight forward to show that the algebra is isomorphic to the Clifford
algebra R3,0 which we was called the Pauli-Clifford algebra in Frescura and Hiley
(1980).

The significance of this algebra is that it carries the rotational symmetries of a
three-dimensional Euclidean space. The movements [ab], [ac] and [bc] generate
the Lie algebra of SO(3), the group of rotations in three-space, but because we have
constructed a Clifford algebra, the rotations are carried by inner automorphisms of
the type shown in Eq. (12.2). A typical form of g(θ) is shown in Eq. (12.3). In the
three dimensional case we use the bivectors [ab] = e21, [ac] = e31 and [bc] = e32
to define three infinitesimal rotations about the three independent axes.

We can extend the method we have outlined above to generate the Dirac Clifford
algebra and the conformal Clifford algebra which contains the twistor originally
introduced by Penrose [20]. We will not discuss these structures in this paper.

12 Process, Distinction, Groupoids and Clifford Algebras 715

In summary then we have shown, or rather sketched out how to generate the
Clifford algebras from a primitive notion of process or activity. A more rigorous
mathematical approach to these topics will be found in Griffor [24]. The algebras
we have discussed in this paper so far only use orthogonal groups and so we have,
in effect, developed a directional calculus. What is missing from our discussion so
far is the translation symmetry. The generalisation to include translations will be
discussed later

12.3 Connections with Other Mathematical Approaches

12.3.1 Formal Mathematical Structure

We have already indicated that we have identified the structure we are exploring as
a Brandt groupoid [16] but we don’t have to return to this early work to get a formal
understanding of this structure. Ronnie Brown [25] has an excellent review of this
structure which we will briefly explain here.

A groupoid G is a small category in which every morphism is an isomorphism.
This category comprises a set of morphisms, together with a set of objects or points,
Ob(G). We also have a pair of functions s, t : G → Ob(G), together with a
function i : Ob(G) → G such that si = ti = 1. The functions s, t are called the
source and target maps respectively.

The elements of process that we have been using can easily be connected with
this language. Consider a general movement a j . We can identify sa j as P0 and ta j
as Pj , then

[P0 Pj] ⇒ a j : sa j → ta j

If we have a pair of movements a and b then we can compose these movements if
ta = sb. Thus

[sa
a−→ ta][sb

b−→ tb] = [sa
ab−→ tb] iff ta = sb.

It is not difficult to show that this product is associative. Thus the mathemati-
cal structure we considered in the last section can be formally identified with a
groupoid.

It should be noted that our approach is also related to the approach of Abramski
and Coecke [26] who apply category theory to quantum mechanics, again attempt-
ing to build a process view of quantum phenomena. It would be interesting to com-
pare the two approaches in detail but such a comparison will not be attempted in
this paper.

716 B.J. Hiley

12.3.2 Comparison with Kauffman’s Calculus of Distinctions

In the earlier sections of this paper, we have referred to the work of Kauffman
[13, 23, 30] which provides us with a calculus of distinctions, or as it is sometimes
called, the iterant algebra. Kauffman also introduces a binary symbol [A, B] which
he motivates in the following way. He wants to start with a basic idea from which all
further discussions follow. Start with an undifferentiated two-dimensional canvas.
Then make a distinction by defining a boundary, dividing the canvas into two regions
marking the “inside” A and the “outside” B symbolizing this distinction by [A, B].

How is this distinction related to the basic movement that we have used earlier?
To bring this out simply, we can also write this as A = B. Here we use X to
denote Spencer Brown’s “cross” indicating we must cross the boundary. Kauffman
[13] uses this analogy to argue that not only do we make a distinction but we must
act out the distinction by actually crossing the boundary. Crossing the boundary
enables us to discuss change, to discuss movement, to discuss process.

Now in order to structure these movements, Kauffman introduces a multiplica-
tion rule

[A, B] ∗ [C, D] = [AC, B D] (12.4)

Furthermore he assumes that AC = C A and B D = DB, i.e. they are commutative
products. In this case, suppose we take B = C then

[A, B] ∗ [B, C] = [AB, BC] = B[A, C]

Then if we put B = ±1 we obtain the same product rule that we introduced earlier
in this paper. This means the common element is replaced by ±1 in the product.
Thus we see that our algebra is a special case of that introduced by Kauffman.

The sum that Kauffman introduces is also a generalisation of the sum we intro-
duce. He defines

[A, B] + [C, D] = [A + C, B + D]

In Kauffman [23] the k-calculus is set up by directly considering [t + x] and
[t − x] but it is difficult to understand how “marks” A and B become co-ordinates.
In Sect. 12.2.1 above we have a clearer way of showing how the co-ordinates arise
since we have a well defined mapping, η, taking us from the Clifford algebra, Cn,m ,
to an underlying vector space Vn,m . Once again notice the order, Cn,m is primary,
Vn,m is derived.

12.3.3 Some Deeper Relations Between Our Approach
and that of the Calculus of Distinction

Let us go deeper into the relation between the general structure of Clifford algebras
and its relationship to the Kauffman calculus [13]. However we first want to point

12 Process, Distinction, Groupoids and Clifford Algebras 717

out that Schönberg [28] and Fernandes [29] have shown us how to build any orthog-
onal Clifford algebra from a pair of dual Grassmann algebras whose generators
satisfy the relationship

[ai , a†
j]+ = gi j [ai , a j]+ = 0 = [a†

i , a†
j]+ (12.5)

These will be recognised as vector fermionic “annihilation” and “creation” oper-
ators.4 Notice these are vector operators and not the spinor operators used in particle
physics. Using these we find

σx = a + a† and σz = a − a† (12.6)

Now Kauffman [13] introduces an operation p that destroys the inside but leaves
the outside alone. This can be written as

p ∗ [A, B] = [0, B]. (12.7)

One way to do this is to let p = [0, 1] and use the product ∗ defined in Eq. (12.4).
Then clearly Eq. (12.7) will follow. Kauffman develops these ideas further and
shows

σx ∗ [A, B] = [B, A] and σz ∗ [A, B] = [A,−B] (12.8)

Now let us ask what our operators a and a† produce when we operate on [A, B]. It
is straightforward to show

a ∗ [A, B] = [B, 0] and a† ∗ [A, B] = [0, A] (12.9)

Thus we see that here the annihilation operator a destroys the inside and puts the
outside inside. On the other hand the creation operator a† destroys the outside and
puts the inside outside!

We can actually carry this further and ask what action the algebraic spinors (min-
imal left ideals) have on [A, B]. It is not difficult to show that in this case we have
two algebraic spinors given by

ψL1 = aa† + a† and ψL2 = a†a + a. (12.10)

Now let us ask what happens when we use these spinors to produce a change in
[A, B]. What is this change? Again the answer is easy because

ψL1 ∗ [A, B] = (aa† + a†) ∗ [A, B] = [A, A] (12.11)

ψL2 ∗ [A, B] = (a†a + a) ∗ [A, B] = [B, B] (12.12)

4 This suggests that these operators could be used to describe the creation and annihilations of
extensions.

718 B.J. Hiley

This means that one type of spinor, ψL1 , destroys the outside and puts a copy of the
inside outside, while the other spinor, ψL2 , destroys the inside and puts a copy of the
outside inside! In other words these operators remove the original distinction, but in
different ways. More importantly from the point of view that we are exploring here
is that we see how the algebraic spinor itself is active in producing a specific change
in the overall process and not merely a vector in an abstract Hilbert space.

Physicists treat these two spinors, ΨL1 and ΨL2 as equivalent and map them onto
an external spinor space, the Hilbert space of ordinary spinors ψ . In other words this
single spinor, ψ , is an equivalence class of the algebraic spinor when it is projected
onto a Hilbert space (see Bratteli and Robinson [31]). The projection means that we
have lost the possibility of exploiting the additional dynamical structure offered by
the algebraic spinors.

Notice that these spinors are themselves part of the algebra. The whole thrust of
our argument is that we must exploit the properties of the algebra and not confine
ourselves to an external Hilbert space. When we do this we can continue with our
idea that the elements of our algebra describe activity or process even in the quantum
domain.

Let us take this whole discussion a little further. Consider the following
relationship

a ∗ [A, 0] = [0, 0] (12.13)

This should be compared with the physicist’s definition of a vacuum state,

a|0〉 = a ⇓= 0 (12.14)

where we have introduced the notation used by Finkelstein [32]. Thus Eq. (12.14)
shows that [A, 0] acts like the vacuum state in physics.

Furthermore a† ∗ [0, B] = [0, 0] should be compared with a† ⇑= 0. Finkelstein
calls, ⇑, the plenum. Thus we see that [0, B] acts like the plenum. Thus we see
that here the vacuum state is not empty. Internally it has content but externally it is
empty. For the plenum, it is the other way round, so unlike Parmenides we can have
“movement” from outside to inside! We can take this a bit further by recalling that
we can write the projector onto the vacuum as V = |0〉〈0|, then we have aV = 0. If
the projector onto the plenum is P = |∞〉〈∞|, we find a† P = 0. It is interesting to
note that relations like these are central to the approach of Schönberg [28].

12.3.4 Extensions and the Incident Algebra of Raptis and Zapatrin

All of the above discussion suggests that we could perhaps write [A, B] as |A〉〈B|.
It should be noticed that this is only a symbolic change and the bra/ket should not
be identified with vectors in an external vector space. Nevertheless by making this
identification we can bring out the relationship of our work to that of Zapatrin [33]
and of Raptis and Zapatrin [27] who developed an approach through what they
called the incident algebra. In this structure the product rule is written in the form

12 Process, Distinction, Groupoids and Clifford Algebras 719

|A〉〈B| · |C〉〈D| = |A〉〈B|C〉〈D| = δBC |A〉〈D|

Again this multiplication rule is essentially rule (12.1), the order of succession
above. But there is a major difference. When B �= C the product equals zero,
whereas we leave it undefined at this level. So tempting as it seems we must not
identify their |A〉〈B| with our use of the same symbols. Nevertheless a good notation
can take us to places where we did not expect to go as we will see!

12.4 Some Radical New Ideas

12.4.1 Intersection of the Past with the Future

We now want to look more deeply into the structure based on relationships like
[P1 P2] by, as it were, “getting inside” the connection between P1 and P2. Remem-
ber we are focusing on process or movement and we are symbolising the notion
of becoming by [P1 P2]. Ultimately we want to think of these relationships as an
ordered structure defining what we have previously called “pre-space” (see Bohm
[3] and Hiley [34]). In other words, these relationships are not to be thought of as
occurring in space-time, but rather the properties of space-time are to be abstracted
from this pre-space. We have already suggested how we can achieve this through the
mapping η : C → V but much more work has to be done. Let us go more slowly.

Conventionally physical processes are always assumed to unfold in space-time,
and furthermore, time evolution is always assumed to be from point to point. In
other words, physics always tries to talk about time-development at an instant. Any
change always involves the limiting process limΔt→0(Δx)/(Δt).

However before taking the limit we were taking points in the past (x1, t1) and
relating them to a points in the future (x2, t2), that is we are relating what was
to what will be. But we try to hide the significance of that by going to the limit
t2 − t1 → 0 when we interpret the change to take place at an instant, t . Yet curiously
the instant is a set of measure zero sandwiched between the infinity of that which
has passed and the infinity of that which is not yet. This is fine for evolution of
point-like entities but not for the evolution of structures.

At this point I wish to recall Feynman’s classic paper where he sets out his think-
ing that led to his “sum over paths” approach [35]. There he starts by dividing
space-time into two regions R′ and R′′. R′ consists of a region of space occu-
pied by the wave function before time t ′, while R′′ is the region occupied by the
wave function after time t ′′, i.e t ′ < t ′′. Then he suggested that we should regard
the wave function in region R′ as contain information coming from the “past”, while
the conjugate wave function in the region R′′ represents information coming from
the “future”.5 The possible “present” is then the intersection between the two, which

5 This is essentially the same idea that led to the notion of the anti-particle “going backward in
time”, but at this stage we are not considering anti-matter.

720 B.J. Hiley

is simply represented by the transition probability amplitude 〈ψ(R′′)|ψ(R′)〉.6 But
what I want to discuss here is |ψ(R′)〉〈ψ(R′′)|. This is where all the action is!

Before taking up this point I would like to call attention to a similar notion intro-
duced by Stuart Kauffman [37] in his discussion of biological evolution. Here the
discussion is about the evolution of structure. He talks about the evolution of bio-
logical structures from their present form into the “adjacent possible”. This means
that only certain forms can develop out of the past. Thus not only does the future
form contain a trace of the past, but it is also constrained by what is “immediately”
possible, its potentialities. So any development is governed by the tension between
the persistence of the past, and an anticipation of the future.

What I would now like to do is to build this notion into a dynamics. Somehow we
have to relate the past to the possible futures, not in a completely deterministic way,
but in a way that constrains the possible future development. My basic notion is
that physical processes involve an extended structure in both space and time. I have
elsewhere called this structure a “moment” [38]. In spatial terms, it is fundamentally
non-local in space, however it is also “non-local” in time. I see this more in terms
of a-local concepts, with locality yet to be defined. It is a kind of ‘extension in time’
or a ‘duron’, an idea that has a resonance with what Grassmann was trying to do
as we outlined earlier. This extension in time may seem too extreme but remem-
ber quantum theory must accommodate the energy-time uncertainty principle. This
implies that a process with a given sharp energy cannot be described as unfolding at
an instant of time except, perhaps, in some approximation. The notion of a moment
captures the essential ambiguity implicit in quantum theory.

The idea of process that we introduced in Sect. 12.2 is naturally suited to describ-
ing this notion of a moment. All we need to do is to regard the two aspects of [P1 P2]
as functions of two times so that we can write this bracket in the form [A(t1), B(t2)]
and show that, as Feynman [35] actually demonstrates for the Schrödinger case, we
capture the usual equations of motion in the limit t1 → t2.

12.4.2 A Change in Notation

In Sect. 12.3.3 we have already shown that if write |0〉〈0| for [0, 0] we have the
possibility of a ready made link between our notation and the bra-ket notation of
Dirac. In fact Dirac in his work on spinors [39] has already suggested that we can
factorise an element of the Clifford algebra into a pair |A〉 and 〈B|. He shows that
this ket is, in fact, a spinor, while the bra is a dual spinor.

Let us therefore follow Dirac and replace [P1, P2] by |P1〉〈P2|.7 In Sect. 12.2.1
we introduced the Clifford group without any justification in terms of the ideas
we were developing. Rather we called on our prior knowledge of the structure of

6 While I was preparing this article, Aharonov reminded me of the similarity of these ideas to his
on pre- and post-selection [36].
7 |P1〉 and 〈P2| are not to be taken as elements in a Hilbert space and its dual.

12 Process, Distinction, Groupoids and Clifford Algebras 721

Clifford algebras to introduce the idea. However we can justify this choice once we
have assumed that the basic process can be factorised. Now we can argue that under
a rotation, we have the transformations

|P ′〉 = R|P〉 and 〈P ′| = 〈P|R−1

This gives us the added advantage of showing immediately that 〈P|P〉 is rotationally
invariant.

This also helps us the understand Kauffman’s [23, 40] notation when he writes
the Lorentz transformation in the form

L[A, B] = [k−1 A, k B]

where k =
√

1+v
1−v

is a function of the relative velocity. First we consider a boost in
the x-direction, g(v), and write

L[A, B] = g(v)|A〉〈B|g−1(v) (12.15)

which does not in general reduce to Kauffman’s expression. However if we form

e′
0 + e′

1 = g(v)
(
|P0〉(〈T | + 〈P|)

)
g−1(v) = k−1

(
|P0〉(〈T | + 〈P|)

)
= k−1(e0 + e1)

and similarly

e′
0 − e′

1 = g(v)
(
|P0〉(〈T | − 〈P|)

)
g−1(v) = k

(
|P0〉(〈T | − 〈P|)

)
= k(e0 − e1)

We arrive at Kauffman’s result provided we write A = |P0〉〈T | + |P0〉〈P| and
B = |P0〉〈T | − |P0〉〈P|.

The traditional way to proceed is to assume that |P〉 is a vector in an external
Hilbert space. As Frescura and Hiley [21] have shown there is, in fact, no need to go
outside the algebra. We can identify the ket as an element, ΨL , of a left ideal, IL , in
the algebra. One way to generate such an element is to choose a suitable primitive
idempotent, ε. Then we multiply from the left by any element of the algebra to form
the element ΨL giving

ΨL = Aε

where the general element A can be written in the form A = a0 + ∑
ai ei +∑

ai j ei j + · · · + ane12...n , when the Clifford algebra is generated by {1, e1 . . . en}.8

8 Physicists should not be put off by the notation because the es are exactly the γ s used in standard
Dirac theory We have changed notation simply to bring out the fact that we do not need to go
to a matrix representation, although that possibility is always open to us should we wish to take
advantage of it.

722 B.J. Hiley

There is a simplification with which we will avail ourselves and that is that, in the
Clifford algebras in which we are interested, we can generate an element of the left
ideal by choosing A to comprise only the even elements of the algebra. In this case
we can write

A = ψL = a0 +
∑

ai j ei j +
∑

aijkneijkn +

The dual element corresponding to 〈B| is an element of the minimal right ideal
generated from ε and is given by

ΨR = εB

We can also obtain ΨR from the element of the minimal left ideal by conjugation.
Conjugation is defined as an anti-involution on A induced by the orthogonal invo-
lution −1X , X being the vector space induced by the Clifford algebra. In this case
ΨR = Ψ̃L . Thus in our new notation, we have

[A, B] → ΨLΨR = ψLεψR = ρ̂

We will call this element the Clifford density element. ρ̂ is a key element in our Clif-
ford algebra approach to quantum theory [41–43]. As we showed in those papers,
we can reproduce all the results of quantum mechanics without the need to introduce
Hilbert space and the wave function. Furthermore as we will show later, we are led
directly to the Bohm model showing that this model is merely a re-formulation of
quantum theory in which the complex numbers are not necessary. Before embarking
on this discussion we will continue to explore the structure of space-time offered by
our methods.

12.4.3 The Lorentz Transformations from Light Rays and a Clock

In this sub-section we sketch how Kauffman’s use of the k-calculus, introduced
originally by Page [45] and popularised by Bondi [46], emerges from the results
obtained in Sect. 12.2.2 and in the previous sub-section. We have shown that the
movements along light rays lead directly to the light cone co-ordinates. We did this
by noting that the light cone movements e0 ± e1 transform through

e′
0 ± e′

1 = k∓(v)(e0 ± e1)

where k(v) =
√

1+v
1−v

. We then use the projection η to obtain the light cone co-
ordinates so that

t ′ ± x ′ = k∓(v)(t ± x)

12 Process, Distinction, Groupoids and Clifford Algebras 723

The basic idea of the k-calculus is to explore the geometry of space armed only
with a radar gun and a clock. The gun is fired from the origin of the co-ordinate
system at time t1 so that this event has co-ordinates (t1, 0). The radar signal returns
to the origin at time t2 after being reflected off an object at the point (t, x). Assuming
the speed of light is unity (c = 1) both ways, we see that

t2 − t1 = 2x and t2 + t1 = 2t.

In terms of the Kauffman’s iterant calculus, we can write

[t2, t1] = [t + x, t − x]

But we have already shown in Eq. (12.16) how the RHS of this equation transforms
under a Lorentz transformation. Thus we have

[t ′2, t ′1] = [t ′ + x ′, t ′ − x ′] = [k−1(v)(t + x), k(v)(t − x)] = [k−1(v)t2, k(v)t1]

This means that

t ′1 = kt1(v) and t2 = k(v)t ′2 (12.16)

These are just the starting relations of the k-calculus. Its assumption is that if
observer A sends, at time t1, a signal to observer A′ moving at a constant relative
speed v, then it is received at A′, at time t ′1, where t ′1 = k(v)t1. Because of the
principle of relativity if A′ sends at time t ′2 a signal to A then it will be received at
time t2, where t2 = k(v)t ′2. This is just the result obtained in Eq. (12.16).

Thus it is possible to use the principle of Galilean relativity, the constancy of the
speed of light and like-light movements to abstract Minkowski space-time. Light-
like movements are, of course, simply light signals. For more details of this approach
see Kauffman [23, 40].

12.4.4 The Light Cone Geometry

The results of the previous subsection indicates that the basic movements can be
factorised into what seem to be a dual pair of spinors, namely, elements of a mini-
mal left and right ideals. We now want to show that these elements can be given a
meaning in terms of the light cone structures. This means that the properties of the
light cones are implicit in the Clifford algebra itself.

Let us see how this works. Consider the Pauli Clifford algebra, C3,0 and let us
take the idempotent to be (1 + e3)/2. Then we can form the element

ΨL(r, t) = ψL(r, t)(1 + e3)/2 (12.17)

724 B.J. Hiley

where

ψL = g0(r, t) + g1(r, t)e23 + g2(r, t)e31 + g3(r, t)e12

Let us now define a vector V in the Clifford algebra through the relation V =
ΨLΨR = ψL(1 + e3)ψR where ψR = ψ̃L . Here ∼ denotes the Clifford conjugate.
Then

V = v01 + v1e1 + v2e2 + v3e3

where

v0 = g2
0 + g2

1 + g2
2 + g2

3 v1 = 2(g1g3 − g0g2)

v2 = 2(g0g1 + g2g3) v3 = g2
0 − g2

1 − g2
2 + g2

3. (12.18)

This will be immediately recognised as a Hopf map [47], which is not surprising
since we are essentially dealing with light spheres as we will show in Sect. 12.4.6.

Furthermore Eq. (12.18) shows that v2
0 = v2

1 + v2
2 + v2

3. Thus if we now map
φ : 1 → e0 with e2

0 = −1 and impose the condition e0ei + ei e0 = −2δ0i we have
lifted the vector into the larger Clifford algebra C3,1. However since now −v2

0 +
v2

1 + v2
2 + v2

3 = 0, we have constructed a null vector in this larger Clifford algebra.
If we now project this Clifford vector into a vector in V3,1 by η : C3,1 → V3,1 we
have constructed a light ray v(r, t) in V3,1. If we fix the vector at the origin of the
co-ordinate system in V3,1, then vary r, t we generate a light cone in V3,1. Thus
light-like movements in the Clifford algebra can be used to generate a light cone
structure on the vector space V3,1 which can be taken to be our space-time. This
means that we have used elements of the minimal left ideal and its conjugate to
generate the light cone.

This result is not that surprising because our elements of IL are simply spinors in
another guise. Normally we use matrices to represent spinors. Thus in more familiar
form

|Ψ 〉 →
(

ψ1
ψ2

)

(12.19)

Then we write

|Ψ 〉〈Ψ | =
(|ψ1|2 ψ1ψ

∗
2

ψ2ψ
∗
1 |ψ2|2

)

If we now compare this with the matrix that Penrose introduces to describe a light
ray,

X =
(

t + z x − iy
x + iy t − z

)

(12.20)

12 Process, Distinction, Groupoids and Clifford Algebras 725

we find

t = |ψ1|2+|ψ∗
2 |2 x = ψ1ψ

∗
2 +ψ∗

1 ψ2 y = i(ψ1ψ
∗
2 −ψ∗

1 ψ2) z = |ψ1|2−|ψ∗
2 |2

These relations are, in fact, identical to the expression in (12.18) provided first
we map (v0, v1, v2, v3) → (t, x, y, z) and then use the relations between (g0, g1,

g2, g3) and (ψ1, ψ2) presented in Hiley and Callaghan [42]. The mathematical rea-
son for this to work runs as follows. We can map the equivalence class of minimal
left ideals onto a Hilbert space ρ : ΨL → |ψ〉. In this way we can represent the
elements of the left ideal as matrices. Then ρ : ΨLΨR → |ψ〉〈ψ |, the expression
for the conventional density matrix.

12.4.5 The Dirac Clifford and Sl(2C)

In the previous sub-section although we started from the Pauli Clifford, C3,0, we
lifted our structure into the Dirac Clifford C3,1 and found that we have generated
light cones. Now it is well known that Sl(2C) is the double cover of O↑

+(1, 3) [47].
The irreducible representations of Sl(2C) are two-dmensional whereas the Dirac
spinor is four-dimensional. The Dirc spinor, while being an irreducible representa-
tion of the Clifford algebra, is not an irreducible representation of the spin group
Sl(2C).

We can express this more formally by considering a Clifford bundle over an
n-dimensional orientable manifold M . Call the set of sections of this bundle Δ(M).
Then the Dirac spinor ΨL ∈ Δ(M) is irreducible. The irreducible representations
of the spin group are classified by the eigenvalues of en+1 = ie1 . . . en . In the Dirac
case (en+1)

2 = 1, so that the eigenvalues of en+1 are ±1. Δ(M) is then split into
two eigenspaces

Δ(M) = Δ+(M) ⊕ Δ−(M) (12.21)

We can now introduce two projection operators, P±, defined by

P± = (1 ± en+1)

so that

P+ΨL =
(

Ψ +
L
0

)

∈ Δ+(M), P−ΨL =
(

0
Ψ −

L

)

∈ Δ−(M).

In this representation, a general element of the Lorentz group takes the form

L =
(

Λ 0
0 (Λ†)−1

)

L−1 =
(

Λ−1 0
0 Λ†

)

726 B.J. Hiley

Here Λ is the 2 by 2 matrix

Λ =
(

α β

γ δ

)

where α, β, γ, δ ∈ C and αδ − βγ = 1. Also

(Λ†)−1 = CΛ∗C−1 =
(

δ∗ −γ ∗
−β∗ α∗

)

and

C =
(

0 1
−1 0

)

= −C−1

In this way we recognise that Λ is the irreducible representation of Sl(2C). This
group has a conjugate irreducible representation, Λ∗ ∈ Sl(2C). These together with
the respective dual irreducible representations (Λ̃)−1 and (Λ†)−1 provide all the
necessary information to completely describe the role of the Dirac spinor. Here ∼ is
the transpose of the matrix representation.

Indeed the spinor defined in Eq. (12.17) corresponds to P+ΨL and clearly trans-
forms as

Ψ +′
L = ΛΨ +

L while Ψ −′
L = (Λ†)−1Ψ −

L

On the other hand we also have Ψ +′
R = Ψ +

R Λ†, where Ψ +′
R = Ψ̃ +′

L . Here ∼ is the
Clifford conjugate.

If we now form Ψ +
L Ψ +

R = X (x) where X is given by Eq. (12.20). Then under a
Lorentz transformation X (x ′) = ΛX (x)Λ, or more transparently

X (Lx) = Λ(L)XΛ(L)†

We can form a dual matrix X(x) which is constructed from ψL(1 − e3)ψR . This
means that in the matrix representation used above

X =
(

t − z −x + iy
−x − iy t + z

)

This gives, under a Lorentz transformation

X(Lx) = (Λ†)−1 X(x)Λ−1

12 Process, Distinction, Groupoids and Clifford Algebras 727

It may be of some interest to note the following results:

X(x)X (y) + X(y)X (x) = 2x.y

X(x)X (y) − X(y)X (x) = 2X (x0y − y0x + x ∧ y)

detX (x) = X(x)X (x) = x2

X(x)X (y) − X (y)X(x) = 2X (x ∧ y).

Finally let us return to the matrix representation of the Dirac algebra so that we
can fit our approach into the more conventional one. We write

Ψ =
(

λ

ρ

)

where λ and ρ are column spinors of dimension 2. In fact

Ψ +
L → λ Ψ −

L → ρ.

The two spinors λ and ρ correspond to the chiral Weyl spinors which are used to
describe the left- and right-handed neutrino states. But notice that in our approach
we have nowhere introduced quantum mechanics. The Clifford algebra is simply a
way to describe the geometry of space-time. What is remarkable is the way physi-
cists are introduced to the Dirac formalism. It appears that we are forced into the
Clifford algebra by quantum mechanics, but this is manifestly not the case. Rather
we should introduce the algebra from classical geometry and then show that quan-
tum mechanics exploits the structure of this geometry. In this way quantum mechan-
ics is not all that strange or novel.

Formally these ideas can be put into the language of fibre bundles. The left-
handed Weyl spinor is a section of the spin bundle (W, π, M, C

2, Sl(2C)) while the
right-handed Weyl spinor is a section of (W .π, M, C, Sl(2C)). In this language the
Dirac spinor is a section of (D, π, M, C, Sl(2C) ⊕ Sl(2C)).

12.4.6 Past and Future Light Cones

Consider a null ray defined by

r2 − c2t2 = 0

Then for a fixed t , the light cone intersects a space-like hypersurface in a sphere
with raduis r = ±ct . This means that if t is positive, the sphere is on the future
light cone, while if t is negative, the sphere is on the past light cone. However the

728 B.J. Hiley

points on a sphere can be characterised by a stereographic projection onto points on
a plane with coordinates λ = (ξ, η) [48]. This we write as a matrix

ψ =
(

ξ

η

)

(12.22)

Under a Lorentz transformation we have

ψ ′ = Λ1(L)ψ (12.23)

Now we have seen that

x0 = |ξ |2 + |η|2, x1 = ξ η̄ + ξ̄ η x2 = i(ξ η̄ − ξ̄η) x3 = |ξ |2 − |η|2

In the dotted and undotted notation of Penrose and Rindler [44] these results follow
from

xμ = σ AȦ
μ ψAψ̄ Ȧ

where σ AȦ
μ are the spin frames

√
2σ AȦ

0 =
(

1 0
0 1

) √
2σ AȦ

1 =
(

0 1
1 0

) √
2σ AȦ

2 =
(

0 i
−i 0

) √
2σ AȦ

3 =
(

1 0
0 −1

)

Here we identify Eq. (12.22) with ψA via ψ1 = ξ and ψ2 = η.
Let us look at the infinitesimal version of the transformation (12.23) by writing

Λ1(L) = 1 + ε

(
α β

γ δ

)

then

Δξ = ε(αξ + βη) Δη = ε(γ ξ + δη)

Δξ̄ = ε(ᾱξ̄ + β̄η̄) Δη̄ = ε(γ̄ ξ̄ + δ̄η̄)

Thus xμ transforms as

x ′
μ = 1 + ων

μxν

with

ων
μ =

⎛

⎜
⎜
⎝

0 −a4 −a5 −a6
−a4 0 a3 −a2
−a5 −a3 0 a1
−a6 a2 −a1 0

⎞

⎟
⎟
⎠ (12.24)

12 Process, Distinction, Groupoids and Clifford Algebras 729

where

2a1 = i(−β + β̄ − γ + γ̄) 2a2 = (β + β̄ − γ − γ̄)

2a3 = i(−α + ᾱ + δ − δ̄) 2a4 = (−β − β̄ − γ − γ̄)

2a5 = i(−β + β̄ + γ − γ̄) 2a6 = (−α − ᾱ + δ + δ̄). (12.25)

Now let us examine the past light cone. Let us again use the stereographic pro-
jection only this time using coordinates ρ = (σ, τ) which we can again write this in
matrix form

φ =
(

σ

τ

)

. (12.26)

Under a Lorentz transformation we have

φ′ = Λ2(L)φ.

Then since the infinitesimal Lorentz transformation can be written as

Λ2(L) = 1 + ε

(
A B
Γ Δ

)

,

we find

Δσ = ε(Aσ + Bτ) Δτ = ε(Γ σ + Δτ)

Δσ̄ = ε(Āσ̄ + B̄τ̄) Δτ̄ = ε(Γ̄ σ̄ + Δ̄τ̄).

Let us see what happens to a vector that can be written in the form

y0 = −(|σ |2 +|τ |2), y1 = σ τ̄ + σ̄ τ y2 = i(σ τ̄ − σ̄ τ) y3 = |σ |2 −|τ |2

This becomes in the dotted-undotted notation

yμ = σ
μ

ȦA
ψ Aψ

Ȧ

where we can identify ψ
Ȧ

with φ in Eq. (12.26) through the relations ψ
1̇ = σ and

ψ
2̇ = τ . Writing

y′μ = 1 + ωμ
ν yν

and comparing this with the expression (12.24), we find

2a1 = i(−B + B̄ − Γ + Γ̄) 2a2 = (B + B̄ − Γ Γ̄) 2a3 = i(−A + Ā + Δ − Δ̄)

2a4 = (B + B̄ + Γ + Γ̄) 2a5 = i(B + B̄ − Γ + Γ̄) 2a6 = (A + Ā − Δ − Δ̄)

730 B.J. Hiley

Comparing this expression with the expressions given in (12.25) we find

A = δ̄ B = −γ̄ Γ = −β̄ Δ = ᾱ

This means that the expression for Λ2 becomes

Λ2 = 1 + ε

(
δ̄ −γ̄

−β̄ ᾱ

)

Thus

Λ2(L) = (Λ∗)−1

This means that Λ1 ∈ Sl(2C) and Λ2 ∈ Sl(2C). With these results we can then

argue that the spinor ψA can be used to describe the future light cone, while ψ
Ȧ

describes the past light cone.
Since in the matrix representation the Dirac spinor can be written as

Ψ =
(

ψA

ψ
Ȧ

)

we see the Dirac spinor contains information about the future and past light cones.
If we return to the Clifford algebra itself rather than a matrix representation, an

element of the minimal left ideal of the Dirac Clifford ΨL contains the information
necessary to describe both the future and past light cones.

It is interesting to note that we are able to show how ψA and ψ
Ȧ

are related to
stereographic projections of a point on the light sphere emerging from the origin O .
We illustrate this relationship in Fig. 12.4. The light ray from O passes through the
light cone at the point P . If we project this point from the North pole, N , to the point

QN we find the spinor co-ordinates of this point is ψ
Ȧ

. If we project P from the
South pole, S, to the point Qd

S we find the spinor co-ordinates of this point is ψA.
Under a Lorentz transformation Q N and Qd

S transform together. For more details
on stereographic projections see Frescura and Hiley [48].

We can discuss all of this in terms of elements of the minimal ideals, which
begins to explain why the Hopf transformation in Eq. (12.18) appears. To do this we

Fig. 12.4 Spinors describing stereographic projections

12 Process, Distinction, Groupoids and Clifford Algebras 731

first note that ΨL contains elements from a pair of minimal left ideals of the covering
group, one corresponds to Sl(2C) itself, the other corresponds to Sl(2C) as we have
discussed above. In fact if we introduce the projection operators (1± ie5)/2 we find
that ψA has components

(1 − ie5)(1 − e03)/4 and (1 − ie5)(e13 + e01)/4.

The other element that we are interested in is ψ̄ Ȧ which has components

(1 + ie5)(e0 − e3)/4 and (1 + ie5)(e2 + e023)/4.

These projections give rise to the left- and right-handed helicity or Weyl states [49].
The notation can become more physically meaningful if we write

Ψ =
(

ψλ

ψρ

)

,

where the suffixes λ and ρ denote the left- and right-handed Weyl spinors respec-
tively.

It should be noted that so far all this discussion has been about classical space-
time. We have done absolutely nothing to suggest that this mathematics has anything
to do with quantum theory. Let us continue in this vein by going to the conformal
Clifford C2,4 where we will find the twistor of Penrose [20] appearing.

12.5 The Conformal Clifford C2,4

12.5.1 The Twistor and Light-Cone Structures

In order to explain how the twistor plays a role in relating different light cones at
different points in space-time, we will not start from the structure of elements of the
minimum left ideals but from a specific matrix representation. This will help us to
see how this bigger structure is related to the Dirac spinors discussed in Sect. 12.4.6.

We begin by considering a six-dimensional hypersphere given by the equation

(βAξ A)2 = Ω2 where A = (0, 1, 2, 3, 4, 5)

Here we have departed from our standard notation by using βs instead of es for
the generators of the Clifford algebra. Thus we write {βA} for the generators of the
conformal Clifford algebra C2,4. We choose to write the metric tensor in the form
gAB = (+ − − − −+) so that [βA, βB] = gAB . The spinors of the six-space, ξ A,
are then defined through the relationship

(βAξ A)Ψ = 0 (12.27)

732 B.J. Hiley

Now we will choose a specific representation of the generators such that

βμ = 1 ⊗ γμ β4 = σ1 ⊗ γ5 β5 = σ1σ3 ⊗ γ5

β2
i = −1; β2

0 = 1; β2
4 = −1; β2

5 = 1.

Here the γμ are the generators of the Dirac Clifford with μ = {0, 1, 2, 3}. The σ s are
the generators of the Pauli Clifford algebra. By writing things in this way, it becomes
clear how these algebras are related to each other. Equation (12.27) becomes

(ξ 4 + ξ5)ψλ2 = −i(ξ0 − σiξ
i)ψρ1

(ξ4 − ξ5)ψλ2 = −i(ξ0 − σiξ
i)ψρ2

(ξ4 + ξ5)ψρ2 = i(ξ0 + σiξ
i)ψλ1

(ξ4 − ξ5)ψρ1 = i(ξ0 + σiξ
i)ψλ2

where Ψ =

⎛

⎜
⎜
⎝

ψλ1

ψλ2

ψρ1

ψρ2

⎞

⎟
⎟
⎠ (12.28)

Here Ψ is a bi-twistor which has eight components. The subscripts λ and σ again
signify the left- and right-handed Weyl spinors, only now we have two pairs of Weyl
spinors. Thus the bi-twistor contains of two Dirac four-spinors

⎛

⎜
⎜
⎝

ψλ1

0
ψρ1

0

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

0
ψλ2

0
ψρ2

⎞

⎟
⎟
⎠ (12.29)

This means that we can describe two light cones within a single bi-twistor. We will
see that it is this feature of the Penrose bi-twistor that will enable us to relate light
cones at different points.

We have shown elsewhere [61] that the bi-twistor also contains a pair of Penrose
twistors which can be written in the form

⎛

⎜
⎜
⎝

ψλ1

0
0

ψρ2

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

0
ψλ2

ψρ1

0

⎞

⎟
⎟
⎠

As we will see the doubling will give a symmetrical relation between the pair of
light cones described in Eq. (12.29).

Thus we see that there is a deep relationship between the Dirac spinors and the
Penrose twistors which is sometimes overlooked in the component notation nor-
mally used to discuss twistors [20]. Furthermore since the Clifford algebra is a
geometric algebra, this relationship must be geometric in nature and we emphasise,
once again, that this has nothing per se to do with quantum mechanics. In other
words the conformal spinor can be regarded as a combination of various sub-spinors
and we need to find out the exact meaning of these spinors.

12 Process, Distinction, Groupoids and Clifford Algebras 733

To do this let us go on to consider the relation between the conformal structure
and Minkowski space. We will see that this is a projective relationship, which entails
breaking the symmetry by fixing the light cone at infinity. To bring this feature out,
we need to know how the co-ordinates xμ of a point in Minkowski space-time are
related to the projective co-ordinates ξ A in the six-dimensional hyperspace. The
projective relationship we need is

xi = ξ i

ξ 4 + ξ5
; and x0 = ξ0

ξ 4 + ξ5
. (12.30)

This means that at the origin of our co-ordinate system in Minkowski space, we
have x0 = xi = ξ0 = ξ i = 0. We need one more relationship to completely specify
the origin in terms of the ξ A. This relationship is

(
ξ4

)2 −
(
ξ 5

)2 = 0 =
(
ξ4 − ξ 5

) (
ξ4 + ξ5

)
(12.31)

Thus if
(
ξ4 + ξ5

) �= 0 then
(
ξ4 − ξ 5

) = 0. In terms of the projective co-ordinates,
the origin is specified by

x0 = xi = ξ0 = ξ i =
(
ξ4 − ξ5

)
= 0

To see the implications for the spinors discussed above, lets us return to
Eq. (12.28) where the spinors (ψλ,ψρ) are expressed in terms of ξ A. If we examine
the first and third equation in (12.28) we see immediately that ψλ2 = ψρ2 = 0. This
means that the bi-twistor at the origin is identified by

Ψ =

⎛

⎜
⎜
⎝

ψλ1

0
ψρ1

0

⎞

⎟
⎟
⎠

Thus this bi-twistor represents light rays on the light cone at the origin (Fig. 12.5).

Fig. 12.5 Relative location of light cones

734 B.J. Hiley

To see the meaning of the second term in Eq. (12.29) we must first recall the
expression for the translation operator in the conformal group. This can be shown
to be [61]

U (Δx) = 1 − Δxμ Pμ where Pμ = 1

2
βμ(β4 − β5)

Here Δx is the displacement produced.
Applying this to the bi-twistor we find

U (Δx)

⎛

⎜
⎜
⎝

ψλ1

ψλ2

ψρ1

ψρ2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ψλ1

−i(Δx0 − σΔx)ψρ1

ψρ1

i(Δx0 + σΔx)ψλ1

⎞

⎟
⎟
⎠ (12.32)

which means that we have generated a new light ray on a new light cone at (x0, xi)

given by

ψλ2 = −i(x0 − σi x i)ψρ1 and ψρ2 = −i(x0 + σi xi)ψλ1

Thus our bi-twistor describes light rays on two light cones, one at the origin of the
co-ordinates while the other is at some other point (x0, xi) as shown in Fig. 12.6.

Recalling that the origin has ψλ2 = ψρ2 = 0, we get the pairing

(
ψλ1

i(Δx0 + σ.Δx)ψλ1

)

and

(
ψρ1

−i(Δx0 − σ.Δx)ψρ1

)

These are the two twistors that Penrose has introduced, one based on the forward
light cone, the other on the past light cone.

All of these results can be obtained from the conformal Clifford using elements
of the left ideals. However we will not discuss these here but will be presented
elsewhere.

Fig. 12.6 Twistor translates light ray through the origin

12 Process, Distinction, Groupoids and Clifford Algebras 735

12.5.2 Conclusions Drawn from the Orthogonal Clifford Algebras

Let us now summarise the position we have reached so far. We have shown that the
orthogonal Clifford algebras carry a rich light-cone structure and that this structure
can be abstracted from the algebra itself without the need to start from an a priori
given vector space. This means that we do not have to start with a tensor structure on
a vector space only to find later that we are forced to introduce the spinor structure,
almost as an after thought, a feature that puzzled Eddington. He summed this up
by famously remarking, “Something has slipped through the net” [62]. Rather we
can start by taking process as basic and from the process itself, abstract a light-cone
structure. Key to this approach is the interpretation of the structure of elements of
the minimal left and right ideals of the algebra.

Recall that we started by considering an undivided whole in the form of the holo-
movement. We then followed Kauffman’s [13] idea of making a mark or distinction
in this total flux of process and then define a series of “extensons”, which could be
ordered into a groupoid. By adding structure, this groupoid can be developed into
an algebra. We concentrated on the orthogonal symmetry that we see around us and
showed how to construct a hierarchy of orthogonal Clifford algebras. We then show
that from this algebra, we can abstract some of the usual properties of space-time by
identify elements of the minimal left ideals with a light-cone structure. In fact we
arrive at a structure of light-cones which ensures the underlying manifold we have
constructed is Poincaré invariant.

In doing this we have identified the elements of a minimal left ideal with the
spinors used in the usual approach. However we have a richer structure since we
have sets of primitive idempotents from which we generate additional spinor struc-
tures, but in the usual approach these are all treated as equivalent and we therefore
loose the possibility of exploiting this additional structure. One feature of this richer
structure is that we are able to identify different distinctions with different idem-
potents, thus enabling us to obtain an insight to the implicate order introduced by
Bohm [51] as we will explain later. There is a further advantage of our approach
and this removes Eddington’s worry because our resulting structure contains both
spinors and tensors on an equal footing since both entities arise naturally within the
algebra itself.

Let us look more carefully at how the distinctions are made and how each dis-
tinction “carves out” a specific space-time structure. In the Dirac algebra we make a
distinction by picking out a specific time frame which is done by choosing a prim-
itive idempotent ε = (1 + e0)/2. Using this idempotent we can then construct the
light-cone structure based on this choice of idempotent.

Another observer can choose another distinction to produce a different time
frame, namely, ε′ = (1 + e′

0)/2. This will then produce a different light-cone struc-
ture. Of course these structures are equivalent since they are related through

ε′ = gεg−1, where g ∈ G.

Here G is the Clifford group, which, in the case of the Dirac algebra, is simply the
covering group of the Lorentz group.

736 B.J. Hiley

The reaction to these ideas from the physicist brought up in the traditional way
will probably be “Surely this is just the same as choosing a specific Lorentz frame
of reference.” Of course mathematically the two approaches are equivalent, but they
are based on very different intuitive ideas. In the approach we are proposing here, the
activity is going on in a structure in which there is no distinction between space and
time. In fact, strictly there is no space or time. There is only a pre-space-time. Space-
times are constructed by breaking the symmetry in the total process by choosing a
specific idempotent is used to describe the process. In this special case a specific
idempotent to define a specific time-frame. In other words the idempotents define
equivalence classes of observers, namely Lorentz observers.

Perhaps Fig. 12.7 may help to bring the idea out more clearly. Speaking loosely
we could say the activity is “going on” in the “space” E , whereas our description
of what is going on is in the projections ηi , in what I have elsewhere [50] called
“shadow manifolds”.

Fig. 12.7 The construction of shadow manifolds

In the language that David Bohm used [51], we can regard E as the holomove-
ment or implicate order. The shadow manifolds are then the sets of explicate orders
consistent with the implicate order. Once again we stress that the structure we have
been discussing is purely classical and contains no feature of quantum mechanics
even though we have a non-commutative algebra. To introduce quantum processes
we must add more structure.

12.6 Connections in the Clifford Bundle

12.6.1 The Dirac Connection

In the previous section we have ended up with a mathematical structure which
has remarkable similarities to a Clifford bundle. If we take just one of the shadow

12 Process, Distinction, Groupoids and Clifford Algebras 737

manifolds to be the base space then in fact we have a Clifford bundle. In this section
we will develop our ideas further by exploiting known features of a Clifford bundle
[52].

We will begin by considering a single shadow manifold and assume it to be a
Riemannian manifold, M . We then construct a Clifford bundle Cn,m(M) with this
manifold as the base space. Although not necessary, we will assume for simplicity
the manifold to be flat. Let E be a bundle of left modules over Cn,m(M) so that at
each point x ∈ M , the fibre is a left module over Cn,m(M)x .

In Sect. 12.5.1 we introduced a notion of space translation which led to the
concept of the twistor. This looked after the geometric properties of the light cone
structure. Now we want to consider particle dynamics so we introduce a first order
differential operator D : Γ (E) → Γ (E), where Γ (E) is the space of smooth cross-
sections of E . This derivative is the algebraic equivalent of the directional derivative
on the manifold. The derivative D defines a connection on M . If σ ∈ Γ (E) then we
define the connection through

Dσ =
n∑

j=1

e j∂x j

where the {e j } are the generators of Cn,m satisfying the relation η(e j) = x j , x j
being the local co-ordinates of the point x on M . This connection is called the Dirac
operator because it is easy to show that D2 is the Dirac Laplacian ∇2. Notice this
definition can be used for any Clifford algebra and is not restricted to the relativistic
algebra C1,3.

It is through this connection that we are able to handle the hierarchy of
Clifford algebras, C0,1, C3,0, C1,3. We will call these algebras the Schrödinger,
Pauli and Dirac Clifford algebras respectively. The reason for introducing the term
“Schrödinger” is because ordinary non-relativistic quantum mechanics forms a triv-
ial complex line bundle E = R

3 ⊗ C. Here the wave function ψ(x) is simply a
section of E . This translates into our structure because C0,1 ∼= C.

Notice as we remarked above, each algebra in the hierarchy has its own Dirac
operator. These are

D = e
∑3

i=1 ∂xi Schrödinger

D = ∑3
i=1 σi∂xi Pauli

D = ∑3
μ=1 γμ∂xμ Dirac

We should immediately recognise these as the momentum operators used in quan-
tum mechanics. Notice the sum does not include the time derivative. The reason for
this will become clear in the next sub-section.

Now it is also possible to view Cn,m(M) as a bundle of right modules which
means we can exploit right multiplication, i.e. multiplication from the right. This
means we also have the possibility of a “right” Dirac operator which we will denote

738 B.J. Hiley

as
←−
D = ∑n

j=1
←−
∂ x j e j . The ‘left’ Dirac operator introduced above will be denoted

by
−→
D .9 Notice that

←−
D

2
also produces the Dirac Laplacian.

12.6.2 Relevance to Quantum Mechanics

In the conventional approach it is the wave function that is singled out for special
attention because it is assumed to contain all the information for describing the state
of the system. We do not have a wave function. Instead we use elements of the
minimal left and right ideals which we single out for special attention. However as
we have pointed out earlier, the information contained in an element of the left ideal,
say ΨL , is exactly the same as that contained in the conventional wave function.

We have already pointed out that the key element in our description is not ΨL

alone but ρ̂ = ΨLΨR . As we have also pointed out above ρ̂ is equivalent to the
density operator for a pure state (ρ̂2 = ρ̂) in the conventional quantum theory. This
means we must consider derivatives of the form (

−→
D ΨL)ΨR and ΨL(ΨR

←−
D). Rather

than treat these two derivatives separately we will consider expressions like

(
−→
D ΨL)ΨR + ΨL(ΨR

←−
D) and (

−→
D ΨL)ΨR − ΨL(ΨR

←−
D)

which in turn suggests we also write the time derivatives as

(∂tΨL)ΨR + Ψ (∂tΨR) and (∂tΨL)ΨR − Ψ (∂tΨR)

Now the dynamics must include the Dirac derivatives, the external potentials, V ,
and the mass of the particle, so we will introduce two “types” of Hamiltonian,

−→
H =−→

H (
−→
D , V, m) and

←−
H = ←−

H (
←−
D , V, m). Our defining dynamical equations now read

i[(∂tΨL)ΨR + Ψ (∂tΨR)] = i∂t ρ̂ = (
−→
H ΨL)ΨR − ΨL(ΨR

←−
H) (12.33)

and

i[(∂tΨL)ΨR − Ψ (∂tΨR)] = (
−→
H ΨL)ΨR + ΨL(ΨR

←−
H) (12.34)

The first of these Eq. (12.33) can be written in the more suggestive form

i∂t ρ̂ = [H, ρ̂]− (12.35)

This equation has the form of Liouville’s equation and can be shown to correspond
exactly to the conservation of probability equation.

9 It should also be noted that these derivatives are related to the sum and differences of the bound-
ary, δ∗, and co-boundary, δ operators in the exterior calculus.

12 Process, Distinction, Groupoids and Clifford Algebras 739

Equation (12.34) can be written in the form

i[(∂tΨL)ΨR − Ψ (∂tΨR)] = [H, ρ̂]+ (12.36)

As far as I am aware this equation has not appeared in this form in the literature
before it was introduced by Brown and Hiley [53]. They arrived at this equation
using a different method and showed it was in fact the quantum Hamilton-Jacobi
Equation that appears in Bohm’s approach to quantum mechanics.

To bring out exactly what these equations mean in the approach we have adopted
here, let us look at their form in the Schrödinger Clifford algebra C0,1. Here ΨL =
a(r, t) + eb(r, t) where e is the generator of the Clifford algebra C0,1 and a, b ∈ �.
Similarly ΨR = a(r, t) − eb(r, t). This means that ΨLΨR = a2 + b2 which is just
the probability density. Using H = p2/2m +V it is not difficult to show Eq. (12.35)
becomes

∂t P + ∇(P∇S/m) = 0

which is clearly the usual conservation of probability equation.
Equation (12.36) can be considerably simplified if we write ΨL = R exp[eS],

then after some work we find the equation becomes the quantum Hamilton-Jacobi
equation

∂t S + (∇S)2/2m + Q + V = 0

where Q = −∇2 R/2m R is the usual expression for the quantum potential.
We have thus arrived at the two dynamical equations that form the basis of the

Bohm approach to quantum mechanics. By generalizing this to the Pauli and Dirac
Clifford algebras on can obtain a complete description of the quantum dynamical
equations for the Pauli and Dirac particles. In each case we get a Louville type
conservation of probability equation and in each case we have a quantum Hamilton-
Jacobi equation. Thus we find the defining equations used in the Bohm approach
appear in each of the three Clifford algebras considered in this paper. This means
we have an approach to relativistic particle quantum mechanics that is completely
analogous to the one used by Bohm for the non-relativistic Schrödinger equation.
Thus the common misconception that the Bohm approach cannot be applied in the
relativistic domain is just not correct.10 The full details of our approach to the rela-
tivistic domain will be found in Hiley and Callaghan [43].

The method we have outlined in this paper improves considerably on the previ-
ous attempts to extend the Bohm approach to spin and to the relativistic domain.
For example the Pauli equation has already been treated by Bohm, Schiller, and
Tiomno [55] and Hestenes and Gurtler [56], while the Dirac theory has been only

10 The results discussed here are for a fixed number of particles. To discuss creation and annihila-
tion of particles we must go to a field theory as discussed in Bohm et al. [54].

740 B.J. Hiley

been partially treated in terms of the Bohm approach by Bohm and Hiley [57] and
by Hestenes [8]. Our method presented here gives a systematic approach arising
directly from connections in the appropriate Clifford bundles.

12.7 Expectation Values

12.7.1 How to Find the Coefficients in ρ̂

In the previous section we have shown how the state of the system is described by
the Clifford density element, ρ̂ = ΨLΨR , evolves in time. However we need to
extract information about the properties of the quantum system from ρ̂. To do this
we need to examine the details of ρ̂. In general this element takes the form

ρ̂ = ρs +
∑

ρi ei +
∑

ρi j ei j + . . .

Clearly the coefficients, ρ...i ..., characterise different aspects of the state of the sys-
tem. How then do we abstract these coefficients from the general expression?

Notice first that any Clifford element, B, can also be written in the form

B = bs +
∑

bi ei +
∑

bi j ei j + . . .

Secondly, all Clifford algebras contain a notion of trace, where the trace of the iden-
tity element is the dimension of the ILm and the trace of each eA is zero except when
A = 0. Then

tr(B) = bsn

Thus the scalar coefficient corresponds to taking the trace. To find the other coeffi-
cients we note that if we multiply B by the appropriate basis element e...i j ..., we will
always be left with a scalar term. This term will then be the trace. But of course this
will just give the coefficient that stands in front of the particular e...i j ... chosen. For
example if we want to find bk , we form tr(Bek) which then picks out bk because

tr(Bek) = nbk

In this way we can systematically find all the coefficients of any element in the
algebra.

To illustrate this in the particular case of the Dirac Clifford, we write

B = bs +
∑

bi ei +
∑

bi j ei j +
∑

bijkeijk + b5e5

12 Process, Distinction, Groupoids and Clifford Algebras 741

Then we have 5 trace-types

bs = tr(B1)/4 bi = tr(Bei)/4 bi j = −tr(Bei j)/4

bijk = −tr(Beijk)/4 b5 = tr(Be5)/4

Thus we can find all the coefficients of any element of the Dirac Clifford.

12.7.2 How to Find Expectation Values

In standard quantum mechanics, expectation values of operators are found via:

〈B〉 = 〈ψ |B|ψ〉 = tr(Bρ)

Here ρ is the standard density matrix. These mean values can be taken over directly
into the algebraic approach by replacing the standard density matrix by the ρ̂ as can
easily be seen from the following formal correspondences:-

|ψ〉 → ΨL = ψLε 〈ψ | → ΨR = εψR

Then we can write

〈B〉 = tr(εψR BψLε)

Since the trace is invariant under cyclic permutations, we can arrive at the form

〈B〉 = tr(ψR BψLε) = tr(BψLεψR) (12.37)

But ψLεψR = ρ̂, so we have

〈B〉 = tr(Bρ̂)

Thus the mean value of any dynamical element, B, in the Clifford algebra becomes

tr(Bρ̂) = tr(bs ρ̂ +
∑

bi ei ρ̂ +
∑

bi j ei j ρ̂ + . . .)

= bstr(ρ̂) +
∑

bi tr(ei ρ̂) +
∑

bi j tr(ei j ρ̂)/2 . . .

This shows that the state of our system is specified by a set of bilinear invariants

tr(1ρ̂) → scalar tr(e j ρ̂) → vector tr(ei j ρ̂) → bivector tr(. . .) → . . .

These bilinear invariants play an important role in the algebraic approach.

742 B.J. Hiley

12.7.3 Some Specific Expectation Values

We now give a specific example of how we calculate expectation values in the Pauli
Clifford algebra. Suppose we require the expectation value of a component of the
spin of a Pauli particle. We identify the spin components with the elements {ei } of
the algebra. Then, specifically for i = j , we find that the expectation value of the
j th component of the spin is given by

〈S j 〉 = tr(e j ρ̂). (12.38)

In order to evaluate ρ̂ = ψLεψR , we need to chose a specific expression for ε.
Since it is conventional to choose the z-direction as the direction of any applied
homogeneous magnetic field, we choose for our idempotent (1 + e3)/2. Thus

2〈S j 〉 = tr(e jψL(1 + e3)ψR) = tr(e jψLe3ψR).

Let us define ρS = ψLe3ψR where ΨL is given by

ΨL = ψLε = (a + e123d)(1 + e3)/2 + (c + e123b)(e1 + e13)/2 (12.39)

Here a, b, c and d are related to the components of the usual matrix representation
(See Eq. 12.19)

ψ =
(

ψ1
ψ2

)

(12.40)

via

2a = ψ1 + ψ∗
1 2c = ψ2 + ψ∗

2

2e123d = ψ1 − ψ∗
1 2e123b = ψ2 − ψ∗

2 . (12.41)

Using Eqs. (12.39) and (12.41), it can be shown that S is the usual expression for
the spin vector

ρS = (ψ1ψ
∗
2 + ψ2ψ

∗
1)e1 + i(ψ1ψ

∗
2 − ψ2ψ

∗
1)e2 + (|ψ1|2| − |ψ2|2)e3 (12.42)

Thus we find

〈Sj 〉 = tr(e jρS) = (e j · ρS)/2

Here we use the conventional notation that (A · B)/2 is the scalar part of the Clifford
product. This simply picks out the appropriate coefficient of e j in Eq. (12.42). Thus
for example, the mean value of the x-component of the spin is

〈S1〉 = (ψ1ψ
∗
2 + ψ2ψ

∗
1)/2.

12 Process, Distinction, Groupoids and Clifford Algebras 743

If the particle is in a state of spin “up” along the 3-axis, then we find

〈S1〉 = 〈S2〉 = 0 〈S3〉 = 1/2

If, on the other hand spin is down along the 3-axis we find

〈S1〉 = 〈S2〉 = 0 〈S3〉 = −1/2

Thus we see how the eigenvalues of a given physical element like spin are identified
in the Clifford algebra approach without the need to bring in operators working in a
Hilbert space. This whole process can be generalised to any element of any Clifford
algebra. We will not discuss the details of this generalisation here.

12.7.4 Mean Values of Differential Elements

We will assume the elements of our ILm to be functions of the co-ordinates of the
underlying manifold, therefore as we have seen above differentiation is possible.
In order to continue making contact with standard quantum mechanics, we need to
introduce elements like E = B∂/∂t or P = B∂/∂xi , where B is some general
element of the Clifford algebra that has physical significance. Since we have to
consider both differentiation from the left and the right, our expectation values take
the form

2〈P〉± = tr [εψR(PψL)ε] ± tr
[
εψL(P̃ψR)ε

]
(12.43)

Now let us write P = B∂ where B is again any element of the Clifford algebra.
Then

2〈P〉± = tr [B(∂ψL)εψR] ± tr
[

B̃ψLε(∂ψR)
]
. (12.44)

To check the consistency of our approach to expectation values let us suppress the
differential, ∂ in Eq. (12.43) and simply write P = B

2〈P〉± = tr [BψLεψR] ± tr
[

B̃ψLεψR

]
. (12.45)

This expression reduces clearly reduces to Eq. (12.38) if B = B̃ which is what is
desired for consistency.

12.7.5 Simple Example

We will now give an example to how this approach works in two simple cases. Let
us find bilinear invariant for the energy in the Schrödinger case. We start from the
Clifford energy element e∂t and we evaluate the energy 〈Ê〉+ ≡ ρE . Thus

744 B.J. Hiley

2ρE = e[(∂tψL)ψR − ψL(∂tψR)] (12.46)

Here we have written ε = 1 as this is the only idempotent in the Schrödinger Clif-
ford algebra. In this algebra

ΨL = a + eb while ΨR = a − eb (12.47)

where a and b are related to the conventional wave function via

2a = ψ + ψ† and 2b = ψ − ψ† (12.48)

Substituting Eq. (12.47) into (12.46) gives

ρE = (∂t a)b − a(∂t b).

and then using the relations between the real parameters and the standard wave
functions given in Eq. (12.48), we find

2ρE = e[(∂tψ)ψ∗ − (∂tψ
∗)ψ]

Finally if we write ψ = R exp[eS] we obtain

E = −∂t S. (12.49)

Those familiar with the Bohm model will immediately recognize that this as the
Bohm energy. Indeed if we work out the corresponding expression for the Clifford
momentum element P̂ = e∇ we find it gives the Bohm momentum. To show this,
substitute this expression into Eq. (12.45) and writing 〈P̂〉+ = ρP, we find P = ∇S.
This will immediately be recognized as the Bohm momentum.

Thus it appears as if the Bohm model literally drops out of the Clifford algebra
approach. Notice also that we are using the Clifford algebra over the reals, with the
Clifford element e playing the role of i . We have discussed this consequence and all
that follows from it in Hiley and Callaghan [42]. This method has been applied to
Pauli Clifford in [42] and the Dirac Clifford in [43].

12.8 The Symplectic Group

So far we have concentrated on orthogonal properties and we have shown how the
formulation using the notion of process leads to an orthogonal groupoid and then
onto an orthogonal Clifford algebra. The rotations were handled using the Clifford
group which operates on general elements of the Clifford algebra through inner
automorphisms. This enabled us to construct the light cone structure of space-time.

12 Process, Distinction, Groupoids and Clifford Algebras 745

We introduced the dynamical structure by exploiting the structure of the connec-
tions on a Clifford spin bundle. This actually breaks with the main aim of this work,
namely to capture the underlying process completely in algebraic terms. Rather than
capture the dynamical structure using connections we now introduce the symplec-
tic groupoid. Here we are exploiting a suggestion of Connes [58] who has already
pointed out that Heisenberg’s earlier attempts to create quantum mechanics exploits
this symplectic groupoid structure.

We will follow in the same spirit by considering how we go from a space-time
structure to what is essentially a non-commutative phase space structure. To this
end we now introduce a collection of qualitatively new movements that will dou-
ble the algebraic structure we are exploring. Therefore we distinguish two types
of movement. A space-time movement which we will now denote by X [Pn Pm]
and a new movement P[Pn Pm] which will correspond to a movement in what
we would conventionally be called the momentum space. However recall we start
with no a priori given underlying manifold. It is our intention to generate any
underlying manifolds from the algebra of process itself. Thus in this notation X
and P simply label different qualities of movement. We then introduce the prod-
uct X [Pn Pk] • P[Pk Pm] = X P[Pn Pm]. We will assume that this product is not
commutative and follow Heisenberg by assuming it satisfies the commutator

X [Pn Pk] • P[Pk Pn] − P[Pn Pk] • X [Pk Pn] = i = [X, P] (h̄ = 1)

In this way we arrive at a structure which has similarities with the structure used by
Dirac [59] in his discussions of the quantum algebra. One of the technical problems
of using the symplectic groupoid in the above form is that it is an infinite dimen-
sional algebra and therefore it is difficult to see what is going on. We have found
it much easier to illuminate the structure if we consider instead, the finite Weyl
algebra, C2

n [60], where n is an integer 0 < n ≤ ∞. Then we have

X [Pn Pk] • P[Pk Pn] = ωP[Pn Pk] • X [Pk Pn]

Here ωn = 1 so that ω is the nth root of unity. We can simplify the notation by
writing X [Pn Pk] = U and P[Pk Pn] = V so that our algebra becomes

U V = ωV U ; U n = 1 V n = 1.

We will show that as n → ∞, the discrete Weyl algebra becomes continuous and
is essentially the Heisenberg algebra but with a small but significant difference, it
includes the delta function as an idempotent. The discrete Weyl algebra allows us to
explore what we will call a toy phase space.

This discrete Weyl algebra C2
n contains sets of idempotents, ε j . We will choose

a particular set given by

ε j = 1

n

∑

k

ω− jk R(0, k)

746 B.J. Hiley

where

R(j, k) = ω− jk/2U j V k, j, k = 0, 1, . . . , n − 1

These idempotents satisfy the relation
∑

k εkε j = ε j . In keeping with the spirit
we have been developing in this paper, we will regard the idempotents as “points”
which we can map onto some underlying vector space.

If we now write U = T = exp
[
2πδx P/n

]
then we can generate a set of points

using the inner automorphisms

ε j+1 = T ε j T −1

In this way we generate a set of points which we display in Fig. 12.8 below.
We can introduce an element of the algebra, X = δx

∑
k εk so that Xε j = δx jε j .

In other words the element X plays the role of a position operator enabling us to
label the point with j . It should be noted that δ jε j = ΨL is an element of a minimal
left ideal.

We can also form a different set of idempotents

ε ′
j = 1

n

∑

k

ω− jk R(k, 0)

This enables us to generate a set of other points using V = T ′ = exp
[
2πδpX/n

]

We can again introduce an element of the algebra P = δp
∑

j jε′
j so that Pε′

j =
δpjε′

j . Thus P enables us to label the momentum points by, say, jp. Again it should
be noted that δpjε′

j = ΦL is an element of another minimal left ideal (Fig. 12.9).
In other words we have generated a pair of complementary spaces, the position

space and the momentum space. One important lesson we learn from this model is
that it is not possible to generate both spaces simultaneously. This is because the
two sets of idempotents are related by

Fig. 12.8 Set of “space” points generated by T

Fig. 12.9 Set of “momentum” points

12 Process, Distinction, Groupoids and Clifford Algebras 747

ε′
j = Z−1ε j Z with Z = 1√

n3

∑

ijk

ω j (i−k) R(j − i, k)

This transformation is, of course, a finite Fourier transformation. If this approach
is correct, then it shows that the origins of the uncertainty principle is not that we dis-
turb the phenomena with our “blunt” experimental instruments, but that the nature
of physical processes themselves are such that it is structurally impossible to display
position and momentum simultaneously.

In fact each finite Fourier transformation “explodes” every space point into every
momentum point and vice versa. This means that the p-points are not “hidden”, they
are not manifest. We can regard them as enfolded (see Fig. 12.10). Essentially what
we have is that the p-points are “hologramed” into the x-points and vice versa. In
this way we have, as it were, an ontological principle of complementarity which is to
be contrasted with Bohr’s epistemic principle of complementarity. A more detailed
discussion of the mathematics lying behind this approach will be found in Hiley and
Monk [22]).

Fig. 12.10 Many p-points are enfolded into each x-point

12.8.1 The Continuum Limit

In this section we want to show how to proceed to the continuum limit essentially
following the procedure outlined by Weyl [63]. To this end let us simplify the nota-
tion and write

ξ = 2πδx

n
and η = 2πδp

n

Then we have

U = exp[iξ P] V = exp[iηX] R(j, k) = ω− jk/2U j V k

with ω = exp[iξη]. In this case the idempotent becomes

ε0 = 1

n

∑

k

R(0, k) = 1

n

∑

k

V k = 1

n

∑

k

exp[ikηX]

748 B.J. Hiley

Now kη runs through all integer values, but as η ∝ 1/n and n → ∞ kη may assume
all the real numbers from −∞ to +∞. In this case

ε0 = 1

n

∑

k

exp[ikηX] → 1

2π

∫

dβ exp[iβq] = δ(q)

If we now form

εξ = exp[−iξ P]ε0 exp[iξ P] = 1

n

∑

β

exp[iξ P] exp[iβ X] exp[iξ P]

= 1

n

∑

β

exp[iβ(X − ξ)]

→ 1

2π

∫

dβ exp[iβ(X − ξ)] = δ(q − ξ)

In this way we see the idempotents become delta functions and we have generated
a continuum of points. We can now choose another set of points from ε ′

0 using
U to translate between points so that we can generate another set of points, the
p-continuum. In this way we see that the lesson we learned in the discrete case
generalises to the continuum.

12.8.2 The Schrödinger Representation

Let us take this a little further and write δx jε j = x j so that x j ∈ IL . Then

U s : x j → x j−s V t : x j → ω j t x j

Now let us consider the limit n → ∞, then

sξ → σ tη → τ ωkt = exp[iξktη] = exp[iqτ]; (kξ = q)

Here k is an integer, but ξ ∝ 1/n which means that for n large, k runs from −∞ to
+∞. This is because here k is considered as mod n, while kξ is mod nξ , but nξ is
a multiple of 2π/η so that π/η → ∞ as η → 0. In this case x j becomes continuous
variable X through the relation x j = √

ξ X . Then

U s : X → exp[iσ P]X → (X − σ) V t : X → exp[iτ X]X.

These relationships are in the symplectic Clifford algebra. It should immediately be
recognised that this is one short step from the Schrödinger representation. In other
words we have arrived at the usual continuum limit.

12 Process, Distinction, Groupoids and Clifford Algebras 749

There is more work to be done to smoothly join the symplectic structure to the
orthogonal Clifford algebra. Some of the mathematical details have been explored
in Crumeyrolle [64] but space limits further discussion.

12.9 General Conclusions

In this article we have shown that by starting from a basic primitive notion of
process, activity or movement, we have generated both orthogonal and symplectic
Clifford algebras. We have shown that the orthogonal structure enables us to discuss
the structure of space-time in terms of a light ray geometry. We found that this
structure is entirely classical even though we found ourselves using the Pauli and
Dirac Clifford algebras, normally assumed to be quantum in essence.

To introduce quantum aspects into our description, we used two approaches. The
first exploited connections on a Clifford bundle. This led to two specific forms of
connection, one operating from the left and the other from the right acting on what
is the algebraic equivalent of the density “matrix”. However our methods are inde-
pendent of any specific matrix representation. The resulting dynamical equations
were equivalent to the two dynamical equations exploited by the Bohm approach.
This shows that the Bohm approach is not some peripheral structure in quantum
mechanics but an essential part of standard algebraic quantum mechanics. This point
is brought out clearly in terms of Clifford algebras.

We found the Schrödinger, Pauli and Dirac theories formed a hierarchy of Clif-
ford algebras, each fitting naturally inside the other corresponding to the physical
hierarchy, non-relativistic particle without spin, non-relativistic particle with spin
and relativistic particle with spin. This provides a natural description for quantum
phenomena, not in terms of representations in Hilbert space, although such a rep-
resentation is available if desired, but in terms of Clifford algebras an appeal to a
specific representations are not required.

The appearance of the defining equations of the Bohm approach provides a clear
extension of the approach to the relativistic domain showing the criticism that the
approach fails in the relativistic domain unfounded. The Dirac theory produces a
“quantum potential” which can be shown to be the exact relativistic generalisation
of the quantum potential found originally by de Broglie [65] and Bohm [66]. Space
does not allow us to discuss these details in this paper but will be reported elsewhere
in Hiley and Callaghan [42, 43].

In the final section we generalised the process structure by introducing a sym-
plectic groupoid. We did this by using a discrete structure which in the limit
approached the Heisenberg algebra. This algebra led to a general non-commutative
structure in which it was not possible to create points in position and momentum
simultaneously. This provides a clear ontological basis for what Bohr called the
principle of complementarity.

The algebraic approach provides the details of the mathematical structure that
lies behind Bohm’s notion of the implicate order. The projections, the shadow

750 B.J. Hiley

manifolds, are examples of the explicate order. The simple original Bohm model
of quantum mechanics, sometimes called “Bohmian mechanics”, simply produces
a phase space example of one of these shadow manifolds. Thus we have provided a
more general mathematical framework within which it is possible to further explore
the quantum world.

Acknowledgments I should like to thank in particular Bob Callaghan for his patience during
the many discussions we had on various aspects of this subject. I would also like to thank Ernst
Binz, Ray Brummelhuis, Bob Coecke, Maurice de Gosson and Clive Kilmister for their continual
encouragement. Without Ray Brummelhuis’ generous support this work would not have reached
the light of day.

References

1. Bohr, N.: Atomic Physics and Human Knowledge. Science Editions, New York (1961) 706
2. Whitehead, A.N.: Process and Reality. Harper & Row, New York (1957) 706
3. Bohm, D.: Time, the Implicate Order and Pre-Space. In: Griffin D.R. (ed.) Physics and the

Ultimate Significance of Time, pp. 172–208. SUNY Press, New York (1986) 706, 719
4. Bohm, D.J., Davies, P.G., Hiley, B.J.: Algebraic QuantumMechanics and Pregeometry. In:

Adenier, G., Krennikov, A.Yu., Nieuwenhuizen, Theo. M. (eds.) Quantum Theory: Reconsid-
erations of Foundations 3, Växjö, Sweden 2005, pp. 314–324, AIP, New York (2006) 706

5. Bohm, D., Hiley, B.J.: Generalization of the Twistor to Clifford Algebras as a basis for
Geometry, Rev. Briasileira de Fisica, Volume Especial, Os 70 anos de Mario Schönberg
(1984) 1–26 706

6. Grassmann, G.: A New Branch of Mathematics: The Ausdehnungslehre of 1844 and Other
Works, translated by Kannenberg, L.C.. Open Court, Chicago (1995) 706

7. Hamilton, W.R.: Mathematical Papers, vol. 3. Algebra, Cambridge (1967) 706
8. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003) 706, 740
9. Doran, C., Lasenby, A.: Geometric algebra for physicists. Cambridge University Press, Cam-

bridge (2003) 706
10. Rodrigues, Jr., W.A.: Algebraic and dirachestenes spinors and spinor fields. J. Math. Phys.

45, 2908–2944 (2004) 706
11. Grassmann, G.: ibid. Sections 3 and 4 706
12. Demaret, J., Heller, M., Lambert, D.: Local and Global Properties of the world. Foundations

Sci. 2, 137–176 (1997) 711
13. Kauffman, L.H.: Space and time in computation and discrete physics. Int. J. General Syst. 27,

249–273 (1998) 706, 711, 712, 713, 716, 717, 735
14. Bohm, D.: Fragmentation and Wholeness. The van Leer Jerusalem Foundation, Jerusalem

(1976) 707
15. Bohm,D., Hiley, B.J., Stuart, A.E.G.: On a new mode of description in physics. Int. J. Theor.

Phys. 3, 171–183 (1970) 707
16. Brandt, H.: Uber eine Verallgemeinerung des Gruppenbegriffes. Math. Ann. 96, 360–366

(1926) 708, 715
17. Bohm, D.: Space, time, and the quantum theory understood in terms of discrete structural

process. In: Proc. Int. Conf. on Elementary Particles, Kyoto, pp. 252–287 (1965) 708
18. Eddington, A.S.: The Philosophy of Physical Science. Ann Arbor Paperback, University of

Michigan Press, Michigan (1958) 709
19. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997) 710
20. Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345–366 (1967) 714, 731, 732

12 Process, Distinction, Groupoids and Clifford Algebras 751

21. Frescura, F.A.M., Hiley, B.J.: The implicate order, algebras, and the spinor. Found Phys. 10,
7–31 (1980) 721

22. Hiley, B.J., Monk, N.: Quantum phase space and the discrete weyl algebra. Mod. Phys. Lett.
A8, 3225–3233 (1993) 747

23. Kauffman, L.H.: Special relativity and a calculus of distinctions. In: Proceedings of the 9th
International Meeting of ANPA, pp. 291–312, Cambridge, ANPA West, Palo Alto, Cal (1987) 716, 721, 723

24. Griffor, A.: From strings to clifford algebras. In: Bowden, K.G. (ed.) Implications: Scientific
Aspects of AHPA 22, pp. 30–55 (2001) 715

25. Brown, R.: From groups to groupoids: A brief survey. London Math. Soc. 19, 113–134 (1987) 715
26. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of

the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer Science
Press (2004). Also quant-ph/0402130q-ph/0402130 715

27. Raptis, I., Zapatrin, R.R.: Algebraic description of spacetime foam. Classical Quantum Grav-
ity 20, 4187–4205 (2001). gr-qc/9904079 718

28. Schönberg, M.: Quantum kinematics and geometry. Nuovo Cimento VI, 356–380 (1957) 717, 718
29. Fernandes, M.: Geometric Algebras and the Foundations of Quantum Theory. PhD Thesis,

London University (1995) 717
30. Kauffman, K.L.: Sign and space. In: Religious Experience and Scientific Paradigms, Proceed-

ings of the IAWSR Conf., Inst, Adv. Stud. World Religions, Stony Brook, pp. 118–164. New
York (1982) 716

31. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum StatisticaI Mechanics I: C∗-
and W∗-Algebras Symmetry Groups Decomposition of States. Springer, Berlin (1987) 718

32. Finkelstein, D.R.: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg.
Springer, Berlin (1996) 718

33. Zapatrin, R.R.: Incidence algebras of simplicial complexes. Pure Math. Appl. 11, 105–118
(2001). eprint math.CO/0001065 718

34. Hiley, B.J.: Vacuum or Holomovement. In: Saunders, S., Brown, H.R. (eds.) The Philosophy
of Vacuum, pp. 217–249. Clarendon Press, Oxford (1991) 719

35. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys.
20, 367–387 (1948) 719, 720

36. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Phys. Rev. 134, B1410 (1964) 720
37. Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2000) 720
38. Hiley, B.J.: In: Bowden, K.G. (ed.) Towards a dynamics of moments: The role of algebraic

deformation and inequivalent vacuum states, Correlations. Proc. ANPA 23 104–134 (2001) 720
39. Dirac, P.A.M.: Spinors in Hilbert Space. Plenum Press, New York (1974) 720
40. Kauffman, L.H.: Knots and Physics. World Scientific, Singapore (2001) 721, 723
41. Hiley, B.J.: Some Notes on Quantum Mechanics using Clifford Algebras (Available in pre-

print form.) 722
42. Hiley, B.J., Callaghan, R.: The Clifford Algebra approach to Quantum Mechanics A: The

Schrödinger and Pauli Particles (Available in pre-print form.) 722, 725, 744, 749
43. Hiley, B.J., Callaghan, R.: The Clifford Algebra approach to Quantum Mechanics B: The

Dirac Particle (Available in pre-print form.) 722, 739, 744, 749
44. Penrose, R., Rindler, W.: Spinors and Space-time, vol. 1. Cambridge University Press, Cam-

bridge (1984) 728
45. Page, L.: A new relativity. Paper I. Fundamental principles and transformations between

accelerated systems. Phys. Rev. 49, 254–268 (1936) 722
46. Bondi, H.: Relativity and Common Sense. Dover, New York (1977) 722
47. Nakahara, M.: Geometry, Topology and Physics. Adam Hilger, Bristol (1990) 724, 725
48. Frescura, F.A.M., Hiley, B.J.: Geometric interpretation of the Pauli spinor. Am. J Phys. 49,

152–157 (1981) 728, 730
49. Ryder, L.H.: Quantum Filed Theory. Cambridge University Press, Cambridge (1985) 731
50. Hiley, B.J.: Non-Commutative Geometry, the Bohm Interpretation and the Mind-Matter Rela-

tionship. In: Dubois, D.M. (ed.) Computing Anticipatory Systems: CASYS 2000–4th Inter-
national Conference, pp. 77–88. AIP, New York (2001) 736

752 B.J. Hiley

51. Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1980) 735, 736
52. Lawson, H.B., Michelsohn, M-L.: Spin Geometry. Princeton University Press, Princeton

(1989) 737
53. Brown, M.R., Hiley, B.J.: Schrödinger revisited: an algebraic approach. quantph/0005026 739
54. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An Ontological basis for the quantum theory: II -A

causal interpretation of quantum fields. Phys. Reports 144, 349–375 (1987) 739
55. Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A) and (B).

Nuovo Cim. 1, 48–66 and 67–91 (1955) 739
56. Hestenes, D., Gurtler, R.: Local observables in quantum theory. Am. J. Phys. 39, 1028–1038

(1971) 739
57. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum

Theory. Routledge, London (1993) 740
58. Connes, A.: Non-commutative Geometry. Academic Press, San Diego (1990) 745
59. Dirac, P.A.M.: The fundamental equations of quantum mechanics. Proc. Roy. Soc. A 109,

642–653 (1926) 745
60. Morris, A.O.: On a generalised clifford algebra. Quart. J. Math. 18, 7–12 (1967) 745
61. Hiley, B.J.: Clifford Algebras. In preparation 732, 734
62. Kilmister, C.W.: Eddington’s Search for a Fundamental Theory. Cambridge University Press,

Cambridge (1994) 735
63. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publication, London (1960) 747
64. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Kluwer,

Dordrecht (1990) 749
65. de Broglie, L.: Non-linear Wave Mechanics: A Causal Interpretation. Elsevier, Amsterdam

(1960) 749
66. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, I.

Phys. Rev. 85, 166–179 (1952); and II, 85, 180–193 (1952) 749

Chapter 13
“What is a Thing?”: Topos Theory
in the Foundations of Physics

A. Döring and C. Isham

From the range of the basic questions of metaphysics we shall
here ask this one question: What is a thing? The question is
quite old. What remains ever new about it is merely that it
must be asked again and again. [40]

Martin Heidegger

Abstract The goal of this article is to summarise the first steps in developing a
fundamentally new way of constructing theories of physics. The motivation comes
from a desire to address certain deep issues that arise when contemplating quantum
theories of space and time. In doing so we provide a new answer to Heidegger’s
timeless question “What is a thing?”.

Our basic contention is that constructing a theory of physics is equivalent to
finding a representation in a topos of a certain formal language that is attached to
the system. Classical physics uses the topos of sets. Other theories involve a different
topos. For the types of theory discussed in this article, a key goal is to represent any
physical quantity A with an arrow Ăφ : Σφ → Rφ where Σφ and Rφ are two
special objects (the “state object” and “quantity-value object”) in the appropriate
topos, τφ .

We discuss two different types of language that can be attached to a system, S.
The first, PL(S), is a propositional language; the second, L(S), is a higher-order,
typed language. Both languages provide deductive systems with an intuitionistic
logic. With the aid of PL(S) we expand and develop some of the earlier work1 on
topos theory and quantum physics. A key step is a process we term “daseinisation”
by which a projection operator is mapped to a sub-object of the spectral presheaf
Σ—the topos quantum analogue of a classical state space. The topos concerned is

A. Döring (B)
OUCL, University of Oxford, Oxford, UK
e-mail: doering@comlab.ox.ac.uk

C. Isham (B)
The Blackett Laboratory, Imferial College,
e-mail: c.isham@imferial.ac.uk

1 By CJI and collaborators.

Döring, A., Isham, C.: “What is a Thing?”: Topos Theory in the Foundations of Physics.
Lect. Notes Phys. 813, 753–937 (2011)
DOI 10.1007/978-3-642-12821-9_13 c© Springer-Verlag Berlin Heidelberg 2011

754 A. Döring and C. Isham

SetsV(H)op
: the category of contravariant set-valued functors on the category (par-

tially ordered set) V(H) of commutative sub-algebras of the algebra of bounded
operators on the quantum Hilbert space H.

There are two types of daseinisation, called “outer” and “inner”: they involve
approximating a projection operator by projectors that are, respectively, larger and
smaller in the lattice of projectors on H.

We then introduce the more sophisticated language L(S) and use it to study “truth
objects” and “pseudo-states” in the topos. These objects play the role of states: a
necessary development as the spectral presheaf has no global elements, and hence
there are no microstates in the sense of classical physics.

One of the main mathematical achievements is finding a topos representation
for self-adjoint operators. This involves showing that, for any bounded, self-adjoint
operator Â, there is a corresponding arrow δ̆o(Â) : Σ → R

� where R
� is the

quantity-value object for this theory. The construction of δ̆o(Â) is an extension of
the daseinisation of projection operators.

The object R
� can serve as the quantity-value object if only outer daseinisation of

self-adjoint operators is used in the construction of arrows δ̆o(Â) : Σ → R
�. If both

inner and outer daseinisation are used, then a related presheaf R
↔ is the appropriate

choice. Moreover, in order to enhance the applicability of the quantity-value object,
one can consider a topos analogue of the Grothendieck extension of a monoid to a
group, applied to R

� (resp. R
↔). The resulting object, k(R�) (resp. k(R↔)), is an

abelian group-object in τφ .
Finally we turn to considering a collection of systems: in particular, we are inter-

ested in the relation between the topos representation of a composite system, and the
representations of its constituents. Our approach to these matters is to construct a
category of systems and to find coherent topos representations of the entire category.

This chapter is dedicated with respect to the memory of
Professor Dr. Hans F. de Groote. 1944-2008.

13.1 Introduction

Many people who work in quantum gravity would agree that a deep change in our
understanding of foundational issues will occur at some point along the path. How-
ever, opinions differ greatly on whether a radical revision is necessary at the very
beginning of the process, or if it will emerge “along the way” from an existing,
or future, research programme that is formulated using the current paradigms. For
example, many (albeit not all) of the current generation of string theorists seem
inclined to this view, as do a, perhaps smaller, fraction of those who work in loop
quantum gravity.

In this article we take the iconoclastic view that a radical step is needed at the
very outset. However, for anyone in this camp the problem is always knowing where
to start. It is easy to talk about a “radical revision of current paradigms”—the phrase

13 Topos Theory in the Foundations of Physics 755

slips lightly off the tongue—but converting this pious hope into a concrete theoreti-
cal structure is a problem of the highest order.

For us, the starting point is quantum theory itself. More precisely, we believe
that this theory needs to be radically revised, or even completely replaced, before a
satisfactory theory of quantum gravity can be obtained.

In this context, a striking feature of the various current programmes for quan-
tising gravity—including superstring theory and loop quantum gravity—is that,
notwithstanding their disparate views on the nature of space and time, they almost
all use more-or-less standard quantum theory. Although understandable from a prag-
matic viewpoint (since all we have is more-or-less standard quantum theory) this
situation is nevertheless questionable when viewed from a wider perspective.

For us, one of the most important issues is the use in the standard quantum for-
malism of critical mathematical ingredients that are taken for granted and yet which,
we claim, implicitly assume certain properties of space and/or time. Such an a priori
imposition of spatio-temporal concepts would be a major category2 error if they turn
out to be fundamentally incompatible with what is needed for a theory of quantum
gravity.

A prime example is the use of the continuum3 by which, in this context, is meant
the real and/or complex numbers. These are a central ingredient in all the various
mathematical frameworks in which quantum theory is commonly discussed. For
example, this is clearly so with the use of (i) Hilbert spaces or C∗-algebras; (ii) geo-
metric quantisation; (iii) probability functions on a non-distributive quantum logic;
(iv) deformation quantisation; and (v) formal (i.e., mathematically ill-defined) path
integrals and the like. The a priori imposition of such continuum concepts could be
radically incompatible with a quantum-gravity formalism in which, say, space-time
is fundamentally discrete: as, for example, in the causal-set programme.

As we shall argue later, this issue is closely connected with the question of what
is meant by the “value” of a physical quantity. In so far as the concept is meaningful
at all at the Planck scale, why should the value be a real number defined mathemat-
ically in the usual way?

Another significant reason for aspiring to change the quantum formalism is the
peristalithic problem of deciding how a “quantum theory of cosmology” could
be interpreted if one was lucky enough to find one. Most people who worry
about foundational issues in quantum gravity would probably place the quantum-
cosmology/closed-system problem at, or near, the top of their list of reasons for
re-envisioning quantum theory. However, although we are deeply interested in such
conceptual issues, the primary motivation for our research programme is not to find
a new interpretation of quantum theory. Rather, our main goal is to find a novel
structural framework within which new types of theories of physics can be con-
structed.

2 The philosophy of Kant runs strongly in our veins.
3 When used in this rather colloquial way, the word “continuum” suggests primarily the cardinality
of the sets concerned, and, secondly, the topology that is conventionally placed on these sets.

756 A. Döring and C. Isham

However, having said that, in the context of quantum cosmology it is certainly
true that the lack of any external “observer” of the universe “as a whole” renders
inappropriate the standard Copenhagen interpretation with its instrumentalist use
of counterfactual statements about what would happen if a certain measurement
is performed. Indeed, the Copenhagen interpretation is inapplicable for any4 sys-
tem that is truly “closed” (or “self-contained”) and for which, therefore, there is no
“external” domain in which an observer can lurk. This problem has motivated much
research over the years and continues to be of wide interest.

The philosophical questions that arise are profound, and look back to the birth of
Western philosophy in ancient Greece, almost three thousand years ago. Of course,
arguably, the longevity of these issues suggests that these questions are ill-posed in
the first place, in which case the whole enterprise is a complete waste of time! This
is probably the view of most, if not all, of our colleagues at Imperial College; but
we beg to differ.5

When considering a closed system, the inadequacy of the conventional instru-
mentalist interpretation of quantum theory encourages the search for an interpre-
tation that is more “realist” in some way. For over eighty years, this has been a
recurring challenge for those concerned with the conceptual foundations of modern
physics. In rising to this challenge we join our Greek ancestors in confronting once
more the fundamental question6:

“What is a thing?”

Of course, as written, the question is itself questionable. For many philosophers,
including Kant, would assert that the correct question is not “What is a thing?”
but rather “What is a thing as it appears to us?”. However, notwithstanding Kant’s
strictures, we seek the thing-in-itself, and, therefore, we persevere with Heidegger’s
form of the question.

Nevertheless, having said that, we can hardly ignore the last three thousand years
of philosophy. In particular, we must defend ourselves against the charge of being
“naïve realists”.7 At this point it become clear that theoretical physicists have a big
advantage over professional philosophers. For we are permitted/required to study
such issues in the context of specific mathematical frameworks for addressing the
physical world; and one of the great fascinations of this process is the way in which
various philosophical positions are implicit in the ensuing structures. For example,

4 The existence of the long-range, and all penetrating, gravitational force means that, at a funda-
mental level, there is only one truly closed system, and that is the universe itself.
5 Of course, it is also possible that our colleagues are right.
6 “What is a thing?” is the title of one of the more comprehensible of Heidegger’s works [40].
By this, we mean comprehensible to the authors of the present article. We cannot speak for our
colleagues across the channel: from some of them we may need to distance ourselves.
7 If we were professional philosophers this would be a terrible insult. :-)

13 Topos Theory in the Foundations of Physics 757

the exact meaning of “realist” is infinitely debatable but, when used by a classical
physicist, it invariably means the following:

1. The idea of “a property of the system” (for example, “the value of a physical
quantity at a certain time”) is meaningful, and mathematically representable in
the theory.

2. Propositions about the system (typically asserting that the system has this or that
property) are handled using Boolean logic. This requirement is compelling in so
far as we humans are inclined to think in a Boolean way.

3. There is a space of “microstates” such that specifying a microstate8 leads to
unequivocal truth values for all propositions about the system: i.e., a state9

encodes “the way things are”. This is a natural way of ensuring that the first
two conditions above are satisfied.

The standard interpretation of classical physics satisfies these requirements and
provides the paradigmatic example of a realist philosophy in science. Heidegger’s
answer to his own question adopts a similar position [40]:

A thing is always something that has such and such properties, always something that is
constituted in such and such a way. This something is the bearer of the properties; the
something, as it were, that underlies the qualities.

In quantum theory, the situation is very different. There, the existence of any
such realist interpretation is foiled by the famous Kochen-Specker theorem [57].
This asserts that it is impossible to assign values to all physical quantities at once if
this assignment is to satisfy the consistency condition that the value of a function of
a physical quantity is that function of the value. For example, the value of ‘energy
squared’ is the square of the value of energy.

Thus, from a conceptual perspective, the challenge is to find a quantum formal-
ism that is “realist enough” to provide an acceptable alternative to the Copenhagen
interpretation, with its instrumentally-construed intrinsic probabilities, whilst taking
on board the implications of the Kochen-Specker theorem.

So, in toto what we seek is a formalism that is (i) free of prima facie prejudices
about the nature of the values of physical quantities—in particular, there should be
no fundamental use of the real or complex numbers; and (ii) “realist”, in at least the
minimal sense that propositions are meaningful, and are assigned ‘truth values’, not
just instrumentalist probabilities of what would happen if appropriate measurements
are made.

8 In simple non-relativistic systems, the state is specified at any given moment of time. Relativistic
systems (particularly quantum gravity!) require a more sophisticated understanding of “state”, but
the general idea is the same.
9 We are a little slack in our use of language here and in what follows by frequently referring to
a microstate as just a “state”. The distinction only becomes important if one wants to introduce
things like mixed states (in quantum theory), or macrostates (in classical physics) all of which are
often just known as “states”. Then one must talk about microstates (pure states) to distinguish them
from the other type of state.

758 A. Döring and C. Isham

However, finding such a formalism is not easy: it is notoriously difficult to
modify the mathematical framework of quantum theory without destroying the
entire edifice. In particular, the Hilbert space structure is very rigid and can-
not easily be changed; and the formal path-integral techniques do not fare much
better.

To seek inspiration let us return briefly to the situation in classical physics. There,
the concept of realism (as asserted in the three statements above) is encoded math-
ematically in the idea of a space of states, S, where specifying a particular state
(or “microstate”), s ∈ S, determines entirely ‘the way things are’ for the system.
In particular, this suggests that each physical quantity A should be associated with
a real-valued function Ă : S → R such that when the state of the system is s, the
value of A is Ă(s). Of course, this is indeed precisely how the formalism of classical
physics works.

In the spirit of general abstraction, one might wonder if this formalism can be
generalised to a structure in which A is represented by an arrow Ă : Σ → R where
Σ and R are objects in some category, τ , other than the category of sets, Sets? In
such a theory, one would seek to represent propositions about the “values” (whatever
that might mean) of physical quantities with sub-objects of Σ , just as in classical
physics propositions are represented by subsets of the state space S (see Sect. 13.2.2
for more detail of this).

Our central conceptual idea is that such a categorial structure constitutes
a generalisation of the concept of ‘realism’ in which the ‘values’ of a
physical quantity are coded in the arrow Ă : Σ → R.

Clearly the propositions will play a key role in any such theory, and, presumably,
the minimum required is that the associated sub-objects of Σ form some sort of
“logic”, just as the subsets of S form a Boolean algebra.

This rules out most categories since, generically, the sub-objects of an object
do not have any logical structure. However, if the category τ is a ‘topos’ then the
sub-objects of any object do have this property, and hence the current research pro-
gramme.

Our suggestion, therefore, is to try to construct physical theories that are formu-
lated in a topos other than Sets. This topos will depend on both the theory-type and
the system. More precisely, if a theory-type (such as classical physics, or quantum
physics) is applicable to a certain class of systems, then, for each system in this class,
there is a topos in which the theory is to be formulated. For some theory-types the
topos is system-independent: for example, classical physics always uses the topos
of sets. For other theory-types, the topos varies from system to system: as we shall
see, this is the case in quantum theory.

In somewhat more detail, any particular example of our suggested scheme will
have the following ingredients:

13 Topos Theory in the Foundations of Physics 759

1. There are two special objects in the topos τφ : the “state object”10, Σφ , and
the “quantity-value object”, Rφ . Any physical quantity, A, is represented by an
arrow Aφ : Σφ → Rφ in the topos. Whatever meaning can be ascribed to the
concept of the ‘value’ of a physical quantity is encoded in (or derived from) this
representation.

2. Propositions about a system are represented by sub-objects of the state object
Σφ . These sub-objects form a Heyting algebra (as indeed do the sub-objects of
any object in a topos): a distributive lattice that differs from a Boolean algebra
only in that the law of excluded middle need not hold, i.e., α ∨ ¬α 	 1. A
Boolean algebra is a Heyting algebra with strict equality: α ∨ ¬α = 1.

3. Generally speaking (and unlike in set theory), an object in a topos may not be
determined by its “points”. In particular, this may be so for the state object, in
which case the concept of a microstate is not so useful.11 Nevertheless, truth val-
ues can be assigned to propositions with the aid of a “truth object” (or “pseudo-
state”). These truth values lie in another Heyting algebra.

Of course, it is not instantly obvious that quantum theory can be written in this
way. However, as we shall see, there is a topos reformulation of quantum theory,
and this has two immediate implications. The first is that we acquire a new type
of “realist” interpretation of standard quantum theory. The second is that this new
approach suggests ways of generalising quantum theory that make no fundamental
reference to Hilbert spaces, path integrals, etc. In particular, there is no prima facie
reason for introducing standard continuum quantities. As emphasised above, this is
one of our main motivations for developing the topos approach. We shall say more
about this later.

From a conceptual perspective, a central feature of our scheme is the “neo-
realist” structure reflected mathematically in the three statements above. This neo-
realism is the conceptual fruit of the fact that, from a categorial perspective, a physi-
cal theory expressed in a topos “looks” like classical physics expressed in the topos
of sets.

The fact that (i) physical quantities are represented by arrows whose domain is
the state object, Σφ ; and (ii) propositions are represented by sub-objects of Σφ ,
suggests strongly that Σφ can be regarded as the topos-analogue of a classical state
space. Indeed, for any classical system the topos is just the category Sets of small
sets and functions, and the ideas above reduce to the familiar picture in which (i)
there is a state space (set) S; (ii) any physical quantity, A, is represented by a real-
valued functions Ă : S → R; and (iii) propositions are represented by subsets of S
with a logical structure given by the associated Boolean algebra.

Evidently the suggested mathematical structures could be used in two different
ways. The first is that of the “conventional” theoretical physicist with little interest

10 The meaning of the subscript “φ” is explained in the main text. It refers to a particular topos-
representation of a formal language attached to the system.
11 In quantum theory, the state object has no points/microstates at all. As we shall see, this state-
ment is equivalent to the Kochen-Specker theorem.

760 A. Döring and C. Isham

in conceptual matters. For him/her, what we and our colleagues are developing is a
new toolkit with which to construct novel types of theoretical models. Whether or
not Nature has chosen such models remains to be seen, but, at the very least, the use
of topoi certainly suggests new techniques.

For those physicists who are interested in conceptual issues, the topos framework
gives a radically new way of thinking about the world. The neo-realism inherent
in the formalism is described mathematically using the internal language that is
associated with any topos. This describes how things look from “within” the topos:
something that should be particularly useful in the context of quantum cosmology.12

On the other hand, the pragmatic theoretician with no interest in conceptual mat-
ters can use the “external” description of the topos in which the category of sets
provides a metalanguage with which to formulate the theory. From a mathematical
perspective, the interplay between the internal and external languages of a topos is
one of the fascinations of the subject. However, much remains to be said about the
significance of this interaction for real theories of physics.

This present article details the first steps in formulating one particular way of
employing topos theory in physics. The scheme is very general but certainly not
exclusive. Indeed, there are other potential uses of topos theory in physics and what
is contained here is very much our own perspective on the subject. The paper is
partly an amalgam of a series of four papers that we placed on the ArXiv server13 in
March 2007 [27–30]. However, we have added a significant amount of new material,
and also made a few minor corrections (mainly typos).14 We have also added some
remarks about developments made by researchers other than ourselves since the
ArXiv preprints were written. Of particular interest for our general programme is
the work of Heunen et al. [42] which adds some further ingredients to the topoi-in-
physics toolkit. Finally, we have included some background material from the earlier
papers that formed the starting point for the current research programme [48–51].

We must emphasise again that this is not a review article about the general appli-
cation of topos theory to physics; this would have made the article far too long. For
example, Lawvere’s seminal investigations of topoi were strongly motivated by his
feeling that current paradigms in theoretical physics are inadequate in a deep way
[61–63]. Then there is the fair amount of study of the use of synthetic differential
geometry (SDG) in physics. The reader can find references to much of this on the,
so-called, “Siberian toposes” web site.15 There is also the work by Mallios and
collaborators on “Abstract Differential Geometry” [69, 70, 76, 71]. The use of a
form of intuitionistic logic for quantum theory has also been suggested by Coecke in
[15]. He uses a construction discovered by Bruns and Lakser, the so-called injective

12 In this context see the work of Markopoulou who considers a topos description of the universe
as seen by different observers who live inside it [68].
13 These are due to be published in Journal of Mathematical Physics in the Spring of 2008.
14 Some of the more technical theorems have been placed in the Appendix with the hope that this
makes the article a little easier to read.
15 This is http://users.univer.omsk.su/∼ topoi/. See also Cecilia Flori’s website that deals more
generally with topos theory and physics: http://topos-physics.org/

13 Topos Theory in the Foundations of Physics 761

hull of meet-semilattices (see also [82]) to embed a meet-semilattice of propositions
into a Heyting algebra by introducing new joins to the meet-semilattice. There are
no further obvious connections between this approach and the topos approach, but
it would be interesting to compare both constructions with respect to the underlying
geometric structures: both approaches formulate an intuitionistic form of quantum
logic using Heyting algebras, and every complete Heyting algebra is a locale and
hence a generalised topological space. Finally there is the work by Corbett et al.
[3, 18] on “quantum” real numbers, or “qr-numbers”. Of course, as always these
days, Google will speedily reveal all that we have omitted.

But even less is this article a review of the use of category theory in general in
physics. Indeed, there are many important topics that we do not mention at all. For
example, Baez’s advocation of n-categories [5, 6]; the important work on the use of
symmetric monoidal categories with extra structure in quantum information theory
and beyond [2, 86]; Takeuti’s theory16 of “quantum sets” [83]; and Crane’s work on
categorial models of space-time [19].

Finally, a word about the style in which this article is written. We spent much time
pondering on this, as we did before writing the four ArXiv preprints. The intended
audience is our colleagues who work in theoretical physics, especially those whose
interests included foundational issues in quantum gravity and quantum theory. How-
ever, topos theory is not an easy branch of mathematics, and this poses the dilemma
of how much background mathematics should be assumed of the reader, and how
much should be explained as we go along.17 We have approached this problem
by including a short mathematical appendix on topos theory. However, reasons of
space precluded a thorough treatment, and we hope that, fairly soon, someone will
write an introductory review of topos theory in a style that is accessible to a typical
theoretical-physicist reader.

This article is structured in the following way. We begin with a discussion of
some of the conceptual background, in particular the role of the real numbers in
conventional theoretical physics. Then in Sect. 13.3 we introduce the idea of attach-
ing a propositional language, PL(S), to each physical system S. The intent is that
each theory of S corresponds to a particular representation of PL(S). In particular,
we show how classical physics satisfies this requirement in a very natural way.

Propositional languages have limited scope (they lack the quantifiers “∀” and
“∃”), and in Sect. 13.4 we propose the use of a higher-order (typed) language L(S).
Languages of this type are a central feature of topos theory and it is natural to con-
sider the idea of representing L(S) in different topoi. Classical physics always takes
place in the topos, Sets, of sets but our expectation is that other areas of physics will
use different topoi.

This expectation is confirmed in Sect. 13.5 where we discuss in detail the repre-
sentation of PL(S) for a quantum system (the representation of L(S) is discussed

16 Takeuti’s work is not exactly about category theory applied to quantum theory: it is more about
the use of formal logic, but the spirit is similar. For a recent paper in this genre see [74].
17 The references that we have found most helpful in our research are [65, 34, 59, 11, 66, 55].

762 A. Döring and C. Isham

in Sect. 13.8). The central idea is to represent propositions as sub-objects of the
“spectral presheaf” Σ which belongs to the topos, SetsV(H)op

, of presheaves (set-
valued, contravariant functors) on the category, V(H), of abelian sub-algebras of
the algebra B(H) of all bounded operators on H. This representation employs the
idea of “daseinisation” in which any given projection operator P̂ is represented at
each context/stage-of-truth V in V(H) by the “closest” projector to it in V . There
are two variants of this: (i) “outer” daseinisation, in which P̂ is approached from
above (in the lattice of projectors in V); and (ii) “inner” daseinisation, in which P̂
is approached from below.

The next key move is to discuss the “truth values” of propositions in a quan-
tum theory. This requires the introduction of some analogue of the microstates of
classical physics. We say “analogue” because the spectral presheaf Σ—which is
the quantum topos equivalent of a classical state space—has no global elements,
and hence there are no microstates at all: this is equivalent to the Kochen-Specker
theorem. The critical idea is that of a “truth object”, or “pseudo-state” which, as we
show in Sect. 13.6, is the closest one can get in quantum theory to a microstate.

In Sect. 13.7 we introduce the “de Groote” presheaves and the associated ideas
that lead to the concept of daseinising an arbitrary bounded self-adjoint operator, not
just a projector. Then, in Sect. 13.8, the spectral theorem is used to construct several
possible models for the quantity-value presheaf in quantum physics. The simplest
choice is R

�, but this uses only outer daseinisation, and a more balanced choice is
R
↔ which uses both inner and outer daseinisation. Another possibility is k(R�): the

Grothendieck topos extension of the monoid object R
�. A key result is the “non-

commutative spectral theorem” which involves showing how each bounded, self-
adjoint operator Â can be represented by an arrow Ă : Σ → R

↔.
In Sect. 13.10 we discuss the way in which unitary operators act on the quantum

topos objects. Then, in Sects. 13.11, 13.12 and 13.13 we discuss the problem of han-
dling “all” possible systems in a single coherent scheme. This involves introducing a
category of systems which, it transpires, has a natural monoidal structure. We show
in detail how this scheme works in the case of classical and quantum theory.

Finally, in Sect. 13.14 we discuss/speculate on some properties of the state object,
quantity-value object, and truth objects that might be present in any topos represen-
tation of a physical system.

To facilitate reading this long article, some of the more technical material has
been put in Appendix 1. In Appendix 2 there is a short introduction to some of the
relevant parts of topos theory.

13.2 The Conceptual Background of Our Scheme

13.2.1 The Problem of Using Real Numbers A Priori

As mentioned in the Introduction, one of the main goals of our work is to find
new tools with which to develop theories that are significant extensions of, or

13 Topos Theory in the Foundations of Physics 763

developments from, quantum theory but without being tied a priori to the use of
the standard real or complex numbers.

In this context we note that real numbers arise in theories of physics in three
different (but related) ways: (i) as the values of physical quantities; (ii) as the values
of probabilities; and (iii) as a fundamental ingredient in models of space and time
(especially in those based on differential geometry). All three are of direct concern
vis-a-vis our worries about making unjustified, a priori assumptions in quantum
theory. We shall now examine them in detail.

13.2.1.1 Why Are Physical Quantities Assumed to be Real-Valued?

One reason for assuming physical quantities are real-valued is undoubtedly
grounded in the remark that, traditionally (i.e., in the pre-digital age), they are mea-
sured with rulers and pointers, or they are defined operationally in terms of such
measurements. However, rulers and pointers are taken to be classical objects that
exist in the physical space of classical physics, and this space is modelled using
the reals. In this sense there is a direct link between the space in which physical
quantities take their values (what we call the “quantity-value space”) and the nature
of physical space or space-time [45].

If conceded, this claim means the assumption that physical quantities are real-
valued is problematic in any theory in which space, or space-time, is not modelled
by a smooth manifold. Admittedly, if the theory employs a background space, or
space-time—and if this background is a manifold—then the use of real-valued phys-
ical quantities is justified in so far as their value-space can be related to this back-
ground. Such a stance is particularly appropriate in situations where the background
plays a central role in giving meaning to concepts like “observers” and “measuring
devices”, and thereby provides a basis for an instrumentalist interpretation of the
theory.

But even here caution is needed since many theoretical physicists have claimed
that the notion of a “space-time point in a manifold” is intrinsically flawed. One
argument (due to Penrose) is based on the observation that any attempt to localise a
“thing” is bound to fail beyond a certain point because of the quantum production
of pairs of particles from the energy/momentum uncertainty caused by the spatial
localisation. Another argument concerns the artificiality18 of the use of real numbers
as coordinates with which to identify a space-time point. There is also Einstein’s
famous “hole argument” in general relativity which asserts that the notion of a
space-time point (in a manifold) has no physical meaning in a theory that is invariant
under the group of space-time diffeomorphisms.

Another cautionary caveat concerning the invocation of a background is that
this background structure may arise only in some “sector” of the theory; or it may
exist only in some limiting, or approximate, sense. The associated instrumentalist

18 The integers, and associated rationals, have a “natural” interpretation from a physical perspec-
tive since we can all count. On the other hand, the Cauchy-sequence and/or the Dedekind-cut
definitions of the reals are distinctly un-intuitive from a physical perspective.

764 A. Döring and C. Isham

interpretation would then be similarly limited in scope. For this reason, if no other,
a “realist” interpretation is more attractive than an instrumentalist one.

In fact, in such circumstances, the phrase “realist interpretation” does not really
do justice to the situation since it tends to imply that there are other interpretations of
the theory, particularly instrumentalism, with which the realist one can contend on a
more-or-less equal footing. But, as we just argued, the instrumentalist interpretation
may be severely limited as compared to the realist one. To flag this point, we will
sometimes refer to a “realist formalism”, rather than a “realist interpretation”.19

13.2.1.2 Why are Probabilities Required to Lie in the Interval [0,1]?

The motivation for using the subset [0, 1] of the real numbers as the value space for
probabilities comes from the relative-frequency interpretation of probability. Thus,
in principle, an experiment is to be repeated a large number, N , times, and the prob-
ability associated with a particular result is defined to be the ratio Ni/N , where Ni
is the number of experiments in which that result was obtained. The rational num-
bers Ni/N necessarily lie between 0 and 1, and if the limit N → ∞ is taken—as
is appropriate for a hypothetical “infinite ensemble”—real numbers in the closed
interval [0, 1] are obtained.

The relative-frequency interpretation of probability is natural in instrumental-
ist theories of physics, but it is neither meaningful if there is no classical spatio-
temporal background in which the necessary measurements could be made, nor if
there is a background of a kind to which the relative-frequency interpretation cannot
be adapted.

In the absence of a relative-frequency interpretation, the concept of “probabil-
ity” must be understood in a different way. In the physical sciences, one of the
most discussed approaches involves the concept of “potentiality”, or “latency”, as
favoured by Heisenberg [41], Margenau [67], and Popper [75] (and, for good mea-
sure, Aristotle). In this case there is no compelling reason why the probability-value
space should necessarily be a subset of the real numbers. The minimal requirement
is that this value-space is an ordered set, so that one proposition can be said to be
more or less probable than another. However, there is no prima facie reason why
this set should be totally ordered: i.e., there may be pairs of propositions whose
potentialities cannot be compared—something that seems eminently plausible in
the context of non-commensurable quantities in quantum theory.

By invoking the idea of “potentiality”, it becomes feasible to imagine a quantum-
gravity theory with no spatio-temporal background but where probability is still a
fundamental concept. However, it could also be that the concept of probability plays
no fundamental role in such circumstances, and can be given a meaning only in the
context of a sector, or limit, of the theory where a background does exist. This

19 Of course, such discussions are unnecessary in classical physics since, there, if knowledge of
the value of a physical quantity is gained by making a (ideal) measurement, the reason why we
obtain the result that we do, is because the quantity possessed that value immediately before the
measurement was made. In other words, “epistemology models ontology”.

13 Topos Theory in the Foundations of Physics 765

background could then support a limited instrumentalist interpretation which would
include a (limited) relative-frequency understanding of probability.

In fact, most modern approaches to quantum gravity aspire to a formalism that
is background independent [4, 17, 77, 78]. So, if a background space does arise, it
will be in one of the restricted senses mentioned above. Indeed, it is often asserted
that a proper theory of quantum gravity will not involve any direct spatio-temporal
concepts, and that what we commonly call “space” and “time” will “emerge” from
the formalism only in some appropriate limit [52]. In this case, any instrumental-
ist interpretation could only “emerge” in the same limit, as would the associated
relative-frequency interpretation of probability.

In a theory of this type, there will be no prima facie link between the values of
physical quantities and the nature of space or space-time, although, of course, this
cannot be totally ruled out. In any event, part of the fundamental specification of the
theory will involve deciding what the “quantity-value space” should be.

These considerations suggest that quantum theory must be radically changed if
one wishes to accommodate situations where there is no background space/space-
time manifold within which an instrumentalist interpretation can be formulated. In
such a situation, some sort of “realist” formalism is essential.

These reflections also suggest that the quantity-value space employed in an
instrumentalist realisation of a theory—or a “sector”, or “limit”, of the theory—need
not be the same as the quantity-value space in a neo-realist formulation.

At first sight this may seem strange but, as is shown in Sect. 13.8, this is precisely
what happens in the topos reformulation of standard quantum theory.

13.2.2 The Genesis of Topos Ideas in Physics

13.2.2.1 Why are Space and Time Modelled with Real Numbers?

Even setting aside the more exotic considerations of quantum gravity, one can still
query the use of real numbers to model space and/or time. One might argue that (i)
the use of (triples of) real numbers to model space is based on empirically-based
reflections about the nature of “distances” between objects; and (ii) the use of real
numbers to model time reflects our experience that “instants of time” appear to be
totally ordered, and that intervals of time are always divisible.20

However, what does it really mean to say that two particles are separated by
a distance of, for example,

√
2cms? From an empirical perspective, it would be

impossible to make a measurement that could unequivocally reveal precisely that
value from among the continuum of real numbers that lie around it. There will
always be experimental errors of some sort: if nothing else, there are thermody-
namical fluctuations in the measuring device; and, ultimately, uncertainties arising
from quantum “fluctuations”. Similar remarks apply to attempts to measure time.

20 These remarks are expressed in the context of the Newtonian view of space and time, but it is
easy enough to generalise them to special relativity.

766 A. Döring and C. Isham

Thus, from an operational perspective, the use of real numbers to label “points”
in space and/or time is a theoretical abstraction that can never be realised in practice.
But if the notion of a space/time/space-time “point” in a continuum is an abstraction,
why do we use it? Of course it works well in theories used in normal physics, but at
a fundamental level it must be seen as questionable.

These operational remarks say nothing about the structure of space (or time) “in
itself”, but, even assuming that this concept makes sense, which is debatable, the use
of real numbers is still a metaphysical assumption with no fundamental justification.

Traditionally, we teach our students that measurements of physical quantities
that are represented theoretically by real numbers give results that fall into “bins”,
construed as being subsets of the real line. This suggests that, from an operational
perspective, it would be more appropriate to base mathematical models of space or
time on a theory of “regions”, rather than the real numbers themselves.

But then one asks “What is a region?”, and if we answer “A subset of triples of
real numbers for space, and a subset of real numbers for time”, we are thrown back
to the real numbers. One way of avoiding this circularity is to focus on relations
between these “subsets” and see if they can be axiomatised in some way. The natural
operations to perform on regions are (i) take intersections, or unions, of pairs of
regions; and (ii) take the complement of a region. If the regions are modelled on
Borel subsets of R, then the intersections and unions could be extended to countable
collections. If they are modelled on open sets, it would be arbitrary unions and finite
intersections.

From a physical perspective, the use of open subsets as models of regions is
attractive as it leaves a certain, arguably desirable, “fuzziness” at the edges, which
is absent for closed sets. Thus, following this path, we would axiomatise that a math-
ematical model of space or time (or space-time) involves an algebra of entities called
“regions”, and with operations that are the analogue of unions and intersections for
subsets of a set. This algebra would allow arbitrary “unions” and finite “intersec-
tions”, and would distribute21 over these operations. In effect, we are axiomatising
that an appropriate mathematical model of space-time is an object in the category of
locales.

However, a locale is the same thing as a complete Heyting algebra (for the defini-
tion see below), and, as we shall, Heyting algebras are inexorably linked with topos
theory.

13.2.2.2 Another Possible Role for Heyting Algebras

The use of a Heyting algebra to model space/time/space-time is an attractive pos-
sibility, and was the origin of the interest in topos theory of one of us (CJI) some
years ago. However, there is another motivation which is based more on logic, and
the desire to construct a “neo-realist” interpretation of quantum theory.

21 If the distributive law is dropped we could move towards the quantum-set ideas of [83]; or,
perhaps, the ideas of non-commutative geometry instigated by Alain Connes [16].

13 Topos Theory in the Foundations of Physics 767

To motivate topos theory as the source of neo-realism let us first consider classi-
cal physics, where everything is defined in the category, Sets, of sets and functions
between sets. Then (i) any physical quantity, A, is represented by a real-valued func-
tion Ă : S → R, where S is the space of microstates; and (ii) a proposition of the
form “A ε Δ” (which asserts that the value of the physical quantity A lies in the
subset Δ of the real line R)22 is represented by the subset23 Ă−1(Δ) ⊆ S. In fact
any proposition P about the system is represented by an associated subset, SP , of
S: namely, the set of states for which P is true. Conversely, every (Borel) subset of
S represents a proposition.24

It is easy to see how the logical calculus of propositions arises in this picture. For
let P and Q be propositions, represented by the subsets SP and SQ respectively,
and consider the proposition “P and Q”. This is true if, and only if, both P and
Q are true, and hence the subset of states that represents this logical conjunction
consists of those states that lie in both SP and SQ—i.e., the set-theoretic intersection
SP ∩SQ . Thus “P and Q” is represented by SP ∩SQ . Similarly, the proposition “P
or Q” is true if either P or Q (or both) are true, and hence this logical disjunction
is represented by those states that lie in SP plus those states that lie in SQ—i.e., the
set-theoretic union SP ∪SQ . Finally, the logical negation “not P” is represented by
all those points in S that do not lie in SP—i.e., the set-theoretic complement S\SP .

In this way, a fundamental relation is established between the logical calculus of
propositions about a physical system, and the Boolean algebra of subsets of the state
space. Thus the mathematical structure of classical physics is such that, of necessity,
it reflects a “realist” philosophy, in the sense in which we are using the word.

One way to escape from the tyranny of Boolean algebras and classical realism
is via topos theory. Broadly speaking, a topos is a category that behaves very much
like the category of sets; in particular, the collection of sub-objects of an object
forms a Heyting algebra, just as the collection of subsets of a set form a Boolean
algebra. Our intention, therefore, is to explore the possibility of associating physical
propositions with sub-objects of some object Σ (the analogue of a classical state
space) in some topos.

A Heyting algebra, H, is a distributive lattice with a zero element, 0, and a unit
element, 1, and with the property that to each pair α, β ∈ H there is an implication
α ⇒ β, characterised by

γ 	 (α ⇒ β) if and only if γ ∧ α 	 β. (13.1)

22 In the rigorous theory of classical physics, the set S is a symplectic manifold, and Δ is a Borel
subset of R. Also, the function Ă : S → R may be required to be measurable, or continuous, or
smooth, depending on the quantity, A, under consideration. We will henceforth assume that Δ ⊆ R

is a Borel subset and all functions Ă are measurable.
23 Throughout this article we will adopt the notation in which A ⊆ B means that A is a subset of
B that could equal B; while A ⊂ B means that A is a proper subset of B; i.e., A does not equal B.
Similar remarks apply to other pairs of ordering symbols like ≺,	; or �,�, etc.
24 More precisely, every Borel subset of S represents many propositions about the values of phys-
ical quantities. Two propositions are said to be “physically equivalent” if they are represented by
the same subset of S.

768 A. Döring and C. Isham

The negation is defined as ¬α := (α ⇒ 0) and has the property that the law of
excluded middle need not hold, i.e., there may exist α ∈ H, such that α ∨ ¬α ≺ 1
or, equivalently, there may exist α ∈ H such that ¬¬α � α. This is the character-
istic property of an intuitionistic logic.25 A Boolean algebra is the special case of a
Heyting algebra in which there is the strict equality: i.e., α ∨ ¬α = 1 for all α. It
is known from Stone’s theorem [81] that each Boolean algebra is isomorphic to an
algebra of (clopen, i.e., closed and open) subsets of a suitable (topological) space.

The elements of a Heyting algebra can be manipulated in a very similar way to
those in a Boolean algebra. One of our claims is that, as far as theories of physics
are concerned, Heyting logic is a viable26 alternative to Boolean logic.

To give some idea of the difference between a Boolean algebra and a Heyting
algebra, we note that the paradigmatic example of the former is the collection of all
measurable subsets of a measure space X . Here, if α ⊆ X represents a proposition,
the logical negation, ¬α, is just the set-theoretic complement X\α.

On the other hand, the paradigmatic example of a Heyting algebra is the collec-
tion of all open sets in a topological space X . Here, if α ⊆ X is open, the logical
negation ¬α is defined to be the interior of the set-theoretical complement X\α.
Therefore, the difference between ¬α in the topological space X , and ¬α in the
measurable space generated by the topology of X , is just the ‘thin’ boundary of the
closed set X\α.

13.2.2.3 Our Main Contention About Topos Theory and Physics

We contend that, for a given theory-type (for example, classical physics, or quan-
tum physics), each system S to which the theory is applicable is associated with a
particular topos τφ(S) within whose framework the theory, as applied to S, is to be
formulated and interpreted. In this context, the “φ”-subscript is a label that changes
as the theory-type changes. It signifies the representation of a system-language in
the topos τφ(S): we will come to this later.

The conceptual interpretation of this formalism is “neo-realist” in the following
sense:

25 Here, α ⇒ β is nothing but the category-theoretical exponential βα and γ ∧ α is the product
γ ×α. The definition uses the adjunction between the exponential and the product, Hom(γ, βα) =
Hom(γ × α, β). A slightly easier, albeit “less categorical” definition is: a Heyting algebra, H, is a
distributive lattice such that for any two elements α, β ∈ H, the set {γ ∈ H | γ ∧ α 	 β} has a
maximal element, denoted by (α ⇒ β).
26 The main difference between theorems proved using Heyting logic and those using Boolean
logic is that proofs by contradiction cannot be used in the former. In particular, this means that
one cannot prove that something exists by arguing that the assumption that it does not leads to
contradiction; instead it is necessary to provide a constructive proof of the existence of the entity
concerned. Arguably, this does not place any major restriction on building theories of physics.
Indeed, over the years, various physicists (for example, Bryce DeWitt) have argued that construc-
tive proofs should always be used in physics.

13 Topos Theory in the Foundations of Physics 769

1. A physical quantity, A, is to be represented by an arrow Aφ,S : Σφ,S → Rφ,S

where Σφ,S and Rφ,S are two special objects in the topos τφ(S). These are
the analogues of, respectively, (i) the classical state space, S; and (ii) the real
numbers, R, in which classical physical quantities take their values.
In what follows, Σφ,S and Rφ,S are called the “state object”, and the “quantity-
value object”, respectively.

2. Propositions about the system S are represented by sub-objects of Σφ,S . These
sub-objects form a Heyting algebra.

3. Once the topos analogue of a state (a “truth object”, or “pseudo-state”) has
been specified, these propositions are assigned truth values in the Heyting logic
associated with the global elements of the sub-object classifier, Ωτφ(S), in the
topos τφ(S).

Thus a theory expressed in this way looks very much like classical physics except
that whereas classical physics always employs the topos of sets, other theories—
including quantum theory and, we conjecture, quantum gravity—use a different
topos.

One deep result in topos theory is that there is an internal language associated
with each topos. In fact, not only does each topos generate an internal language, but,
conversely, a language satisfying appropriate conditions generates a topos. Topoi
constructed in this way are called “linguistic topoi”, and every topos can be regarded
as a linguistic topos. In many respects, this is one of the profoundest ways of under-
standing what a topos really “is”.27

These results are exploited in Sect. 13.4 where we introduce the idea that, for any
applicable theory-type, each physical system S is associated with a “local” language,
L(S). The application of the theory-type to S is then involves finding a representa-
tion of L(S) in an appropriate topos; this is equivalent to finding a “translation” of
L(S) into the internal language of that topos.

Closely related to the existence of this linguistic structure is the striking fact that
a topos can be used as a foundation for mathematics itself, just as set theory is used
in the foundations of “normal” (or “classical”) mathematics. In this context, the key
remark is that the internal language of a topos has a form that is similar in many
ways to the formal language on which normal set theory is based. It is this internal,
topos language that is used to interpret the theory in a “neo-realist” way.

The main difference with classical logic is that the logic of the topos language
does not satisfy the law of excluded middle, and hence proofs by contradiction are
not permitted. This has many intriguing consequences. For example, there are topoi
in which there exist genuine infinitesimals that can be used to construct a rival to
normal calculus. The possibility of such quantities stems from the fact that the nor-
mal proof that they do not exist is a proof by contradiction.

Thus each topos carries its own world of mathematics: a world which, generally
speaking, is not the same as that of classical mathematics.

27 This aspect of topos theory is discussed at length in the books by Bell [11], and Lambek and
Scott [59].

770 A. Döring and C. Isham

Consequently, by postulating that, for a given theory-type, each physical system
carries its own topos, we are also saying that to each physical system plus theory-
type there is associated a framework for mathematics itself! Thus classical physics
uses classical mathematics; and quantum theory uses “quantum mathematics”—the
mathematics formulated in the topoi of quantum theory. To this we might add the
conjecture: “Quantum gravity uses ‘quantum gravity’ mathematics”!

13.3 Propositional Languages and Theories of Physics

13.3.1 Two Opposing Interpretations of Propositions

Attempts to construct a naïve realist interpretation of quantum theory founder on the
Kochen-Specker theorem. However, if, despite this theorem, some degree of realism
is still sought, there are not that many options.

One approach is to focus on a particular, maximal commuting subset of physical
quantities and declare by fiat that these are the ones that ‘have’ values; essentially,
this is what is done in “modal” interpretations of quantum theory. However, this
leaves open the question of why Nature should select this particular set, and the
reasons proposed vary greatly from one scheme to another.

In our work, we take a completely different approach and try to formulate a
scheme which takes into account all these different choices for commuting sets of
physical quantities; in particular, equal ontological status is ascribed to all of them.
This scheme is grounded in the topos-theoretic approach that was first proposed
in [48–51]. This uses a technique whose first step is to construct a category, C,
the objects of which can be viewed as contexts in which the quantum theory can
be displayed: in fact, they are just the commuting sub-algebras of operators in the
theory. All this will be explained in more detail in Sect. 13.5.

In this earlier work, it was postulated that the logic for handling quantum propo-
sitions from this perspective is that associated with the topos of presheaves28 (con-
travariant functors from C to Sets), SetsC

op
. The idea is that a single presheaf will

encode quantum propositions from the perspective of all contexts at once. However,
in the original papers, the crucial “daseinisation” operation (see Sect. 13.5) was
not known and, consequently, the discussion became rather convoluted in places.
In addition, the generality and power of the underlying procedure was not fully
appreciated by the authors.

For this reason, in the present article we return to the basic questions and recon-
sider them in the light of the overall topos structure that has now become clear.

We start by considering the way in which propositions arise, and are manipulated,
in physics. For simplicity, we will concentrate on systems that are associated with
“standard” physics. Then, to each such system S there is associated a set of physical

28 In quantum theory, the category C is just a partially-ordered set, which simplifies many manip-
ulations.

13 Topos Theory in the Foundations of Physics 771

quantities—such as energy, momentum, position, angular momentum etc.29—all of
which are real-valued. The associated propositions are of the form “A ε Δ”, where
A is a physical quantity, and Δ is a Borel subset of R.

From a conceptual perspective, the proposition “A ε Δ” can be physics read in
two, very different, ways:

(i) The (naïve) realist interpretation: “The physical quantity A has a value, and
that value lies in Δ.”

(ii) The instrumentalist interpretation: “If a measurement is made of A, the result
will be found to lie in Δ.”

The former is the familiar, “commonsense” understanding of propositions in both
classical physics and daily life. The latter underpins the Copenhagen interpretation
of quantum theory. Of course, the instrumentalist interpretation can also be applied
to classical physics, but it does not lead to anything new. For, in classical physics,
what is measured is what is the case: “Epistemology models ontology” (see foot-
note 19).

We will now study the role of propositions in physics more carefully, particularly
in the context of “realist” interpretations.

13.3.2 The Propositional Language PL(S)

13.3.2.1 Intuitionistic Logic and the Definition of PL(S)

We are going to construct a formal language, PL(S), with which to express propo-
sitions about a physical system, S, and to make deductions concerning them. Our
intention is to interpret these propositions in a “realist” way: an endeavour whose
mathematical underpinning lies in constructing a representation of PL(S) in a Heyt-
ing algebra, H, that is part of the mathematical framework involved in the applica-
tion of a particular theory-type to S.

In constructing PL(S) we suppose that we have first identified some set, Q(S),
of physical quantities: this plays a fundamental role in our language. In addition, for
any system S, we have the set, PBR of (Borel) subsets of R. We use the sets Q(S)

and PBR to construct the “primitive propositions” about the system S. These are of
the form “A ε Δ” where A ∈ Q(S) and Δ ∈ PBR.

We denote the set of all such strings by PL(S)0. Note that what has been here
called a “physical quantity” could better (but more clumsily) be termed the “name”
of the physical quantity. For example, when we talk about the “energy” of a sys-
tem, the word “energy” is the same, and functions in the same way in the formal
language, irrespective of the details of the actual Hamiltonian of the system.

29 This set does not have to contain “all” possible physical quantities: it suffices to concentrate on
a subset that are deemed to be of particular interest. However, at some point, questions may arise
about the “completeness” of the set.

772 A. Döring and C. Isham

The primitive propositions “A ε Δ” are used to define “sentences”. More pre-
cisely, a new set of symbols {¬,∧,∨,⇒} is added to the language, and then a
sentence is defined inductively by the following rules (see Chap. 6 in [34]):

1. Each primitive proposition “A ε Δ” in PL(S)0 is a sentence.
2. If α is a sentence, then so is ¬α.
3. If α and β are sentences, then so are α ∧ β, α ∨ β, and α ⇒ β.

The collection of all sentences, PL(S), is an elementary formal language that can
be used to express and manipulate propositions about the system S. Note that, at
this stage, the symbols ¬, ∧, ∨, and ⇒ have no explicit meaning, although of
course the implicit intention is that they should stand for “not”, “and”, “or” and
“implies”, respectively. This implicit meaning becomes explicit when a representa-
tion of PL(S) is constructed as part of the application of a theory-type to S (see
below). Note also that PL(S) is a propositional language only: it does not contain
the quantifiers ‘∀’ or ‘∃’. To include them requires a higher-order language. We shall
return to this in our discussion of the language L(S).

The next step arises because PL(S) is not only a vehicle for expressing proposi-
tions about the system S: we also want to reason with it about the system. To achieve
this, a series of axioms for a deductive logic must be added to PL(S). This could
be either classical logic or intuitionistic logic, but we select the latter since it allows
a larger class of representations/models, including representations in topoi in which
the law of excluded middle fails.

The axioms for intuitionistic logic consist of a finite collection of sentences in
PL(S) (for example, α∧β ⇒ β∧α), plus a single rule of inference, modus ponens
(the “rule of detachment”) which says that from α and α ⇒ β the sentence β may
be derived.

Others axioms might be added to PL(S) to reflect the implicit meaning of the
primitive proposition “A ε Δ”: i.e., (in a realist reading) “A has a value, and that
value lies in Δ ⊆ R”. For example, the sentence “A ε Δ1 ∧ A ε Δ2” (“A belongs to
Δ1” and “A belongs to Δ2”) might seem to be equivalent to “A belongs to Δ1∩Δ2”
i.e., “A ε Δ1 ∩Δ2”. A similar remark applies to “A ε Δ1 ∨ A ε Δ2”.

Thus, along with the axioms of intuitionistic logic and detachment, we might be
tempted to add the following axioms:

A ε Δ1 ∧ A ε Δ2 ⇔ A ε Δ1 ∩Δ2, (13.2)

A ε Δ1 ∨ A ε Δ2 ⇔ A ε Δ1 ∪Δ2. (13.3)

These axioms are consistent with the intuitionistic logical structure of PL(S).
We shall see later the extent to which the axioms (13.2) and (13.3) are compatible

with the topos representations of classical and quantum physics. However, the other
obvious proposition to consider in this way—“It is not the case that A belongs to
Δ”—is clearly problematical.

In classical logic, this proposition, “¬ A ε Δ”, is equivalent to “A belongs to
R\Δ”, where R\Δ denotes the set-theoretic complement of Δ in R. This might

13 Topos Theory in the Foundations of Physics 773

suggest augmenting (13.2) and (13.3) with a third axiom

¬ A ε Δ⇔ A ε R\Δ (13.4)

However, applying “¬” to both sides of (13.4) gives

¬¬ A ε Δ ⇔ A ε Δ (13.5)

because of the set-theoretic result R\(R\Δ) = Δ. But in an intuitionistic logic
we do not have α ⇔ ¬¬α but only α ⇒ ¬¬α, and so (13.4) could be false in
a Heyting-algebra representation of PL(S) that is not Boolean. Therefore, adding
(13.4) as an axiom in PL(S) is not indicated if representations are to be sought in
non-Boolean topoi.

13.3.2.2 Representations of PL(S)

To use a language PL(S) “for real” for some specific physical system S one must
first decide on the set Q(S) of physical quantities that are to be used in describing
S. This language must then be represented in the concrete mathematical structure
that arises when a theory-type (for example: classical physics, quantum physics,
DI-physics,. . .) is applied to S. Such a representation, π , maps each primitive propo-
sition, α, in PL(S)0 to an element, π(α), of some Heyting algebra (which could be
Boolean), H, whose specification is part of the theory of S. For example, in classical
mechanics, the propositions are represented in the Boolean algebra of all (Borel)
subsets of the classical state space.

The representation of the primitive propositions can be extended recursively to
all of PL(S) with the aid of the following rules [34]:

(a) π(α ∨ β) := π(α) ∨ π(β) (13.6)

(b) π(α ∧ β) := π(α) ∧ π(β) (13.7)

(c) π(¬α) := ¬π(α) (13.8)

(d) π(α ⇒ β) := π(α)⇒ π(β) (13.9)

Note that, on the left hand side of (13.6), (13.7), (13.8) and (13.9), the symbols
{¬,∧,∨,⇒} are elements of the language PL(S), whereas on the right hand side
they denote the logical connectives in the Heyting algebra, H, in which the repre-
sentation takes place.

This extension of π from PL(S)0 to PL(S) is consistent with the axioms
for the intuitionistic, propositional logic of the language PL(S). More precisely,
these axioms become tautologies: i.e., they are all represented by the maximum
element, 1, in the Heyting algebra. By construction, the map π : PL(S) → H is
then a representation of PL(S) in the Heyting algebra H. A logician would say that
π : PL(S) → H is an H-valuation, or H-model, of the language PL(S).

774 A. Döring and C. Isham

Note that different systems, S, can have the same language. For example,
consider a point-particle moving in one dimension, with a Hamiltonian function

H(x, p) = p2

2m + V (x) and state space T ∗R. Different potentials V correspond
to different systems (in the sense in which we are using the word “system”), but
the physical quantities for these systems—or, more precisely, the “names” of these
quantities, for example, “energy”, “position”, “momentum”—are the same for them
all. Consequently, the language PL(S) is independent of V . However, the repre-
sentation of, say, the proposition “EεΔ” (where ‘E’ is the energy), with a specific
subset of the state space will depend on the details of the Hamiltonian.

Clearly, a major consideration in using the language PL(S) is choosing the Heyt-
ing algebra in which the representation is to take place. A fundamental result in
topos theory is that the set of all sub-objects of any object in a topos is a Heyting
algebra, and these are the Heyting algebras with which we will be concerned.

Of course, beyond the language, S, and its representation π , lies the question
of whether or not a proposition is “true”. This requires the concept of a “state”
which, when specified, yields “truth values” for the primitive propositions in PL(S).
These can then be extended recursively to the rest of PL(S). In classical physics,
the possible truth values are just “true” or “false”. However, as we shall see, the
situation in topos theory is more complex.

13.3.2.3 Using Geometric Logic

The inductive definition of PL(S) given above means that sentences can involve
only a finite number of primitive propositions, and therefore only a finite number of
disjunctions (“∨”) or conjunctions (“∧”). An interesting variant of this structure is
the, so-called, “propositional geometric logic”. This is characterised by modifying
the language and logical axioms so that:

1. There are arbitrary disjunctions, including the empty disjunction (“0”).
2. There are finite conjunctions, including the empty conjunction (“1”)
3. Conjunction distributes over arbitrary disjunctions; disjunction distributes over

finite conjunctions.

This structure does not include negation, implication, or infinite conjunctions.
From a conceptual viewpoint, this set of rules is obtained by considering what

it means to actually “affirm” the propositions in PL(S). A careful analysis of this
concept is given by Vickers [84]; the idea itself goes back to work by Smyth [79]
and Abramsky [1]. The conclusion is that the set of “affirmable” propositions should
satisfy the rules above.

Clearly such a logic is tailor-made for seeking representations in the open sets of
a topological space—the paradigmatic example of a Heyting algebra. The phrase
“geometric logic” is normally applied to a first-order logic with the properties
above, and we will return to this in our discussion of the typed language L(S).
What we have here is just the propositional part of this logic.

13 Topos Theory in the Foundations of Physics 775

The restriction to geometric logic would be easy to incorporate into our
languages PL(S): for example, the axiom (13.3) (if added) could be extended to
read30

∨

i∈I

(A ε Δi) = A ε
⋃

i∈I

Δi (13.10)

for all index sets I .
The move to geometric logic is motivated by a conception of truth that is

grounded in the actions of making real measurements [84, 85]. This resonates
strongly with the logical positivism that seems still to lurk in the collective uncon-
scious of the physics profession, and which, of course, was strongly affirmed by
Bohr in his analysis of quantum theory. However, our drive towards “neo-realism”
involves replacing the idea of observation/measurement with that of “the way things
are”, albeit in a more sophisticated interpretation than that of the ubiquitous cobbler-
in-the-market. Consequently, the conceptual reasons for using “affirmative” logic
are less compelling. This issue deserves further thought: at the moment we are
open-minded about it.

The use of geometric logic becomes more interesting in the context of the typed
language L(S), and we shall return to this in Sect. 13.4.2.

13.3.2.4 Introducing Time Dependence

In addition to describing “the way things are” there is also the question of how the-
way-things-are changes in time. In the form presented above, the language PL(S)

may seem geared towards a “canonical” perspective in so far as the propositions
concerned are implicitly taken to be asserted at a particular moment of time. As
such, PL(S) deals with the values of physical quantities at that time. In other words,
the underlying spatio-temporal perspective seems thoroughly “Newtonian”.

However, this is only partly true since the phrase “physical quantity” can have
meanings other than the canonical one. For example, one could talk about the “time
average of momentum”, and call that a physical quantity. In this case, the propo-
sitions would be about histories of the system, not just “the way things are” at a
particular moment in time.

In practice, the question of time dependence can be addressed in various ways.
One is to attach a (external) time label, t , to the physical quantities, so that the
primitive propositions become of the form “At ε Δ”. This can be interpreted in two
ways. The first is to think of Q(S) as including the symbols At for all physical
quantities A and all values of time t ∈ R. The second is to keep Q(S) fixed, but
instead let the language itself becomes time-dependent, so that we should write
PL(S)t , t ∈ R.

30 Note that the bi-implication ⇔ used in, for example, (13.2) and (13.3), is not available if there
is no implication symbol. Thus we have assumed that we are now working with a logical structure
in which “equality” is a meaningful concept; hence the introduction of “=” in (13.10).

776 A. Döring and C. Isham

In the former case, PL(S) would naturally include history propositions of the
form

(A1t1 ε Δ1) ∧ (A2t2 ε Δ2) ∧ · · · ∧ (Antn ε Δn) (13.11)

and other obvious variants of this. Here we assume that t1 ≤ t2 ≤ · · · ≤ tn .
The sequential proposition in (13.11) is to be interpreted (in a realist read-

ing) as asserting that “‘The physical quantity A1 has a value that lies in Δ1 at
time t1’ and ‘the physical quantity A2 has a value that lies in Δ2 at time t2’
and · · · and ‘the physical quantity An has a value that lies in Δn at time tn”’.
Clearly what we have here is a type of temporal logic. Thus this would be an
appropriate structure with which to discuss the ‘consistent histories’ interpreta-
tion of quantum theory, particularly in the, so-called, HPO (history projection
formalism) [43]. In that context, (13.11) represents a, so-called, ‘homogeneous’
history.

From a general conceptual perspective, one might prefer to have an internal time
object, rather than adding external time labels in the language. Indeed, in our later
discussion of the higher-order, typed language L(S) we will strive to eliminate exter-
nal entities. However, in the present case, Δ ⊆ R is already an “external” (to the
language) entity, as indeed is A ∈ Q(S), so there seems no particular objection to
adding a time label too.

In the second approach, where there is only one time label, the representation π

will map “At ε Δ” to a time-dependent element, π(At ε Δ), of the Heyting algebra,
H; one could say that this is a type of “Heisenberg picture”.

This suggests another option, which is to keep the language free of any time
labels, but allow the representation to be time-dependent. In this case, πt (A ε Δ) is
a time-dependent member of H.31

A different approach is to ascribe time dependence to the “truth objects” in the
theory: this corresponds to a type of Schrödinger picture. The concept of a truth
object is discussed in detail in Sect. 13.6.

13.3.2.5 The Representation of PL(S) in Classical Physics

Let us now look at the representation of PL(S) that corresponds to classical physics.
In this case, the topos involved is just the category, Sets, of sets and functions
between sets.

We will denote by πcl the representation of PL(S) that describes the classi-
cal, Hamiltonian mechanics of a system, S, whose state space is a symplectic (or
Poisson) manifold S. We denote by Ă : S → R the real-valued function32 on S that
represents the physical quantity A.

31 Perhaps we should also consider the possibility that the Heyting algebra is time dependent, in
which case πt (A ε Δ) is a member of Ht .
32 As mentioned in footnote 22, Ă is required to be measurable, continuous, or smooth, depending
on the type of physical quantity that A is. However, for the most part, these details of classical

13 Topos Theory in the Foundations of Physics 777

Then the representation πcl maps the primitive proposition “A ε Δ” to the subset
of S given by

πcl(A ε Δ) := {s ∈ S | Ă(s) ∈ Δ}
= Ă−1(Δ). (13.12)

This representation can be extended to all the sentences in PL(S) with the aid of
(13.6), (13.7), (13.8) and (13.9). Note that, since Δ is a Borel subset of R, Ă−1(Δ)

is a Borel subset of the state space S. Hence, in this case, H is equal to the Boolean
algebra of all Borel subsets of S that can be obtained as inverse images of the form
Ă−1(Δ) where A ∈ Q(S) and Δ ∈ PBR.

We note that, for all (Borel) subsets Δ1,Δ2 of R we have

Ă−1(Δ1) ∩ Ă−1(Δ2) = Ă−1(Δ1 ∩Δ2) (13.13)

Ă−1(Δ1) ∪ Ă−1(Δ2) = Ă−1(Δ1 ∪Δ2) (13.14)

¬ Ă−1(Δ1) = Ă−1(R\Δ1) (13.15)

and hence, in classical physics, all three conditions (13.2), (13.3) and (13.4) that we
discussed earlier can be added consistently to the language PL(S).

Consider now the assignment of truth values to the propositions in this theory.
This involves the idea of a “microstate” which, in classical physics, is simply an
element s of the state space S. Each microstate s assigns to each primitive proposi-
tion “A ε Δ”, a truth value, ν

(
A ε Δ; s

)
, which lies in the set {false, true} (which we

identify with {0, 1}) and is defined as

ν
(

A ε Δ; s
) :=

{
1 if Ă(s) ∈ Δ;
0 otherwise

(13.16)

for all s ∈ S.

13.3.2.6 The Failure to Represent PL(S) in Standard Quantum Theory

The procedure above that works so easily for classical physics fails completely if
one tries to apply it to standard quantum theory.

In quantum physics, a physical quantity A is represented by a self-adjoint oper-
ator Â on a Hilbert space H, and the proposition “A ε Δ” is represented by the
projection operator Ê[A ∈ Δ] which projects onto the subset Δ ∩ sp(Â) of the
spectrum, sp(Â), of Â; i.e.,

π(A ε Δ) := Ê[A ∈ Δ]. (13.17)

mechanics are not relevant to our discussions, and usually we will not characterise Ă : S → R

beyond just saying that it is a measurable function/map from S to R.

778 A. Döring and C. Isham

Of course, the set of all projection operators, P(H), in H has a “logic” of its
own—the “quantum logic”33 of the Hilbert space H—but this is incompatible with
the intuitionistic logic of the language PL(S), and the representation (13.17).

Indeed, since the “logic” P(H) is non-distributive, there will exist non-
commuting operators Â, B̂, Ĉ , and Borel subsets ΔA,ΔB ,ΔC of R such that34

Ê[A ∈ ΔA] ∧
(

Ê[B ∈ ΔB] ∨ Ê[C ∈ ΔC]
)
�=

(
Ê[A ∈ ΔA] ∧ Ê[B ∈ ΔB]

)
∨

(
Ê[A ∈ ΔA] ∧ Ê[C ∈ ΔC]

)
(13.18)

while, on the other hand, the logical bi-implication

α ∧ (β ∨ γ)⇔ (α ∧ β) ∨ (α ∧ γ) (13.19)

can be deduced from the axioms of the language PL(S).
This failure of distributivity bars any naïve realist interpretation of quantum logic.

If an instrumentalist interpretation is used instead, the spectral projectors Ê[A ∈ Δ]
now represent counterfactual propositions about what would happen if a measure-
ment is made, not propositions about what is “actually the case”. And, of course,
when a state is specified, this does not yield actual truth values but only the Born-rule
probabilities of getting certain results.

13.4 A Higher-Order, Typed Language for Physics

13.4.1 The Basics of the Language L(S)

We want now to consider the possibility of representing the physical quantities of a
system by arrows in a topos other than Sets.

The physical meaning of such an arrow is not clear, a priori. Nor is it even clear
what it is that is being represented in this way. However, what is clear is that in
such a situation it is not correct to assume that the quantity-value object is neces-
sarily the real-number object in the topos (assuming that there is one). Rather, this
object has to be determined for each topos, and is therefore an important part of the
“representation”.

A powerful technique for allowing the quantity-value object to be system-
dependent is to add a symbol “R” to the system language. Developing this line

33 For an excellent survey of quantum logic see [20]. This includes a discussion of a first-order
axiomatisation of quantum logic, and with an associated sequent calculus. It is interesting to com-
pare our work with what the authors of this paper have done. We hope to return to this at some
time in the future.
34 There is a well-known example that uses three rays in R

2, so this phenomenon is not particularly
exotic.

13 Topos Theory in the Foundations of Physics 779

of thinking suggests that a symbol “Σ”, too, should be added to the language, as
a linguistic precursor of the state object, as well as a set of symbols of the form
“A : Σ → R”, to be construed as “what it is” (namely a physical quantity) that is
represented by arrows in a topos. Similarly, there should be a symbol “Ω”, to act
as the linguistic precursor to the sub-object classifier in the topos; in the topos Sets,
this is just the set {0, 1}.

The clean way of doing all this is to construct a “local language” [11]. Our basic
assumption is that such a language, L(S), can be associated with each system S. A
physical theory of S then corresponds to a representation of L(S) in an appropriate
topos.

13.4.1.1 The Symbols of L(S)

We first consider the minimal set of symbols needed to handle elementary physics.
For more sophisticated theories in physics it will be necessary to change, or enlarge,
this set of “ground type” symbols.

The symbols for the local language, L(S), are defined recursively as follows:

1. (a) The basic type symbols are 1,Ω,Σ,R. The last two, Σ and R, are known
as ground type symbols. They are the linguistic precursors of the state object,
and quantity-value object, respectively.
If T1, T2, . . . , Tn , n ≥ 1, are type symbols, then so is35 T1 × T2 × · · · × Tn .

(b) If T is a type symbol, then so is PT .
2. (a) For each type symbol, T , there is associated a countable set of variables of

type T .
(b) There is a special symbol ∗.

3. (a) To each pair (T1, T2) of type symbols there is associated a set, FL(S)(T1, T2),
of function symbols. Such a symbol, A, is said to have signature T1 → T2;
this is indicated by writing A : T1 → T2.

(b) Some of these sets of function symbols may be empty. However, in our
case, particular importance is attached to the set, FL(S)(Σ,R), of function
symbols A : Σ → R, and we assume this set is non-empty.

The function symbols A : Σ → R represent the “physical quantities” of the
system, and hence FL(S)(Σ,R) will depend on the system S. In fact, the only
parts of the language that are system-dependent are these function symbols. The
set FL(S)(Σ,R) is the analogue of the set, Q(S), of physical quantities associated
with the propositional language PL(S).

For example, if S1 is a point particle moving in one dimension, the set
of physical quantities could be chosen to be FL(S1)(Σ,R) = {x, p, H}
which represent the position, momentum, and energy of the system. On the
other hand, if S2 is a particle moving in three dimensions, we could have
FL(S2)(Σ,R) = {x, y, z, px , py, pz, H} to allow for three-dimensional position

35 By definition, if n = 0 then T1 × T2 × · · · × Tn := 1.

780 A. Döring and C. Isham

and momentum (with respect to some given Euclidean coordinate system). Or,
we could decide to add angular momentum too, to give the set FL(S2)(Σ,R) =
{x, y, z, px , py, pz, Jx , Jy, Jz, H}. A still further extension would be to add the
quantities x · n and p · m for all unit vectors n and m; and so on.

Note that, as with the propositional language PL(S), the fact that a given system
has a specific Hamiltonian36—expressed as a particular function of position and
momentum coordinates—is not something that is to be coded into the language:
instead, such system dependence arises in the choice of representation of the lan-
guage. This means that many different systems can have the same local language.

Finally, it should be emphasised that this list of symbols is minimal and one will
certainly want to add more. One obvious, general, example is a type symbol N that
is to be interpreted as the linguistic analogue of the natural numbers. The language
could then be augmented with the axioms of Peano arithmetic.

13.4.1.2 The Terms of L(S)

The next step is to enumerate the “terms” in the language, together with their asso-
ciated types [11, 59]:

1. (a) For each type symbol T , the variables of type T are terms of type T .
(b) The symbol ∗ is a term of type 1.
(c) A term of type Ω is called a formula; a formula with no free variables is

called a sentence.
2. If A is function symbol with signature T1 → T2, and t is a term of type T1, then

A(t) is term of type T2.
In particular, if A : Σ → R is a physical quantity, and t is a term of type Σ ,
then A(t) is a term of type R.

3. (a) If t1, t2, . . . , tn are terms of type T1, T2, . . . , Tn , then 〈t1, t2, . . . , tn〉 is a term
of type T1 × T2 × · · · × Tn .

(b) If t is a term of type T1× T2× · · ·× Tn , and if 1 ≤ i ≤ n, then (t)i is a term
of type Ti .

4. (a) If ω is a term of type Ω , and x̃ is a variable of type T , then {x̃ | ω} is a term
of type PT .

(b) If t1, t2 are terms of the same type, then “t1 = t2” is a term of type Ω .
(c) If t1, t2 are terms of type T, PT respectively, then t1 ∈ t2 is a term of type

Ω .

Note that the logical operations are not included in the set of symbols.
Instead, they can all be defined using what is already given. For example,

36 It must be emphasised once more that the use of a local language is not restricted to standard,
canonical systems in which the concept of a “Hamiltonian” is meaningful. The scope of the lin-
guistic ideas is much wider than that and the canonical systems are only an example. Indeed, our
long-term interest is in the application of these ideas to quantum gravity where the local language
is likely to be very different from that used here. However, we anticipate that the basic ideas will
be the same.

13 Topos Theory in the Foundations of Physics 781

(i) true := (∗ = ∗); and (ii) if α and β are terms of type Ω , then37 α ∧ β :=(〈α, β〉 = 〈true, true〉). Thus, in terms of the original set of symbols, we have

α ∧ β := (〈α, β〉 = 〈∗ = ∗, ∗ = ∗〉) (13.20)

and so on. For details, see Chap. 3 in [11].

13.4.1.3 Terms of Particular Interest to us

Let A be a physical quantity in the set FL(S)

(
�,R

)
, and therefore a function symbol

of signature Σ → R. In addition, let Δ̃ be a variable (and therefore a term) of type
PR; and let s̃ be a variable (and therefore a term) of type Σ . Then some terms of
particular interest to us are the following:

1. A(s̃) is a term of type R with a free variable, s̃, of type Σ .
2. ‘A(s̃) ∈ Δ̃’ is a term of type Ω with free variables (i) s̃ of type Σ ; and (ii) Δ̃ of

type PR.
3. {s̃ | A(s̃) ∈ Δ̃} is a term of type PΣ with a free variable Δ̃ of type PR.

As we shall see, “A(s̃) ∈ Δ̃” is an analogue of the primitive propositions “A ε Δ” in
the propositional language PL(S). However, there is a crucial difference. In PL(S),
the “Δ” in “A ε Δ” is a specific subset of the external (to the language) real line R.
On the other hand, in the local language L(S), the “Δ̃” in “A(s̃) ∈ Δ̃” is an internal
variable within the language.

13.4.1.4 Adding Axioms to the Language

To make the language L(S) into a deductive system we need to add a set of appropri-
ate axioms and rules of inference. The former are expressed using sequents: defined
as expressions of the form Γ : α where α is a formula (a term of type Ω) and Γ is
a set of such formula. The intention is that “Γ : α” is to be read intuitively as “the
collection of formula in Γ ‘imply’ α”. If Γ is empty we just write : α.

The basic axioms include things like “α : α” (tautology), and “: t̃ ∈ {t̃ | α} ⇔ α”
(comprehension) where t̃ is a variable of type T . These axioms38 and the rules of
inference (sophisticated analogues of modus ponens) give rise to a deductive system
using intuitionistic logic. For the details see [11, 59].

For applications in physics we could, and presumably should, add extra axioms
(in the form of sequents). For example, perhaps the quantity-value object should

37 The parentheses () are not symbols in the language, they are just a way of grouping letters and
sentences. The same remark applies to the inverted commas ‘’.
38 The complete set is [11]:

Tautology: α = α

Unity : x̃1 = ∗ where x̃1 is a variable of type 1.

782 A. Döring and C. Isham

always be an abelian-group object, or at least a semi-group?39 This can be coded
into the language by adding the axioms for an abelian group structure for R. This
involves the following steps:

1. Add the following symbols:

(a) A “unit” function symbol 0 : 1 → R; this will be the linguistic analogue of
the unit element in an abelian group.

(b) An “addition” function symbol + : R×R→ R.
(c) An “inverse” function symbol − : R→ R

2. Then add axioms like ‘: ∀r̃
(+ 〈r̃ , 0(∗)〉 = r̃

)
’ where r̃ is a variable of type R,

and so on.

For another example, consider a point particle moving in three dimensions, with
the function symbols FL(S)(Σ,R) = {x, y, z, px , py, pz, Jx , Jy, Jz, H}. As L(S)

stands, there is no way to specify, for example, that “Jx = ypz − zpy”. Such rela-
tions can only be implemented in a representation of the language. However, if this
relation is felt to be “universal” (i.e., if it is expected to hold in all physically relevant
representations), then it could be added to the language with the use of extra axioms.

One of the delicate decisions that has to be made about L(S) is what extra axioms
to add to the base language. Too few, and the language lacks content; too many, and
representations of potential physical significance are excluded. This is one of the
places in the formalism where a degree of physical insight is necessary!

13.4.2 Representing L(S) in a Topos

The construction of a theory of the system S involves choosing a representa-
tion40/model, φ, of the language L(S) in a topos τφ .41 The choice of both topos
and representation depend on the theory-type being used.

Equality: x = y, α(z̃/x) : α(z̃/y). Here, α(z̃/x) is the term α with z̃ replaced

by the term x for each free occurrence of the variable z̃. The terms

x and y must be of the same type as z̃.

Products: : (〈x1, . . . , xn〉)i = xi

: x = 〈(x)1, . . . , (x)n〉
Comprehension: : t̃ ∈ {t̃ | α} ⇔ α

39 One could go even further and add the axioms for real numbers. However, the example of
quantum theory suggests that this is inappropriate: in general, the quantity-value object will not be
the real-number object [29].
40 The word “interpretation” is often used in the mathematical literature, but we want to reserve
that for use in discussions of interpretations of quantum theory, and the like.
41 A more comprehensive notation is τφ(S), which draws attention to the system S under discus-
sion; similarly, the state object could be written as Σφ,S , and so on. This extended notation is used
in Sect. 13.11 where we are concerned with the relations between different systems, and then it is

13 Topos Theory in the Foundations of Physics 783

For example, consider a system, S, that can be treated using both classical physics
and quantum physics, such as a point particle moving in three dimensions. Then, for
the application of the theory-type “classical physics”, in a representation denoted σ ,
the topos τσ is Sets, and Σ is represented by the symplectic manifold Σσ := T ∗R3;
R is represented by the usual real numbers R.

On the other hand, as we shall see in Sect. 13.5, for the application of the
theory-type “quantum physics”, τφ is the topos, SetsV(H)op

, of presheaves over
the category42 V(H), where H L2(R3, d3x) is the Hilbert space of the sys-
tem S. In this case, Σ is represented by Σφ := Σ , where Σ is the spec-
tral presheaf; this representation is discussed at length in Sect. 13.5. For both
theory types, the details of, for example, the Hamiltonian, are coded in the
representation.

We now list the τφ-representation of the most significant symbols and terms in
our language, L(S) (we have picked out only the parts that are immediately relevant
to our programme: for full details see [11, 59]).

1. (a) The ground type symbols Σ and R are represented by objects Σφ and Rφ

in τφ . These are identified physically as the state object and quantity-value
object, respectively.

(b) The symbol Ω , is represented by Ωφ := Ωτφ
, the sub-object classifier of

the topos τφ .
(c) The symbol 1, is represented by 1φ := 1τφ

, the terminal object in τφ .

2. For each type symbol PT , we have (PT)φ := PTφ , the power object of the
object Tφ in τφ .
In particular, (PΣ)φ = PΣφ and (PR)φ = PRφ .

3. Each function symbol A : Σ → R in FL(S)

(
�,R

)
(i.e., each physical quantity)

is represented by an arrow Aφ : Σφ → Rφ in τφ .
We will generally require the representation to be faithful: i.e., the map A !→ Aφ

is one-to-one.
4. A term of type Ω of the form “A(s̃) ∈ Δ̃” (which has free variables s̃, Δ̃ of

type Σ and PR respectively) is represented by an arrow [[A(s̃) ∈ Δ̃]]φ : Σφ ×
PRφ → Ωτφ

. In detail, this arrow is

[[A(s̃) ∈ Δ̃]]φ = eRφ
◦ 〈[[A(s̃)]]φ, [[Δ̃]]φ〉 (13.21)

where eRφ
: Rφ× PRφ → Ωτφ

is the usual evaluation map; [[A(s̃)]]φ : Σφ →
Rφ is the arrow Aφ ; and [[Δ̃]]φ : PRφ → PRφ is the identity.
Thus [[A(s̃) ∈ Δ̃]]φ is the chain of arrows:

Σφ × PRφ

Aφ×id−→Rφ × PRφ

eRφ−→Ωτφ
. (13.22)

essential to indicate which system is meant. However, in the present article, only one system at a
time is being considered, and so the truncated notation is fine.
42 We just mention here that the objects in V(H) are the unital, commutative von Neumann sub-
algebras of the algebra, B(H), of all bounded operators on H. Arrows in V(H) are the inclusions
of smaller into larger algebras. We will explain, and motivate, this later.

784 A. Döring and C. Isham

We see that the analogue of the “Δ” used in the PL(S)-proposition “A ε Δ” is
played by sub-objects of Rφ (i.e., global elements of PRφ) in the domain of
the arrow in (13.22). These objects are, of course, representation-dependent (i.e.,
they depend on φ).

5. A term of type PΣ of the form {s̃ | A(s̃) ∈ Δ̃} (which has a free variable Δ̃ of
type PR) is represented by an arrow [[{s̃ | A(s̃) ∈ Δ̃}]]φ : PRφ → PΣφ . This
arrow is the power transpose43 of [[A(s̃) ∈ Δ̃]]φ :

[[{s̃ | A(s̃) ∈ Δ̃}]]φ = �[[A(s̃) ∈ Δ̃]]φ� (13.23)

6. A term, ω, of type Ω with no free variables is represented by a global element
[[ω]]φ : 1τφ

→ Ωτφ
. These will typically act as “truth values” for propositions

about the system.
7. Any axioms that have been added to the language are required to be represented

by the arrow true : 1τφ → Ωτφ .

13.4.2.1 The Local Set Theory of a Topos

We should emphasise that the decision to focus on the particular type of language
that we have, is not an arbitrary one. Indeed, there is a deep connection between
such languages and topos theory.

In this context, we first note that to any local language, L, there is associated a
“local set theory”. This involves defining an “L-set” to be a term X of power type
(so that expressions of the form x ∈ X are meaningful) and with no free variables.
Analogues of all the usual set operations can be defined on L-sets. For example, if
X, Y are L-sets of type PT , one can define X ∩ Y := {x̃ | x̃ ∈ X ∧ x̃ ∈ Y } where x̃
is a variable of type T .

Furthermore, each local language, L, gives rise to an associated topos, C(L),
whose objects are equivalence classes of L-sets, where X ≡ Y is defined to mean
that the equation X = Y (i.e., a term of type Ω with no free variables) can be proved
using the sequent calculus of the language with its axioms. From this perspective, a
representation of the system-language L(S) in a topos τ is equivalent to a functor
from the topos C(L(S)) to τ .

13.4.2.2 Theory Construction as a Translation of Languages

Conversely, for each topos τ there is a local language, L(τ), whose ground type
symbols are the objects of τ , and whose function symbols are the arrows in τ . It
then follows that a representation of a local language, L, in τ is equivalent to a
‘translation’ of L in L(τ).

43 One of the basic properties of a topos is that there is a one-to-one correspondence between
arrows f : A × B → Ω and arrows � f � : B → P A := Ω A. In general, � f � is called the power
transpose of f . If B 1 then � f � is known as the name of the arrow f : A → Ω .

13 Topos Theory in the Foundations of Physics 785

Thus constructing a theory of physics is equivalent to finding a suitable
translation of the system language, L(S), to the language, L(τ), of an
appropriate topos τ .

As we will see later, the idea of translating one local language into another plays a
central role in the discussion of composite systems and sub-systems.

In the case of spoken languages, one can translate from, say, (i) English to Ger-
man; or (ii) from English to Greek, and then from Greek to German. However, no
matter how good the translators, these two ways of going from English to German
will generally not agree. This is partly because the translation process is not unique,
but also because each language possesses certain intrinsic features that simply do
not admit of translation.

There is an interesting analogous question for the representation of the local lan-
guages L(S). Namely, suppose φ1 : L(S) → L(τφ1) and φ2 : L(S) → L(τφ2)

are two different topos theories of the same system S (these could be, say, classical
physics and quantum physics). The question is if/when will there be a translation
φ12 : L(τφ1)→ L(τφ2) such that

φ2 = φ12 ◦ φ1 (13.24)

In terms of the representation functors from the topos C(L(S)) to the topoi τφ1 and
τφ2 , the question is if there exists an interpolating functor from τφ1 to τφ2 .

In Sect. 13.12.2, we will introduce a certain category, M(Sys), whose objects are
topoi and whose arrows are geometric morphisms between topoi. It would be natural
to require the arrow from τφ1 to τφ2 (if it exists) to be an arrow in this category.

It is at this point that “geometric logic” enters the scene (cf. Sect. 13.3.2). A
formula in L(S) is said to be positive if it does not contain the symbols44 ⇒ or ∀.
These conditions imply that ¬ is also absent. In fact, a positive formula uses only
∃,∧ and ∨. A disjunction can have an arbitrary index set, but a conjunction can have
only a finite index set. A sentence of the form ∀x(α ⇒ β) is said to be a geometric
implication if both α and β are positive. Then a geometric logic is one in which only
geometric implications are present in the language.

The advantage of using just the geometric part of logic is that geometric impli-
cations are preserved under geometric morphisms. This makes it appropriate
to ask for the existence of ‘geometric translations’ φ12 : L(τφ1) → L(τφ2), as
in (13.24), since these will preserve the logical structure of the language L(S).

44 Here, the formula α ⇒ β is defined as α ⇒ β := (α ∧ β) = α; ∀ is defined as ∀xα := ({x |
α} = {x | true}); where true := ∗ = ∗.

786 A. Döring and C. Isham

The notion of “toinvariance” introduced recently by Landsman [60] can be inter-
preted within our structures as asserting that the translations φ12 : L(τφ1) → L(τφ2)

should always exist; or, at least, they should under appropriate conditions. Of course,
the significance of this depends on how much information about the system is
reflected in the language L(S) and how much in the individual representations.

For example, in the case of classical and quantum physics, one might go so far as
to include information about the dynamics of the system within the local language
L(S). If the topoi φ1 and φ2 are those for the classical and quantum physics of S
respectively (so that φ1 is Sets and φ2 is SetsV(H)op

), then an interpolating trans-
lation φ12 : L(Sets) → L(SetsV(H)op

) would be a nice realisation of Landsman’s
long-term goal of regarding quantisation as some type of functorial operation.

Of course, introducing dynamics raises interesting questions about the status of
the concept of “time” (cf. the discussion in Sect. 13.3.2.4). In particular, is time to
be identified as an object in representing topos, or is it an external parameter, like
the “Δ” quantities in the propositional languages PL(S)?

13.4.3 Classical Physics in the Local Language L(S)

The quantum theory representation of L(S) is studied in Sect. 13.5. Here we will
look at the concrete form of the expressions above for the example of classical
physics. In this case, for all systems S, and all classical representations, σ , the topos
τσ is Sets. This representation of L(S) has the following ingredients:

1. (a) The ground type symbol Σ is represented by a symplectic manifold, Σσ ,
that is the state space for the system S.

(b) The ground type symbol R is represented by the real line, i.e., Rσ := R.
(c) The type symbol PΣ is represented by the set, PΣσ , of all45 subsets of the

state space Σσ .
The type symbol PR is represented by the set, PR, of all subsets of R.

2. (a) The type symbol Ω , is represented by ΩSets := {0, 1}: the sub-object clas-
sifier in Sets.

(b) The type symbol 1, is represented by the singleton set: i.e., 1Sets = {∗}, the
terminal object in Sets.

3. Each function symbol A : Σ → R, and hence each physical quantity, is repre-
sented by a real-valued (measurable) function, Aσ : Σσ → R, on the state space
Σσ .

4. The term “A(s̃) ∈ Δ̃” of type Ω (where s̃ and Δ̃ are free variables of type Σ and
PR respectively) is represented by the function [[A(s̃) ∈ Δ̃]]σ : Σσ × PR →
{0, 1} that is defined by (cf. (13.22))

45 To be precise, we really need to use the collection PBΣσ of all Borel subsets of Σσ . Likewise
for the subsets of R.

13 Topos Theory in the Foundations of Physics 787

[[A(s̃) ∈ Δ̃]]σ (s,Δ) =
{

1 if Aσ (s) ∈ Δ;
0 otherwise

(13.25)

for all (s,Δ) ∈ Σσ × PR.
5. The term {s̃ | A(s̃) ∈ Δ̃} of type PΣ (where Δ̃ is a free variable of type PR) is

represented by the function [[{s̃ | A(s̃) ∈ Δ̃}]]σ : PR → PΣσ that is defined
by

[[{s̃ | A(s̃) ∈ Δ̃}]]σ (Δ) := {s ∈ Σφ | Aσ (s) ∈ Δ}
= A−1

σ (Δ) (13.26)

for all Δ ∈ PR.

13.4.4 Adapting the Language L(S) to Other Types
of Physical System

Our central contention in this work is that (i) each physical system, S, can be
equipped with a local language, L(S); and (ii) constructing an explicit theory of
S in a particular theory-type is equivalent to finding a representation of L(S) in a
topos which may well be other than the topos of sets.

There are many situations in which the language is independent of the theory-
type, and then, for a given system S, the different topos representations of L(S)

correspond to the application of the different theory-types to the same system S. We
gave an example earlier of a point particle moving in three dimensions: the classical
physics representation is in the topos Sets, but the quantum-theory representation is

in the presheaf topos SetsV(L2(R3, d3x))op
.

However, there are other situations where the relationship between the language
and its representations is more complicated than this. In particular, there is the criti-
cal question about what features of the theory should go into the language, and what
into the representation. The first step in adding new features is to augment the set of
ground type symbols. This is because these represent the entities that are going to
be of generic interest (such as a state object or quantity-value object). In doing this,
extra axioms may also be introduced to encode the properties that the new objects
are expected to possess in all representations of physical interest.

For example, suppose we want to use our formalism to discuss space-time
physics: where does the information about the space-time go? If the subject is clas-
sical field theory in a curved space-time, then the topos τ is Sets, and the space-time
manifold is part of the background structure. This makes it natural to have the man-
ifold assumed in the representation; i.e., the information about the space-time is in
the representation.

Alternatively, one can add a new ground type symbol, “M”, to the language, to
serve as the linguistic progenitor of “space-time”; thus M would have the same the-
oretical status as the symbols Σ and R. In this context, we recall the brief discussion
in Sect. 13.2.2 about the use of the real numbers in modelling space and/or time, and

788 A. Döring and C. Isham

the motivation this provides for representing space-time as an object in a topos, and
whose sub-objects represent the fundamental “regions”.

If “M” is added to the language, a function symbol ψ : M → R is then the
progenitor of a physical field. In a representation, φ, the object Mφ plays the role of
‘space-time’ in the topos τφ , and ψφ : Mφ → Rφ is the representation of the field.

Of course, the language L(S) says nothing about what sort of entity Mφ is, except
in so far as such information is encoded in extra axioms. For example, if the subject
is classical field theory, then τφ = Sets, and Mφ would be a standard differentiable
manifold. On the other hand, if the topos τφ admits “infinitesimals”, then Mφ could
be a manifold according to the language of synthetic differential geometry [58].

The same type of argument applies to the status of “time” in a canonical theory.
In particular, it would be possible to add a ground type symbol, T , so that, in any
representation, φ, the object Tφ in the topos τφ is the analogue of the “time-line” for
that theory. For standard physics in Sets we have Tφ = R, but the form of Tφ in a
more general topos, τφ , would be a rich subject for speculation.

The addition of a “time-type” symbol, T , to the language L(S) is a prime exam-
ple of a situation where one might want to add extra axioms. These could involve
ordering properties, or algebraic properties like those of an abelian group, and so
on. In any topos representation, these properties would then be realised as the cor-
responding type of object in τφ . Thus abelian group axioms mean that Tφ is an
abelian-group object in the topos τφ ; total-ordering axioms for the time-type T mean
that Tφ is a totally-ordered object in τφ , and so on.

As an interesting extension of this idea, one could have a space-time ground type
symbol M , but then add the axioms for a partial ordering. In that case, Mφ would
be a poset-object in τφ , which could be interpreted physically as the τφ-analogue of
a causal set [32].

13.5 Quantum Propositions as Sub-objects of the Spectral
Presheaf

13.5.1 Some Background Remarks

13.5.1.1 The Kochen-Specker Theorem

The idea of representing quantum theory in a topos of presheaves stemmed orig-
inally [48] from a desire to acquire a new perspective on the Kochen-Specker
theorem [57]. It will be helpful at this stage to review some of this older
material.

A commonsense belief, and one apparently shared by Heidegger, is that at any
given time any physical quantity must have a value even if we do not know what
it is. In classical physics, this is not problematic since the underlying mathemati-
cal structure is geared precisely to realise it. Specifically, if S is the state space of
some classical system, and if the physical quantity A is represented by a real-valued
function Ă : S → R, then the value V s(A) of A in any state s ∈ S is simply

13 Topos Theory in the Foundations of Physics 789

V s(A) = Ă(s). (13.27)

Thus all physical quantities possess a value in any state. Furthermore, if h : R → R

is a real-valued function, a new physical quantity h(A) can be defined by requiring
the associated function ˘h(A) to be

˘h(A)(s) := h(Ă(s)) (13.28)

for all s ∈ S; i.e., ˘h(A) := h ◦ Ă : S → R. Thus the physical quantity h(A) is
defined by saying that its value in any state s is the result of applying the function
h to the value of A; hence, by definition, the values of the physical quantities h(A)

and A satisfy the “functional composition principle”

V s(h(A)) = h(V s(A)) (13.29)

for all states s ∈ S.
However, standard quantum theory precludes any such naïve realist interpretation

of the relation between formalism and physical world. And this obstruction comes
from the mathematical formalism itself, in the guise of the famous Kochen-Specker
theorem which asserts the impossibility of assigning values to all physical quantities
whilst, at the same time, preserving the functional relations between them [57].

In a quantum theory, a physical quantity A is represented by a self-adjoint oper-
ator Â on the Hilbert space of the system, and the first thing one has to decide is
whether to regard a valuation as a function of the physical quantities themselves,
or on the operators that represent them. From a mathematical perspective, the latter
strategy is preferable, and we shall therefore define a valuation to be a real-valued
function V on the set of all bounded, self-adjoint operators, with the properties that :
(i) the value V (Â) of the physical quantity A represented by the operator Â belongs
to the spectrum of Â (the so-called “value rule”); and (ii) the functional composition
principle (or FUNC for short) holds:

V (B̂) = h(V (Â)) (13.30)

for any pair of self-adjoint operators Â, B̂ such that B̂ = h(Â) for some real-valued
function h. If they existed, such valuations could be used to embed the set of self-
adjoint operators in the commutative ring of real-valued functions on an underlying
space of microstates, thereby laying the foundations for a hidden-variable interpre-
tation of quantum theory.

Several important results follow from the definition of a valuation. For example,
if Â1 and Â2 commute, it follows from the spectral theorem that there exists an
operator Ĉ and functions h1 and h2 such that Â1 = h1(Ĉ) and Â2 = h2(Ĉ). It then
follows from FUNC that

V (Â1 + Â2) = V (Â1)+ V (Â2) (13.31)

790 A. Döring and C. Isham

and

V (Â1 Â2) = V (Â1)V (Â2). (13.32)

The defining Eq. (13.30) for a valuation makes sense whatever the nature of the
spectrum sp(Â) of the operator Â. However, if sp(Â) contains a continuous part,
one might doubt the physical meaning of assigning one of its elements as a value.
To handle the more general case, we shall view a valuation as primarily giving truth
values to propositions about the values of a physical quantity, rather than assigning
a specific value to the quantity itself.

As in Sect. 13.3, the propositions concerned are of the type “A ε Δ”, which (in
a realist reading) asserts that the value of the physical quantity A lies in the (Borel)
subset Δ of the spectrum sp(Â) of the associated operator Â. This proposition is rep-
resented by the spectral projector Ê[A ∈ Δ], which motivates studying the general
mathematical problem of assigning truth values to projection operators.

If P̂ is a projection operator, the identity P̂ = P̂2 implies that V (P̂) = V (P̂2) =
(V (P̂))2 (from (13.32)); and hence, necessarily, V (P̂) = 0 or 1. Thus V defines a
homomorphism from the Boolean algebra {0̂, 1̂, P̂,¬P̂ ≡ (1̂− P̂)} to the “false(0)-
true(1)” Boolean algebra {0, 1}. More generally, a valuation V induces a homomor-
phism χV : W → {0, 1} where W is any Boolean sub-algebra of the lattice P(H)

of projectors on H. In particular,

α̂ 	 β̂ implies χV (α̂) ≤ χV (β̂) (13.33)

where “α̂ 	 β̂” refers to the partial ordering in the lattice P(H), and “χV (α̂) ≤
χV (β̂)” is the ordering in the Boolean algebra {0, 1}.

The Kochen-Specker theorem asserts that no global valuations exist if the dimen-
sion of the Hilbert space H is greater than two. The obstructions to the existence of
such valuations typically arise when trying to assign a single value to an operator Ĉ
that can be written as Ĉ = g(Â) and as Ĉ = h(B̂) with [Â, B̂] �= 0.

The various interpretations of quantum theory that aspire to use “beables”, rather
than “observables”, are all concerned in one way or another with addressing this
issue. Inherent in such schemes is a type of “contextuality” in which a value
given to a physical quantity C cannot be part of a global assignment of values but
must, instead, depend on some context in which C is to be considered. In prac-
tice, contextuality is endemic in any attempt to ascribe properties to quantities in a
quantum theory. For example, as emphasized by Bell [12], in the situation where
Ĉ = g(Â) = h(B̂), if the value of C is construed counterfactually as referring to
what would be obtained if a measurement of A or of B is made—and with the value
of C then being defined by applying to the result of the measurement the relation
C = g(A), or C = h(B)—then one can claim that the actual value obtained depends
on whether the value of C is determined by measuring A, or by measuring B.

In the programme to be discussed here, the idea of a contextual valuation will
be developed in a different direction from that of the existing modal interpreta-
tions in which “reality” is ascribed to only some commutative subset of physical

13 Topos Theory in the Foundations of Physics 791

quantities. In particular, rather than accepting such a limited domain of beables we
shall propose a theory of “generalised” valuations that are defined globally on all
propositions about values of physical quantities. However, the price of global exis-
tence is that any given proposition may have only a generalised truth value. More
precisely, (i) the truth value of a proposition “A ε Δ” belongs to a logical structure
that is larger than {0, 1}; and (ii) these target-logics, and truth values, are context
dependent.

It is clear that the main task is to formulate mathematically the idea of a con-
textual, truth value in such a way that the assignment of generalised truth values
is consistent with an appropriate analogue of the functional composition principle,
FUNC.

13.5.1.2 The Introduction of Coarse-Graining

In the original paper [48], this task is tackled using a type of “coarse-graining”
operation. The key idea is that, although in a given situation in quantum theory it
may not be possible to declare a particular proposition “A ε Δ” to be true (or false),
nevertheless there may be (Borel) functions f such that the associated propositions
“ f (A) ε f (Δ)” can be said to be true. This possibility arises for the following rea-
son.

Let WA denote the spectral algebra of the operator Â that represents a physical
quantity A. Thus WA is the Boolean algebra of projectors Ê[A ∈ Δ] that project
onto the eigenspaces associated with the Borel subsets Δ of the spectrum sp(Â)

of Â; physically speaking, Ê[A ε Δ] represents the proposition “A ε Δ”. It follows
from the spectral theorem that, for all Borel subsets J of the spectrum of f (Â),
the spectral projector Ê[f (A) ε J] for the operator f (Â) is equal to the spectral
projector Ê[A ε f −1(J)] for Â. In particular, if f (Δ) is a Borel subset of sp(f (Â))

then, since Δ ⊆ f −1(f (Δ)), we have Ê[A ε Δ] 	 Ê[A ε f −1(f (Δ))]; and hence

Ê[A ε Δ] 	 Ê[f (A) ε f (Δ)]. (13.34)

Physically, the inequality in (13.34) reflects that the proposition “ f (A) ε f (Δ)”
is generally weaker than the proposition “A ε Δ” in the sense that the latter implies
the former, but not necessarily vice versa. For example, the proposition “ f (A) =
f (a)” is weaker than the original proposition “A = a” if the function f is many-
to-one and such that more than one eigenvalue of Â is mapped to the same eigen-
value of f (Â). In general, we shall say that “ f (A) ε f (Δ)” is a coarse-graining of
“A ε Δ”.

Now, if the proposition “A ε Δ” is evaluated as “true” then, from (13.33) and
(13.34), it follows that the weaker proposition “ f (A) ε f (Δ)” is also evaluated as
‘true’.

This remark provokes the following observation. There may be situations in
which, although the proposition “A ε Δ” cannot be said to be either true or false,
the weaker proposition “ f (A) ε f (Δ)” can. In particular, if the latter can be given
the value “true”, then—by virtue of the remark above—it is natural to suppose that

792 A. Döring and C. Isham

any further coarse-graining to give an operator g(f (Â)) will yield a proposition
“g(f (A)) ∈ g(f (Δ))” that will also be evaluated as “true”. Note that there may be
more than one possible choice for the ‘initial’ function f , each of which can then be
further coarse-grained in this way. This multi-branched picture of coarse-graining
is one of the main justifications for our invocation of the topos-theoretic idea of a
presheaf.

It transpires that the key remark above is the statement:

If “ f (A) ε f (Δ)” is true, then so is “g(f (A) ε g(f (Δ)” for any function
g : R → R.

This is key because the property thus asserted can be restated by saying that the
collection of all functions f such that “ f (A) ε f (Δ)” is “true” is a sieve46; and
sieves are closely associated with global elements of the sub-object classifier in
a category of presheaves, which is the presheaf of sieves (on objects of the base
category).

To clarify this we start by defining a category O whose objects are the bounded,
self-adjoint operators on H. For the sake of simplicity, we will assume for the
moment that O consists only of the operators whose spectrum is discrete. Then
we say that there is a “morphism” from B̂ to Â if there exists a Borel function
(more precisely, an equivalence class of Borel functions) f : sp(Â) → R such that
B̂ = f (Â), where sp(Â) is the spectrum of Â. Any such function on sp(Â) is unique
(up to the equivalence relation), and hence there is at most one morphism between
any two operators. If B̂ = f (Â), the corresponding morphism in the category O
will be denoted fO : B̂ → Â. It then becomes clear that the statement in the box
above is equivalent to the statement that the collection of all functions f such that
“ f (A) ε f (Δ)” is “true”, is a sieve47 on the object Â in the category O.

This motivates very strongly looking at the topos category, SetsO
op

of contravari-
ant,48 set-valued functors on O. Then, bearing in mind our discussion of values of
physical quantities, it is rather natural to construct the following object in this topos:

Definition 1 The spectral presheaf on O is the contravariant functor Σ : O→ Sets
defined as follows:

1. On objects: Σ(Â) := sp(Â).
2. On morphisms: If fO : B̂ → Â, so that B̂ = f (Â), then Σ(fO) : sp(Â) →

sp(B̂) is defined by Σ(fO)(λ) := f (λ) for all λ ∈ sp(Â).

46 A sieve on an object C in a category C is a collection of arrows in C with codomain C such that
the following condition holds: if f : B → C is in the sieve and g : A → B is any other arrow in
C, then the composite arrow f ◦ g : A → C is also contained in the sieve.
47 It is a matter of convention whether this is called a sieve or a co-sieve.
48 Ab initio, we could just as well have looked at covariant functors, but with our definitions the
contravariant ones are more natural.

13 Topos Theory in the Foundations of Physics 793

Note that Σ(fO) is well-defined since, if λ ∈ σ(Â), then f (λ) is indeed an ele-
ment of the spectrum of B̂; indeed, for these discrete-spectrum operators we have
sp(f (Â)) = f (sp(Â)).

The key remark now is the following. If C is any category, a global element, of a
contravariant functor X : C → Sets is defined to be a function γ that assigns to each
object A in the category C an element γA ∈ X(A) in such a way that if f : B → A

then X(f)(γA) = γB (see Appendix 2 for more details).
In the case of the spectral functor Σ , a global element is therefore a function

γ that assigns to each (bounded, discrete spectrum) self-adjoint operator Â, a real
number γA ∈ sp(Â) such that if B̂ = f (Â) then f (γA) = γB . But this is precisely
the condition FUNC in Eq. (13.30) for a valuation!

Thus, the Kochen-Specker theorem is equivalent to the statement that,
if dimH > 2, the spectral presheaf Σ has no global elements.

It was this observation that motivated the original suggestion by one of us (CJI)
and his collaborators that quantum theory should be studied from the perspective of
topos theory. However, as it stands, the discussion above works only for operators
with a discrete spectrum. This is fine for finite-dimensional Hilbert spaces, but in an
infinite-dimensional space operators can have continuous parts in their spectra, and
then things get more complicated.

One powerful way of tackling this problem is to replace the category of operators
with a category, V(H), whose objects are commutative von Neumann sub-algebras
of the algebra B(H) of all bounded operators on H. There is a close link with the
category C since each self-adjoint operator generates a commutative von Neumann
algebra, but using V(H) rather than C solves all the problems associated with con-
tinuous spectra [50].

Of course, this particular motivation for introducing V(H) is purely mathemati-
cal, but there are also very good physics reasons for this step. As we have mentioned
earlier, one approach to handling the implications of the Kochen-Specker theorem
is to “reify” only a subset of physical variables, as is done in the various “modal
interpretations”. The topos-theoretic extension of this idea of “partial reification”,
first proposed in [48–51], is to build a structure in which all possible reifiable sets
of physical variables are included on an equal footing. This involves constructing
a category, C, whose objects are collections of quantum observables that can be
simultaneously reified because the corresponding self-adjoint operators commute.
The application of this type of topos scheme to an actual modal interpretation is
discussed in the recent paper by Nakayama [72].

From a physical perspective, the objects in the category C can be viewed as con-
texts (or “world-views”, or “windows on reality”, or “classical snapshots”) from
whose perspectives the quantum theory can be displayed. This is the physical moti-
vation for using commutative von Neumann algebras.

In the normal, instrumentalist interpretation of quantum theory, a context is
therefore a collection of physical variables that can be measured simultaneously.

794 A. Döring and C. Isham

The physical significance of this contextual logic is discussed at length in [48–
51, 53] and [28, 29].

13.5.1.3 Alternatives to von Neumann Algebras

It should be remarked that V(H) is not the only possible choice for the category
of concepts. Another possibility is to construct a category whose objects are the
Boolean sub-algebras of the non-distributive lattice of projection operators on the
Hilbert space; more generally we could consider the Boolean sub-algebras of any
non-distributive lattice. This option was discussed in [48].

Yet another possibility is to consider the abelian C∗-subalgebras of the algebra
B(H) of all bounded operators on H. More generally, one could consider the abelian
sub-algebras of any C∗-algebra; this is the option adopted by Heunen et al. [42]
in their interesting recent development of our scheme. One disadvantage of a C∗-
algebra is that in general it does not contain enough projectors, and if one wants
to include them, it is necessary to move to AW ∗-algebras, which are the abstract
analogue of the concrete von Neumann algebras that we employ. For each of these
choices there is a corresponding spectral object, and these different spectral objects
are closely related.

It is clear that a similar procedure could be followed for any algebraic quantity
A that has an “interesting” collection of commutative sub-algebras. We will return
to this remark in Sect. 13.14.1.

13.5.2 From Projections to Global Elements of the Outer Presheaf

13.5.2.1 The Definition of δ(P̂)V

The fundamental thesis of our work is that in constructing theories of physics one
should seek representations of a formal language in a topos that may be other than
Sets. We want now to study this idea closely in the context of the “toposification”
of standard quantum theory, with particular emphasis on a topos representation
of propositions. Most “standard” quantum systems (for example, one-dimensional

motion with a Hamiltonian H = p2

2m+V (x)) are obtained by “quantising” a classical
system, and consequently the formal language is the same as it is for the classical
system. Our immediate goal is to represent physical propositions with sub-objects
of the spectral presheaf Σ .

In this Section we concentrate on the propositional language PL(S) introduced
in Sect. 13.3.2. Thus a key task is to find the map πqt : PL(S)0 → Sub(Σ), where
the primitive propositions in PL(S)0 are of the form “A ε Δ”. As we shall see,
this is where the critical concept of daseinisation arises: the procedure whereby a
projector P̂ is transformed to a sub-object, δ(P̂), of the spectral presheaf, Σ , in the

topos SetsV(H)op
(the precise definition of Σ is given in Sect. 13.5.3).

In standard quantum theory, a physical quantity is represented by a self-adjoint
operator Â in the algebra, B(H), of all bounded operators on H. If Δ ⊆ R is a

13 Topos Theory in the Foundations of Physics 795

Borel subset, we know from the spectral theorem that the proposition “A ε Δ” is
represented by49 the projection operator Ê[A ∈ Δ] in B(H). For typographical
simplicity, for the rest of this Section, Ê[A ∈ Δ] will be denoted by P̂ .

We are going to consider the projection operator P̂ from the perspective of
the “category of contexts”—a keystone of the topos approach to quantum theory.
As we have remarked earlier, there are several possible choices for this category
most of which are considered in detail in the original papers [48–51]. Here we
have elected to use the category V(H) of unital, abelian sub-algebras of B(H).
This partially-ordered set has a category structure in which (i) the objects are the
abelian sub-algebras of B(H); and (ii) there is an arrow iV ′V : V ′ → V , where
V ′, V ∈ Ob(V(H)),50 if and only if V ′ ⊆ V . By definition, the trivial sub-algebra
V0 = |C1̂ is not included in the objects of V(H). A context could also be called
a “world-view”, a “classical snap-shot”, a “window on reality”, or even a Weltan-
schauung51; mathematicians often refer to it as a “stage of truth”.

The critical question is what can be said about the projector P̂ “from the perspec-
tive” of a particular context V ∈ Ob(V(H))? If P̂ belongs to V then a “full” image
of P̂ is obtained from this view-point, and there is nothing more to say. However,
suppose the abelian sub-algebra V does not contain P̂: what then?

We need to “approximate” P̂ from the perspective of V , and an important ingre-
dient in our work is to define this as meaning the “smallest” projection operator,
δ(P̂)V , in V that is greater than, or equal to, P̂:

δ(P̂)V :=
∧ {

α̂ ∈ P(V) | α̂ � P̂
}
. (13.35)

where “�” is the usual ordering of projection operators, and where P(V) denotes
the set of all projection operators in V .52

To see what this means, let P̂ and Q̂ represent the propositions “A ε Δ” and
“A ε Δ′” respectively with Δ ⊆ Δ′, so that P̂ 	 Q̂. Since we learn less about the
value of A from the proposition “A ε Δ′” than from “A ε Δ”, the former proposition
is said to be weaker. Clearly, the weaker proposition “A ε Δ′” is implied by the
stronger proposition “A ε Δ”. The construction of δ(P̂)V as the smallest projec-
tion in V greater than or equal to P̂ thus gives the strongest proposition express-
ible in V that is implied by P̂ (although, if Â /∈ V , the projection δ(P̂)V cannot

49 Note, however, that the map from propositions to projections is not injective: two propositions
“A ε Δ1” and “BεΔ2” concerning two distinct physical quantities, A and B, can be represented by
the same projector: i.e., Ê[A ∈ Δ1] = Ê[B ∈ Δ2].
50 We denote by Ob(C) the collection of all objects in the category C.
51 “Weltanschauung” is a splendid German word. “Welt” means world; “schauen” is a verb and
means to look, to view; “anschauen” is to look at; and “-ung” at the end of a word can make a noun
from a verb. So it’s Welt-an-schau-ung.
52 We will later call the mapping δV : P(H) → P(V) the outer daseinisation of projections to V
and often denote it as δo

V ; compare formula (13.83) below, where inner daseinisation is introduced.

796 A. Döring and C. Isham

usually be interpreted as a proposition about A).53 Note that if P̂ belongs to V , then
δ(P̂)V = P̂ . The mapping P̂ !→ δ(P̂)V was originally introduced by de Groote in
[37], who called it the ‘V -support’ of P̂ .

The key idea in this part of our scheme is that rather than thinking of a quantum
proposition, “A ε Δ”, as being represented by the single projection operator Ê[A ∈
Δ], instead we consider the entire collection {δ(Ê[A ∈ Δ])V | V ∈ Ob(V(H))}
of projection operators, one for each context V . As we will see, the link with topos
theory is that this collection of projectors is a global element of a certain presheaf.

This “certain” presheaf is in fact the “outer” presheaf, which is defined as fol-
lows:

Definition 2 The outer54 presheaf O is defined over the category V(H) as follows
[48, 50]:

(i) On objects V ∈ Ob(V(H)): We have OV := P(V)

(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping O(iV ′V) : OV → OV ′ is given
by O(iV ′V)(α̂) := δ(α̂)V ′ for all α̂ ∈ P(V).

With this definition, it is clear that, for each projection operator P̂ , the assignment
V !→ δ(P̂)V defines a global element, denoted δ(P̂), of the presheaf O . Indeed, for
each context V , we have the projector δ(P̂)V ∈ P(V) = OV , and if iV ′V : V ′ ⊆ V ,
then

δ
(
δ(P̂)V

)
V ′ =

∧ {
Q̂ ∈ P(V ′) | Q̂ � δ(P̂)V

} = δ(P̂)V ′ (13.36)

and so the elements δ(P̂)V , V ∈ Ob(V(H)), are compatible with the structure of
the outer presheaf. Thus we have a mapping

δ : P(H) → Γ O

P̂ !→ {δ(P̂)V | V ∈ Ob(V(H))} (13.37)

from the projectors in P(H) to the global elements, Γ O, of the outer presheaf.55

53 Note that the definition in (13.35) exploits the fact that the lattice P(V) of projection operators
in V is complete. This is the main reason why we chose von Neumann sub-algebras rather than
C∗-algebras: the former contain enough projections, and their projection lattices are complete.
54 In the original papers by CJI and collaborators, this was called the “coarse-graining” presheaf,
and was denoted G. The reason for the change of nomenclature will become apparent later.
55 Vis-a-vis our use of the language L(S) a little further on, we should emphasise that the outer
presheaf has no linguistic precursor, and in this sense, it has no fundamental status in the theory.
In fact, we could avoid the outer presheaf altogether and always work directly with the spectral
presheaf, Σ , which, of course, does have a linguistic precursor. However, it is technically conve-
nient to introduce the outer presheaf as an intermediate tool.

13 Topos Theory in the Foundations of Physics 797

13.5.2.2 Properties of the Mapping δ : P(H) → Γ O

Let us now note some properties of the map δ : P(H) → Γ O that are relevant to
our overall scheme.

1. For all contexts V , we have δ(0̂)V = 0̂.
The null projector represents all propositions of the form “A ε Δ” with the prop-
erty that sp(Â) ∩Δ = ∅. These propositions are trivially false.

2. For all contexts V , we have δ(1̂)V = 1̂.
The unit operator 1̂ represents all propositions of the form “A ε Δ” with the prop-
erty that sp(Â) ∩Δ = sp(Â). These propositions are trivially true.

3. There exist global elements of O that are not of the form δ(P̂) for any projector
P̂ . This phenomenon will be discussed later. However, if γ ∈ Γ O is of the form
δ(P̂) for some P̂ , then

P̂ =
∧

V∈Ob(V(H))

δ(P̂)V , (13.38)

because δ(P̂)V � P̂ for all V ∈ Ob(V(H)), and δ(P̂)V = P̂ for any V that
contains P̂ .

The next result is important as it means that “nothing is lost” in mapping a pro-
jection operator P̂ to its associated global element, δ(P̂), of the presheaf O.

Theorem 1 The map δ : P(H)→ Γ O is injective.

This simply follows from (13.38): if δ(P̂) = δ(Q̂) for two projections P̂, Q̂,
then

P̂ =
∧

V∈Ob(V(H))

δ(P̂)V =
∧

V∈Ob(V(H))

δ(Q̂)V = Q̂. (13.39)

13.5.2.3 A Logical Structure for Γ O?

We have seen that the quantities δ(P̂) := {δ(P̂)V | V ∈ Ob(V(H))}, P̂ ∈ P(H),
are elements of Γ O , and if they are to represent quantum propositions, one might
expect/hope that (i) these global elements of O form a Heyting algebra; and (ii) this
algebra is related in some way to the Heyting algebra of sub-objects of Σ . Let us
see how far we can go in this direction.

Our first remark is that any two global elements γ1, γ2 of O can be compared at
each stage V in the sense of logical implication. More precisely, let γ1V ∈ P(V)

denote the V ’th ‘component’ of γ1, and ditto for γ2V . Then we have the following
result:

798 A. Döring and C. Isham

Definition 3 A partial ordering on Γ O can be constructed in a “local” way (i.e.,
“local” with respect to the objects in the category V(H)) by defining

γ1 � γ2 if, and only if, ∀V ∈ Ob(V(H)), γ1V � γ2V (13.40)

where the ordering on the right hand side of (13.40) is the usual ordering in the
lattice of projectors P(V).

It is trivial to check that (13.40) defines a partial ordering on Γ O. Thus Γ O is a
partially ordered set.

Note that if P̂, Q̂ are projection operators, then it follows from (13.40) that

δ(P̂) � δ(Q̂) if and only if P̂ � Q̂ (13.41)

since P̂ � Q̂ implies δ(P̂)V � δ(Q̂)V for all contexts V .56 Thus the mapping
δ : P(H)→ Γ O respects the partial order.

The next thing is to see if a logical “∨”-operation can be defined on Γ O . Once
again, we try a “local” definition:

Theorem 2 A “∨”-structure on Γ O can be defined locally by

(γ1 ∨ γ2)V := γ1V ∨ γ2V (13.42)

for all γ1, γ2 ∈ Γ O, and for all V ∈ Ob(V(H)).

Proof It is not instantly clear that (13.42) defines a global element of O. However,
a key result in this direction is the following:

Lemma 1 For each context V , and for all α̂, β̂ ∈ P(V), we have

O(iV ′V)(α̂ ∨ β̂) = O(iV ′V)(α̂) ∨ O(iV ′V)(β̂) (13.43)

for all contexts V ′ such that V ′ ⊆ V .

The proof is a straightforward consequence of the definition of the presheaf O .
One immediate consequence is that (13.42) defines a global element57 of O.

Hence the theorem is proved.

It is also straightforward to show that, for any pair of projectors P̂, Q̂ ∈ P(H),
we have δ(P̂∨ Q̂)V = δ(P̂)V ∨δ(Q̂)V , for all contexts V ∈ Ob(V(H)). This means
that, as elements of Γ O ,

56 On the other hand, in general, P̂ � Q̂ does not imply δ(P̂)V � δ(Q̂)V but only δ(P̂)V �
δ(Q̂)V .
57 The existence of the ∨-operation on Γ O can be extended to O itself. More precisely, there is
an arrow ∨ : O × O → O where O × O denotes the product presheaf over V(H), whose objects
are (O × O)V := OV × OV . Then the arrow ∨ : O × O → O is defined at any context V by
∨V (α̂, β̂) := α̂ ∨ β̂ for all α̂, β̂ ∈ OV .

13 Topos Theory in the Foundations of Physics 799

δ(P̂ ∨ Q̂) = δ(P̂) ∨ δ(Q̂). (13.44)

Thus the mapping δ : P(H)→ Γ O preserves the logical “∨” operation.
However, there is no analogous equation for the logical “∧”-operation. The obvi-

ous local definition would be, for each context V ,

(γ1 ∧ γ2)V := γ1V ∧ γ2V (13.45)

but this does not define a global element of O since, unlike (13.43), for the
∧-operation we have only

O(iV ′V)(α̂ ∧ β̂) 	 O(iV ′V)(α̂) ∧ O(iV ′V)(β̂) (13.46)

for all V ′ ⊆ V . As a consequence, for all V , we have only the inequality

δ(P̂ ∧ Q̂)V 	 δ(P̂)V ∧ δ(Q̂)V (13.47)

and hence

δ(P̂ ∧ Q̂) 	 δ(P̂) ∧ δ(Q̂). (13.48)

It is easy to find examples where the inequality is strict. For example, let P̂ �= 0̂, 1̂
and Q̂ = 1̂− P̂ . Then P̂∧ Q̂ = 0 and hence δV (P̂∧ Q̂) = 0̂, while δ(P̂)V ∧δ(Q̂)V
can be strictly larger than 0̂, since δ(P̂)V � P̂ and δ(Q̂)V � Q̂.

13.5.2.4 Hyper-Elements of O

We have seen that the global elements of O , i.e., the elements of Γ O , can be
equipped with a partial-ordering and a “∨”-operation, but attempts to define a “∧”-
operation in the same way fail because of the inequality in (13.47).

However, the form of (13.46) and (13.47) suggests the following procedure. Let
us define a hyper-element of O to be an association, for each stage V ∈ Ob(V(H)),
of an element γV ∈ OV with the property that

γV ′ � O(iV ′V)(γV) (13.49)

for all V ′ ⊆ V . Clearly every element of Γ O is a hyper-element, but not conversely.
Now, if γ1 and γ2 are hyper-elements, we can define the operations “∨” and “∧”

locally as:

(γ1 ∨ γ2)V := γ1V ∨ γ2V (13.50)

(γ1 ∧ γ2)V := γ1V ∧ γ2V (13.51)

Because of (13.46) we have, for all V ′ ⊆ V ,

O(iV ′V)
(
(γ1 ∧ γ2)V

) = O(iV ′V)
(
γ1V ∧ γ2V

)
(13.52)

800 A. Döring and C. Isham

	 O(iV ′V)(γ1V) ∧ O(iV ′V)(γ2V) (13.53)

	 γ1V ′ ∧ γ2V ′ (13.54)

= (γ1 ∧ γ2)V ′ (13.55)

so that the hyper-element condition (13.49) is preserved.
The occurrence of a logical “∨” and “∧” structure is encouraging, but it is not

yet what we want. For one thing, there is no mention of a negation operation; and,
anyway, this is not the expected algebra of sub-objects of a “state space” object.
To proceed further we must study more carefully the sub-objects of the spectral
presheaf.

13.5.3 Daseinisation: Heidegger Encounters Physics

13.5.3.1 From Global Elements of O to Sub-objects of Σ

The spectral presheaf, Σ , played a central role in the earlier discussions of quantum
theory from a topos perspective [48–51]. Here is the formal definition.

Definition 4 The spectral presheaf, Σ , is defined as the following functor from
V(H)op to Sets:

1. On objects V : ΣV is the Gel’fand spectrum of the unital, abelian sub-algebra V
of B(H); i.e., the set of all multiplicative linear functionals λ : V → |C such that
〈λ, 1̂〉 = 1.

2. On morphisms iV ′V : V ′ ⊆ V : Σ(iV ′V) : ΣV → ΣV ′ is defined by
Σ(iV ′V)(λ) := λ|V ′ ; i.e., the restriction of the functional λ : V → |C to the
sub-algebra V ′ ⊆ V .

One central result of spectral theory is that ΣV has a topology that is compact and
Hausdorff, and with respect to which the Gel’fand transforms58 of the elements of
V are continuous functions from ΣV to |C. This will be important in what follows
[56].

The spectral presheaf plays a fundamental role in our research programme as
applied to quantum theory. For example, it was shown in the earlier work that the
Kochen-Specker theorem [57] is equivalent to the statement that Σ has no global
elements. However, Σ does have sub-objects, and these are central to our scheme:

Definition 5 A sub-object S of the spectral presheaf Σ is a functor S : V(H)op →
Sets such that

1. SV is a subset of ΣV for all V .
2. If V ′ ⊆ V , then S(iV ′V) : SV → SV ′ is just the restriction λ !→ λ|V ′ (i.e., the

same as for Σ), applied to the elements λ ∈ SV ⊆ ΣV .

58 If Â ∈ V , the Gel’fand transform, A : ΣV → |C, of Â is defined by A(λ) := 〈λ, Â〉 for all
λ ∈ ΣV .

13 Topos Theory in the Foundations of Physics 801

This definition of a sub-object is standard. However, for our purposes we need
something slightly different, namely concept of a “clopen” sub-object. This is
defined to be a sub-object S of Σ such that, for all V , the set SV is a clopen59

subset of the compact, Hausdorff space ΣV . We denote by Subcl(Σ) the set of all
clopen sub-objects of Σ . We will show later (in the Appendix) that, like Sub(Σ),
the set Subcl(Σ) is a Heyting algebra. In Sect. 13.6.5 we show that there is an object
PclΣ whose global elements are precisely the clopen sub-objects of Σ .

This interest in clopen sets is easy to explain. For, according to the Gel’fand
spectral theory, a projection operator α̂ ∈ P(V) corresponds to a unique clopen
subset, Sα̂ of the Gel’fand spectrum, ΣV . Furthermore, the Gel’fand transform α :
ΣV → |C of α̂ takes the values 0, 1 only, since the spectrum of a projection operator
is just {0, 1}.

It follows that α is the characteristic function of the subset, Sα̂ , of ΣV , defined
by

Sα̂ := {λ ∈ ΣV | 〈λ, α̂〉 = 1}. (13.56)

The clopen nature of Sα̂ follows from the fact that, by the spectral theory, the func-
tion α : ΣV → {0, 1} is continuous.

In fact, there is a lattice isomorphism between the lattice P(V) of projectors in
V and the lattice CL(ΣV) of clopen subsets of ΣV ,60 given by

α̂ !→ Sα̂ := {λ ∈ ΣV | 〈λ, α̂〉 = 1}. (13.57)

Conversely, given a clopen subset S ∈ CL(ΣV), we get the corresponding projec-
tion α̂ as the (inverse Gel’fand transform of the) characteristic function of S. Hence,
each S ∈ CL(ΣV) is of the form S = Sα̂ for some α̂ ∈ P(V).

Our claim is the following:

Theorem 3 For each projection operator P̂ ∈ P(H), the collection

δ(P̂) := {S
δ(P̂)V

⊆ ΣV | V ∈ Ob(V(H))} (13.58)

forms a (clopen) sub-object of the spectral presheaf Σ .

Proof To see this, let λ ∈ S
δ(P̂)V

. Then if V ′ is some abelian sub-algebra of V , we

have δ(P̂)V ′ = ∧ {
α̂ ∈ P(V ′) | α̂ � δ(P̂)V

} � δ(P̂)V . Now let α̂ := δ(P̂)V ′ −
δ(P̂)V . Then 〈λ, δ(P̂)V ′ 〉 = 〈λ, δ(P̂)V 〉 + 〈λ, α̂〉 = 1, since 〈λ, δ(P̂)V 〉 = 1 and
〈λ, α̂〉 ∈ {0, 1}. This shows that

59 A “clopen” subset of a topological space is one that is both open and closed.
60 The lattice structure on CL(ΣV) is defined as follows: if (Ui)i∈I is an arbitrary family of clopen
subsets of ΣV , then the closure

⋃
i∈I Ui is the maximum. The closure is necessary since the union

of infinitely many closed sets need not be closed. The interior int
⋂

i∈I Ui is the minimum of the
family. One must take the interior since

⋂
i∈I Ui is closed, but not necessarily open.

802 A. Döring and C. Isham

{λ|V ′ | λ ∈ S
δ(P̂)V

} ⊆ S
δ(P̂)V ′

. (13.59)

However, the left hand side of (13.59) is the subset O(iV ′V)(S
δ(P̂)V

) ⊆ ΣV ′ of the
outer-presheaf restriction of elements in S

δ(P̂)V
to ΣV ′ , and the restricted elements

all lie in S
δ(P̂)V ′

. It follows that the collection of sets

δ(P̂) := {S
δ(P̂)V

⊆ ΣV | V ∈ Ob(V(H))} (13.60)

forms a (clopen) sub-object of the spectral presheaf Σ .

By these means we have constructed a mapping

δ : P(H) −→ Subcl(Σ)

P̂ !→ δ(P̂) := {S
δ(P̂)V

| V ∈ Ob(V(H))} (13.61)

which sends projection operators on H to clopen sub-objects of Σ . As a mat-
ter of notation, we will denote the clopen subset S

δ(P̂)V
⊆ ΣV as δ(P̂)

V
. The

notation δ(P̂)V refers to the element (i.e., projection operator) of OV defined
earlier.

13.5.3.2 The Definition of Daseinisation

As usual, the projection P̂ is regarded as representing a proposition about the
quantum system. Thus δ maps propositions about a quantum system to (clopen)
sub-objects of the spectral presheaf. This is strikingly analogous to the situation in
classical physics, in which propositions are represented by subsets of the classical
state space.

Definition 6 The map δ in (13.61) is a fundamental part of our constructions.
We call it the (outer) daseinisation of P̂ . We shall use the same word to refer to
the operation in (13.37) that relates to the outer presheaf.

The expression “daseinisation” comes from the German word Dasein, which
plays a central role in Heidegger’s existential philosophy. Dasein translates to “exis-
tence” or, in the very literal sense often stressed by Heidegger, to being-there-in-the-
world.61 Thus daseinisation “brings-a-quantum-property-into-existence”62 by hurl-
ing it into the collection of all possible classical snap-shots of the world provided
by the category of contexts.

We will summarise here some useful properties of daseinisation.

61 The hyphens are very important.
62 The hyphens are very important.

13 Topos Theory in the Foundations of Physics 803

1. The null projection 0̂ is mapped to the empty sub-object of Σ :

δ(0̂) = {∅V | V ∈ Ob(V(H))} (13.62)

2. The identity projection 1̂ is mapped to the unit sub-object of Σ:

δ(1̂) = {ΣV | V ∈ Ob(V(H))} = Σ (13.63)

3. Since the daseinisation map δ : P(H) → Γ O is injective (see Sect. 13.5.2),
and the mapping Γ O → Γ (PclΣ) is injective (because there is a monic arrow
O → PclΣ in SetsV(H)op

; see Sect. 13.6.5), it follows that the daseinisation map
δ : P(H) → Γ (PclΣ) Subcl(Σ) is also injective. Thus no information about
the projector P̂ is lost when it is daseinised to become δ(P̂).

13.5.4 The Heyting Algebra Structure on Subcl(Σ)

The reason for daseinising projections is that the set, Sub(Σ), of sub-objects of
the spectral presheaf forms a Heyting algebra. Thus the idea is to find a map πqt :
PL(S)0 → Sub(Σ) and then extend it to all of PL(S) using the simple recursion
ideas discussed in Sect. 13.3.2.

In our case, the act of daseinisation gives a map from the projection operators to
the clopen sub-objects of Sub(Σ), and therefore a map πqt : PL(S)0 → Subcl(Σ)

can be defined by

πqt(A ε Δ) := δ
(
Ê[A ∈ Δ]) (13.64)

However, to extend this definition to PL(S), it is necessary to show that the set of
clopen sub-objects, Subcl(Σ), is a Heyting algebra. This is not completely obvious
from the definition alone. However, it is true, and the proof is given in Theorem 15
in the Appendix.

In conclusion: daseinisation can be used to give a representation/model of the
language PL(S) in the Heyting algebra Subcl(Σ).63

13.5.5 Daseinisation and the Operations of Quantum Logic

It is interesting to ask to what extent the map δ : P(H) → Subcl(Σ) respects the
lattice structure on P(H). Of course, we know that it cannot be completely preserved
since the quantum logic P(H) is non-distributive, whereas Subcl(Σ) is a Heyting
algebra, and hence distributive.

63 Since the clopen sub-objects of Σ correspond bijectively to the hyper-elements of the outer
presheaf O , it is clear that the hyper-elements of O form a Heyting algebra, too.

804 A. Döring and C. Isham

We saw in Sect. 13.5.2 that, for the mapping δ : P(H)→ Γ O, we have

δ(P̂ ∨ Q̂)V = δ(P̂)V ∨ δ(Q̂)V , (13.65)

δ(P̂ ∧ Q̂)V 	 δ(P̂)V ∧ δ(Q̂)V (13.66)

for all contexts V in Ob(V(H)).
The clopen subset of ΣV that corresponds to δ(P̂)V ∨ δ(Q̂)V is S

δ(P̂)V
∪ S

δ(Q̂)V
.

This implies that the daseinisation map δ : P(H) → Subcl(Σ) is a morphism of
∨-semi-lattices.

On the other hand, δ(P̂)V ∧ δ(Q̂)V corresponds to the subset S
δ(P̂)V

∩ S
δ(Q̂)V

of
ΣV . Therefore, since S

δ(P̂∧Q̂)V
⊆ S

δ(P̂)V
∩ S

δ(Q̂)V
, daseinisation is not a morphism

of ∧-semi-lattices. In summary, for all projectors P̂, Q̂ we have

δ(P̂ ∨ Q̂) = δ(P̂) ∨ δ(Q̂) (13.67)

δ(P̂ ∧ Q̂) 	 δ(P̂) ∧ δ(Q̂) (13.68)

where the logical connectives on the left hand side lie in the quantum logic P(H),
and those on the right hand side lie in the Heyting algebra Subcl(Σ), as do the
symbols “=” and “	”.

As remarked above, it is not surprising that (13.68) is not an equality. Indeed,
the quantum logic P(H) is non-distributive, whereas the Heyting algebra Subcl(Σ)

is distributive, and so it would be impossible for both (13.67) and (13.68) to be
equalities. The inequality in (13.68) is the price that must be paid for liberating the
projection operators from the shackles of quantum logic and transporting them to
the existential world of Heyting algebras.

13.5.5.1 The Status of the Possible Axiom “A ε Δ1 ∧ A ε Δ2 ⇔ A ε Δ1 ∩ Δ2”

We have the representation in (13.64), πqt(A ε Δ) := δ
(
Ê[A ∈ Δ]), of the primi-

tive propositions A ε Δ, and, as explained in Sect. 13.3.2, this can be extended to
compound sentences by making the obvious definitions:

(a) πqt(α ∨ β) := πqt(α) ∨ πqt(β) (13.69)

(b) πqt(α ∧ β) := πqt(α) ∧ πqtβ) (13.70)

(c) πqt(¬α) := ¬πqt(α) (13.71)

(d) πqt(α ⇒ β) := πqt(α)⇒ πqt(β) (13.72)

As a result, we necessarily get a representation of the full language PL(S) in the
Heyting algebra Subcl(Σ). However, we then find that:

πqt(A ε Δ1 ∧ A ε Δ2) := πqt(A ε Δ1) ∧ πqt(A ε Δ2) (13.73)

= δ(Ê[A ∈ Δ1]) ∧ δ(Ê[A ∈ Δ2]) (13.74)

13 Topos Theory in the Foundations of Physics 805

� δ(Ê[A ∈ Δ1] ∧ Ê[A ∈ Δ2]) (13.75)

= δ(Ê[A ∈ Δ1 ∩Δ2)]) (13.76)

= πqt(A ε Δ1 ∩Δ2) (13.77)

where, (13.75) comes from (13.68), and in (13.76) we have used the property of
spectral projectors that Ê[A ∈ Δ1] ∧ Ê[A ∈ Δ2] = Ê[A ∈ Δ1 ∩ Δ2)]. Thus,
although by definition, πqt(A ε Δ1∧ A ε Δ2) = πqt(A ε Δ1)∧πqt(A ε Δ2), we only
have the inequality

πqt(A ε Δ1 ∩Δ2) 	 πqt(A ε Δ1 ∧ A ε Δ2) (13.78)

On the other hand, the same line of argument shows that

πqt(A ε Δ1 ∨ A ε Δ2) = πqt(A ε Δ1 ∪Δ2) (13.79)

Thus it would be consistent to add the axiom

A ε Δ1 ∨ A ε Δ2 ⇔ A ε Δ1 ∪Δ2 (13.80)

to the language PL(S), but not

A ε Δ1 ∧ A ε Δ2 ⇔ A ε Δ1 ∩Δ2 (13.81)

Of, course, both axioms are consistent with the representation of PL(S) in classical
physics.

It should be emphasised that there is nothing wrong with this result: indeed, as
stated above, it is the necessary price to be paid for forcing a non-distributive algebra
to have a “representation” in a Heyting algebra.

13.5.5.2 Inner Daseinisation and δ(¬ P̂)

In the same spirit, one might ask about “¬(A ε Δ)”. By definition, as in (13.9), we
have πqt(¬(A ε Δ)) := ¬πqt(A ε Δ) = ¬δ

(
Ê[A ∈ Δ]). However, the question then

is how, if at all, this is related to δ(Ê[A ∈ R/Δ]) = δ(¬Ê[A ∈ Δ]), bearing in mind
the axiom

¬(A ε Δ)⇔ A ε R\Δ (13.82)

that can be added to the classical representation of PL(S). Thus something needs to
be said about δ(¬P̂), where ¬P̂ = 1̂− P̂ is the negation operation in the quantum
logic P(H).

To proceed further, we need to introduce another operation:

Definition 7 The inner daseinisation, δi (P̂)V , of P̂ to a context V is defined (for
each V ∈ Ob(V(H))) as

806 A. Döring and C. Isham

δi (P̂)V :=
∨ {

β̂ ∈ P(V) | β̂ 	 P̂
}
. (13.83)

This should be contrasted with the definition of outer daseinisation in (13.35).
Thus δi (P̂)V is the best approximation that can be made to P̂ by taking the

“largest” projector in V that implies P̂ .
As with the other daseinisation construction, this operation was first introduced

by de Groote in [37] where he called it the core of the projection operator P̂ . We
prefer to use the phrase “inner daseinisation”, and then to refer to (13.35) as the
“outer daseinisation” operation on P̂ . The existing notation δ(P̂)V will be replaced
with δo(P̂)V if there is any danger of confusing the two daseinisation operations.

With the aid of inner daseinisation, a new presheaf, I , can be constructed as an
exact analogue of the outer presheaf, O , defined in Sect. 13.5.2. Specifically:

Definition 8 The inner presheaf I is defined over the category V(H) as follows:

(i) On objects V ∈ Ob(V(H)): We have I V := P(V)

(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping I (iV ′V) : I V → I V ′ is given by
I (iV ′V)(α̂) := δi (α̂)V for all α̂ ∈ P(V).

It is easy to see that the collection {δi (P̂)V | V ∈ Ob(V(H))} of projection
operators given by (13.83) is a global element of I .

It is also straightforward to show that

O(iV ′V)(¬α̂) = ¬ I (iV ′V)(α̂) (13.84)

for all projectors α̂ in V , and for all V ′ ⊆ V . It follows from (13.84) that

δo(¬P̂)V = 1̂− δi (P̂)V (13.85)

for all projectors P̂ and all contexts V .
It is clear from (13.84) that the negation operation on projectors defines a map

¬ : Γ O → Γ I , γ !→ ¬γ ; i.e., for all contexts V , we map γ (V) !→ ¬γ (V) :=
1̂ − γ (V). Actually, one can go further than this and show that the presheaves O
and I are isomorphic in the category SetsV(H)op

. This means that, in principle, we
can always work with one presheaf only. However, for reasons of symmetry it is
sometime useful to invoke both presheaves.

As with outer daseinisation, inner daseinisation can also be used to define a map-
ping from projection operators to sub-objects of the spectral presheaf. Specifically,
if P̂ is a projection, for each V ∈ Ob(V(H)) define

T
δi (P̂)V

:= {λ ∈ ΣV | 〈λ, δi (P̂)V 〉 = 0}. (13.86)

It is easy to see that these subsets form a clopen sub-object, δi (P̂), of Σ . It follows
from (13.85) that T

δi (P̂)V
= S

δo(¬P̂)V
.

13 Topos Theory in the Foundations of Physics 807

13.5.5.3 Using Boolean Algebras as the Base Category

As we have mentioned several times already, the collection, V(H), of all commu-
tative von Neumann sub-algebras of B(H) is not the only possible choice for the
base category over which to construct presheaves. In fact, if we are only interested
in the propositional language PL(S), a somewhat simpler choice is the collection,
Bl(H), of all Boolean sub-algebras of the non-distributive lattice, P(H), of projec-
tion operators on H. More abstractly, for any non-distributive lattice B, one could
use the category of Boolean sub-algebras of B. This possibility was raised in the
original paper [48] but has not been used much thereafter. However, it does have
some interesting features.

The analogue of the (von Neumann algebra) spectral presheaf, Σ, is the so-called
dual presheaf, D:

Definition 9 The dual presheaf on Bl(H) is the contravariant functor D : Bl(H)→
Sets defined as follows:

1. On objects in Bl(H): D(B) is the dual of B; i.e., the set Hom(B, {0, 1}) of all
homomorphisms from the Boolean algebra B to the Boolean algebra {0, 1}.

2. On morphisms in Bl(H): If iB2 B1 : B2 ⊆ B1 then D(iB2 B1) : D(B1) → D(B2)

is defined by D(iB2 B1)(χ) := χ |B2 , where χ |B2 denotes the restriction of χ ∈
D(B1) to the sub-algebra B2 ⊆ B1.

A global element of the functor D : Bl(H)op → Set is then a function γ that
associates to each B ∈ Ob(Bl(H)) an element γB of the dual of B such that if
iB2 B1 : B2 → B1 then γB1 |B2 = γB2 ; thus, for all α̂ ∈ B2,

γB2(α̂) = γB1((iB2 B1(α̂)). (13.87)

Since each projection operator, α̂ belongs to at least one Boolean algebra (for
example, the algebra {0̂, 1̂, α̂,¬α̂}) it follows that a global element of the presheaf
D associates to each projection operator α̂ a number V (α̂) which is either 0 or 1,
and is such that, if α̂ ∧ β̂ = 0̂, then V (α̂ ∨ β̂) = V (α̂) + V (β̂). These types of
valuation are often used in the proofs of the Kochen-Specker theorem that focus on
the construction of specific counter-examples. In fact, it is easy to see the following:

The Kochen-Specker theorem is equivalent to the statement that, if dimH > 2,
the dual presheaf D : Bl(H)op → Sets has no global elements.

It is easy to apply the concept of “daseinisation” to the topos SetsBl(H)op
. In the

case of von Neumann algebras, the outer daseinisation of a projection operator P̂
was defined as (see (13.35))

δ(P̂)V :=
∧ {

α̂ ∈ P(V) | α̂ � P̂
}

(13.88)

808 A. Döring and C. Isham

where P(V) denotes the collection of all projection operators in the commutative
von Neumann algebra V . In this form, δ(P̂) appears as a global element of the outer
presheaf O .

When using the base category, Bl(H), of Boolean sub-algebras of P(H), we
define

δ(P̂)B :=
∧ {

α̂ ∈ B | α̂ � P̂
}

(13.89)

for each Boolean sub-algebra B of projection operators on H.64 Clearly, the (outer)
daseinisation, δ(P̂), is now a global element of the obvious B(H)-analogue of the
outer presheaf O . There are parallel remarks for the inner daseinisation and inner
presheaf. The existence of these daseinisation operations means that the proposi-
tional language PL(S) can be represented in the topos SetsBl(H)op

in a way that is
closely analogous to that used above for the topos SetsV(H)op

.
Note that (i) each Boolean algebra of projection operators B generates a com-

mutative von Neumann algebra, B ′′, (the double commutant); and, conversely, (ii)
to each von Neumann algebra V there is associated the complete Boolean algebra
P(V) of the projection operators in V . This implies that the operation

φ : Bl(H) → V(H) (13.90)

B !→ B ′′ (13.91)

defines a full and faithful functor between the categories Bl(H) and V(H). This
functor can be used to pull-back the spectral presheaf, Σ , in SetsV(H)op

to the
object φ∗Σ := Σ ◦ φ in SetsBl(H)op

. This pull-back is closely related to the dual
presheaf D.

13.5.6 The Special Nature of Daseinised Projections

13.5.6.1 Daseinised Projections as Optimal Sub-objects

We have shown how daseinisation leads to an interpretation/model of the language
PL(S) in the Heyting algebra Subcl(Σ). In particular, any primitive proposition
“A ε Δ” is represented by the clopen sub-object δ(Ê[A ∈ Δ]).

We have seen that, in general, the “and”, δ(P̂) ∧ δ(Q̂), of the daseinisation of

two projection operators P̂ and Q̂, is not itself of the form δ(R̂) for any projector

R̂. The same applies to the negation ¬δ(P̂).
This raises the question of whether the sub-objects of Σ that are of the form

δ(P̂) can be characterised in a simple way. Rather interestingly, the answer is “yes”,
as we will now see.

64 To be precise, we assume that B is complete such that the infimum in (13.89) is well-defined
and lies in B.

13 Topos Theory in the Foundations of Physics 809

Let V ′, V ∈ Ob(V(H)) be such that V ′ ⊆ V . As would be expected, there is a
close connection between the restriction O(iV ′V) : OV → OV ′ , δ(P̂)V !→ δ(P̂)V ′ ,
of the outer presheaf, and the restriction Σ(iV ′V) : ΣV → ΣV ′ , λ !→ λ|V ′ , of the
spectral presheaf. Indeed, if P̂ ∈ P(H) is a projection operator, and S

δ(P̂)V
⊆ ΣV

is defined as in (13.56), we have the following result:

SO(iV ′V)(δ(P̂)V)
= Σ(iV ′V)(S

δ(P̂)V
). (13.92)

The proof is given in Theorem 16 in the Appendix.
This result shows that the sub-objects δ(P̂) = {S

δ(P̂)V
| V ∈ Ob(V(H))} of Σ

are of a very special kind. Namely, they are such that the restrictions

Σ(iV ′V) : S
δ(P̂)V

→ S
δ(P̂)V ′

(13.93)

are surjective mapping of sets.
For an arbitrary sub-object K of Σ , this will not be the case and Σ(iV ′V) only

maps K V into K V ′ . Indeed, this is essentially the definition of a sub-object of a
presheaf. Thus we see that the daseinised projections δ(P̂) = {S

δ(P̂)V
| V ∈

Ob(V(H))} are optimal in the following sense. As we go “down the line” to smaller
and smaller sub-algebras of a context V —for example, from V to V ′ ⊆ V , then to
V ′′ ⊆ V ′ etc.—then the subsets S

δ(P̂)V ′
, S

δ(P̂)V ′′
,... are as small as they can be; i.e.,

S
δ(P̂)V ′

is the smallest subset of ΣV ′ such that Σ(iV ′V)(S
δ(P̂)V

) ⊆ S
δ(P̂)V ′

, likewise
S
δ(P̂)V ′′

is the smallest subset of ΣV ′′ such that Σ(iV ′′V ′)(S
δ(P̂)V ′

) ⊆ S
δ(P̂)V ′′

, and
so on.

It is also clear from this result that there are lots of sub-objects of Σ that are not
of the form δ(P̂) for any projector P̂ ∈ P(H).

These more general sub-objects of Σ show up explicitly in the representation
of the more sophisticated language L(S). This will be discussed thoroughly in
Sect. 13.8 when we analyse the representation, φ, of the language L(S) in the topos
SetsV(H)op

. This involves constructing the quantity-value object Rφ (to be denoted
R), and then finding the representation of a function symbol A : Σ → R in L(S),
in the form of a specific arrow Ă : Σ → R in the topos. The generic sub-objects of
Σ are then of the form Ă−1(Ξ) for sub-objects Ξ of R. This is an illuminating way
of studying the sub-objects of Σ that do not come from the propositional language
PL(S).

13.6 Truth Values in Topos Physics

13.6.1 The Mathematical Proposition “x ∈ K”

So far we have concentrated on finding a Heyting-algebra representation of the
propositions in quantum theory, but of course there is more to physics than that.
We also want to know if/when a certain proposition is true: a question which, in

810 A. Döring and C. Isham

physical theories, is normally answered by specifying a (micro)state of the system,
or something that can play an analogous role.

In classical physics, the situation is straightforward (see Sect. 13.3.2). There, a
proposition “A ε Δ” is represented by the subset πcl(A ε Δ) := Ă−1(Δ) ⊆ S of the
state space S; and then, the proposition is true in a state s if and only if s ∈ Ă−1(Δ);
i.e., if and only if the (micro)state s belongs to the subset, πcl(A ε Δ), of S that
represents the proposition.

Thus, each state s assigns to any primitive proposition “A ε Δ”, a truth value,
ν
(

A ε Δ; s
)
, which lies in the set {false, true} (which we identify with {0, 1}) and is

defined as

ν
(

A ε Δ; s
) :=

{
1 if s ∈ πcl(A ε Δ) = Ă−1(Δ);
0 otherwise.

(13.94)

However, the situation in quantum theory is very different. There, the spectral
presheaf Σ—which is the analogue of the classical state space S—has no global
elements at all. Our expectation is that this will be true in any topos-based theory
that goes “beyond quantum theory”: i.e., Γ Σφ is empty; or, if Σφ does have global
elements, there are not enough of them to determine Σφ as an object in the topos. In
this circumstance, a new concept is required to replace the familiar idea of a “state
of the system”. As we shall see, this involves the concept of a “truth object”, or
“pseudo-state”.

In physics, the propositions of interest are of the form “A ε Δ”, which refers to
the value of a physical quantity. However, in constructing a theory of physics, such
physical propositions must first be translated into mathematical propositions. The
concept of “truth” is then studied in the context of the latter.

Let us start with set-theory based mathematics, where the most basic proposition
is of the form “x ∈ K ”, where K is a subset of a set X , and x is an element of X .
Then the truth value, denoted ν

(
x ∈ K

)
, of the proposition “x ∈ K ” is

ν
(

x ∈ K
) =

{
1 if x belongs to K ;
0 otherwise.

(13.95)

Thus the proposition “x ∈ K ” is true if, and only if, x belongs to K . In other words,
x !→ ν

(
x ∈ K

)
is the characteristic function of the subset K of X ; cf. (13.512) in

the Appendix.
This remark is the foundation of the assignment of truth values in classical

physics. Specifically, if the state is s ∈ S, the truth value, ν
(

A ε Δ; s
)
, of the physi-

cal proposition “A ε Δ” is defined to be the truth value of the mathematical propo-
sition “ Ă(s) ∈ Δ”; or, equivalently, of the mathematical proposition “s ∈ Ă−1(Δ)”.
Thus, using (13.95), we get, for all s ∈ S,

ν
(

A ε Δ; s
) :=

{
1 if s belongs to Ă−1(Δ);
0 otherwise.

(13.96)

which reproduces (13.94).

13 Topos Theory in the Foundations of Physics 811

We now consider the analogue of the above in a general topos τ . Let X be an
object in τ , and let K be a sub-object of X . Then K is determined by a characteristic
arrow χK : X → Ωτ , where Ωτ is the sub-object classifier; equivalently, we have
an arrow �K� : 1τ → P X .

Now suppose that x : 1τ → X is a global element of X ; i.e., x ∈ Γ X :=
Homτ

(
1τ , X

)
. Then the truth value of the mathematical proposition “x ∈ K ” is

defined to be

ν
(

x ∈ K
) := χK ◦ x (13.97)

where χK ◦ x : 1τ → Ωτ . Thus ν
(

x ∈ K
)

is an element of Γ Ωτ ; i.e., it is a global
element of the sub-object classifier Ωτ .

The connection with the result (13.95) (in the topos Sets) can be seen by noting
that, in (13.95), the characteristic function of the subset K ⊆ X is the function
χK : X → {0, 1} such that χK (x) = 1 if x ∈ K , and χK (x) = 0 otherwise. It
follows that (13.95) can be rewritten as

ν
(

x ∈ K
) = χK (x) (13.98)

= χK ◦ x (13.99)

where in (13.99), x denotes the function x : {∗} → X that is defined by x(∗) := x .
The link with (13.97) is clear when one remembers that, in the topos Sets, the ter-
minal object, 1Sets, is just the singleton set {∗}.

In quantum theory, the topos is SetsV(H)op
, and so the objects are all presheaves.

In particular, at each stage V , the sub-object classifier ΩV := ΩSetsV(H)op (V) is the
set of sieves on V (see e.g. [66]). In this case, if K is a sub-object of X , and x ∈ Γ X ,
the explicit form for (13.99) is the sieve

ν
(

x ∈ K
)

V := {V ′ ⊆ V | xV ′ ∈ K V ′ } (13.100)

at each stage V ∈ Ob(V(H)). In other words, at each stage/context V, the truth value
of the mathematical proposition “x ∈ K ” is defined to be all those stages V ′ ⊆ V
“down the line” such that the “component”, xV ′ of x at that stage is an element of
the component, K V ′ ⊆ X V ′ , of K at that stage.

The definitions (13.97) and (13.100) play a central role in constructing truth val-
ues in our quantum topos scheme. However, as Σ has no global elements, these truth
values cannot be derived from some expression ν

(
s ∈ K

)
with s : 1SetsV(H)op →

Σ . Therefore, we must proceed differently, as will become clear by the end of the
following Section.

However, before we do so, let us make one final remark concerning (13.95).
Namely, in normal set theory the proposition “x ∈ K ” is true if, and only if,

{x} ⊆ K (13.101)

812 A. Döring and C. Isham

i.e., if an only if the set {x} is a subset of K . The transition from the proposition
“x ∈ K ” to the proposition “{x} ⊆ K ” is seemingly trivial, but in a topos other than
Sets it takes on a new significance. In particular, as we shall see shortly, although
the spectral presheaf, Σ , has no global elements, it does have certain ‘minimal’
sub-objects that are as ‘close’ as one can get to a global element, and then the topos
analogue of (13.101) is very important.

13.6.2 Truth Objects

13.6.2.1 Linguistic Aspects of Truth Objects

To understand how “truth values” of physical propositions arise we return again to
our earlier discussion of local languages. In this Section we will employ the local
language L(S) rather than the propositional language, PL(S), that was used earlier
in this article.

Thus, let L(S) be the local language for a system S. This is a typed language
whose minimal set of ground type symbols is Σ and R. In addition, there is a
non-empty set, FL(S)

(
�,R

)
, of function symbols A : Σ → R that correspond to

the physical quantities of S.
Now consider a representation, φ, of L(S) in a topos τφ . As discussed earlier,

the propositional aspects of the language L(S) are captured in the term “A(s̃) ∈ Δ̃”
of type Ω , where s̃ and Δ̃ are variables of type Σ and PR respectively [27]. In a
topos representation, φ, the representation, [[A(s̃) ∈ Δ̃]]φ , of the term “A(s̃) ∈ Δ̃”
is given by the chain of arrows65[11] (cf. (13.22))

Σφ × PRφ

Aφ×id−→Rφ × PRφ

eRφ−→Ωτφ
(13.102)

in the topos τφ . Then, if �Ξ� : 1τφ → PRφ is the name of a sub-object, Ξ , of the
quantity-value object Rφ , we get the chain

Σφ Σφ × 1τφ

id×�Ξ�−→ Σφ × PRφ

Aφ×id−→Rφ × PRφ

eRφ−→Ωτφ
. (13.103)

which is the characteristic arrow of the sub-object of Σφ that represents the physical
proposition “A ε Ξ”.

Equivalently, we can use the term, {s̃ | A(s̃) ∈ Δ̃}, which has a free variable Δ̃

of type PR and is of type PΣ . This term is represented by the arrow [[{s̃ | A(s̃) ∈
Δ̃}]]φ : PRφ → PΣφ , which is the power transpose of [[A(s̃) ∈ Δ̃]]φ (cf. (13.23)):

[[{s̃ | A(s̃) ∈ Δ̃}]]φ = �[[A(s̃) ∈ Δ̃]]φ� (13.104)

65 In (13.102), eRφ : Rφ × PRφ → Ωτφ is the evaluation arrow associated with the power object
PRφ .

13 Topos Theory in the Foundations of Physics 813

The proposition “A ε Ξ” is then represented by the arrow [[{s̃ | A(s̃) ∈ Δ̃}]]φ ◦
�Ξ� : 1τφ → PΣφ ; this is the name of the sub-object of Σφ that represents
“A ε Ξ”.

We note an important difference from the analogous situation for the language
PL(S). In propositions of the type “A ε Δ”, the symbol “Δ” is a specific subset
of R and is hence external to the language. In particular, it is independent of the
representation of PL(S). However, in the case of L(S), the variable Δ̃ is internal to
the language, and the quantity Ξ in the proposition “A ε Ξ” is a sub-object of Rφ

in a specific topos representation, φ, of L(S).
So, this is how physical propositions are represented mathematically. But how

are truth values to be assigned to these propositions? In the topos τφ a truth value is
an element of the Heyting algebra Γ Ωτφ

. Thus the challenge is to assign a global
element of Ωτφ

to each proposition associated with the representation of the term

{s̃ | A(s̃) ∈ Δ̃} of type PΣ ; (or, equivalently, the representation of the term “A(s̃) ∈
Δ̃”).

Let us first pose this question at a linguistic level. In a representation φ, an ele-
ment of Γ Ωτφ is associated with a representation of a term of type Ω with no free
variables. Hence the question can be rephrased as asking how a term, t , in L(S) of
type PΣ can be “converted” into a term of type Ω? At this stage, we are happy to
have free variables, in which case the desired term will be represented by an arrow
in τφ whose co-domain is Ωτφ , but whose domain is other than 1τφ . This would be
an intermediate stage to obtaining a global element of Ωτφ

.
In the context of the language L(S) there are three obvious ways of ‘converting’

the term t of type PΣ to a term of type Ω:

1. Choose a term, s, of type Σ ; then the term “s ∈ t” is of type Ω . We will call this
the “microstate” option.

2. Choose a term, T, of type P PΣ ; then the term “t ∈ T” is of type Ω . We shall
refer to this as the “truth object” option.

3. Choose a term, w, of type PΣ ; then the term “w ⊆ t” is of type Ω .66 For reasons
that will become clear later we shall refer to this as the “pseudo-state” option.

13.6.2.2 The Micro-State Option

In regard to the first option, the simplest example of a term of type Σ is a variable s̃1
of type Σ . Then, the term “s̃1 ∈ {s̃ | A(s̃) ∈ Δ̃}” is of type Ω with the free variables
s̃1 and Δ̃ of type Σ and PR respectively. However, the axiom of comprehension in
L(S) says that

s̃1 ∈ {s̃ | A(s̃) ∈ Δ̃} ⇔ A(s̃1) ∈ Δ̃ (13.105)

and so we are back with the term “A(s̃) ∈ Δ̃”, which is of type Ω and with the free
variable s̃ of type Σ .

66 In general, if t and s are set-like terms (i.e., terms of power type, P X , say), then “t ⊆ s” is
defined as the term ‘∀x̃ ∈ t (x̃ ∈ s)’; here, x̃ is a variable of type X .

814 A. Döring and C. Isham

As stated above, the φ-representation, [[A(s̃) ∈ Δ̃]]φ , of “A(s̃) ∈ Δ̃” is the chain
of arrows in (13.102). Now, suppose the representation, φ, is such that there exist
global elements, s : 1τφ

→ Σφ , of Σφ . Then each such element can be regarded as
a “(micro)state” of the system in that topos representation. Furthermore, let �Ξ� :
1τφ → PRφ be the name of a sub-object, Ξ , of the quantity-value object Rφ . Then,
by the basic property of the product Σφ× PRφ , there is an arrow 〈s, �Ξ�〉 : 1τφ

→
Σφ × PRφ . This can be combined with the arrow [[A(s̃) ∈ Δ̃]]φ : Σφ × PRφ →
Ωτφ to give the arrow

[[A(s̃) ∈ Δ̃]]φ ◦ 〈s, �Ξ�〉 : 1τφ
−→ Ωτφ

(13.106)

This is the desired global element of Ωτφ .
In other words, when the “state of the system” is s ∈ Γ Σφ , the “truth value” of

the proposition “A ε Ξ” is the global element of Ωτφ given by the arrow [[A(s̃) ∈
Δ̃]]φ ◦ 〈s, �Ξ�〉 : 1τφ → Ωτφ .

This is the procedure that is adopted in classical physics when a truth value is
assigned to propositions by specifying a microstate, s ∈ Σσ , where Σσ is the clas-
sical state space in the representation σ of L(S). Specifically, for all s ∈ Σσ , the
truth value of the proposition “A ε Δ” as given by (13.106) is (c.f. (13.94))

ν
(

A ε Δ; s
) = [[A(s̃) ∈ Δ̃]]σ (s,Δ) =

{
1 if Aσ (s) ∈ Δ;
0 otherwise.

(13.107)

where [[A(s̃) ∈ Δ̃]]σ : Σσ × PR → Ωτσ
 {0, 1}. Thus we recover the earlier

result (13.96).

13.6.2.3 The Truth Object Option

By hindsight, we know that the option to use global elements of Σφ is not avail-
able in the quantum case. For there the state object, Σ , is the spectral presheaf,
and this has no global elements by virtue of the Kochen-Specker theorem. The
absence of global elements of the state object Σφ could well be true in many other
topos models of physics (particularly those that go “beyond quantum theory”), and
therefore an alternative general strategy is needed to that employing microstates
�s� : 1τφ → Σφ .

This takes us to the second possibility: namely, to introduce a term, T, of type
P PΣ , and then work with the term “{s̃ | A(s̃) ∈ Δ̃} ∈ T”, which is of type Ω , and
has whatever free variables are contained in T, plus the variable Δ̃ of type PR.

The simplest choice is to let the term of type P PΣ be a variable, T̃, of type
P PΣ , in which case the term ‘{s̃ | A(s̃) ∈ Δ̃} ∈ T̃’ has variables Δ̃ and T̃ of type
PR and P PΣ respectively. Therefore, in a topos representation it is represented by
an arrow [[{s̃ | A(s̃) ∈ Δ̃} ∈ T̃]]φ : PRφ × P(PΣφ) → Ωτφ

. In detail (see [11])
we have that

[[{s̃ | A(s̃) ∈ Δ̃} ∈ T̃]]φ = ePΣφ ◦ [[{s̃ | A(s̃) ∈ Δ̃}]]φ × [[T̃]]φ (13.108)

13 Topos Theory in the Foundations of Physics 815

where ePΣφ
: PΣφ × P(PΣφ) → Ωτφ

is the usual evaluation arrow. In using this
expression we need the φ-representatives:

[[{s̃ | A(s̃) ∈ Δ̃}]]φ : PRφ → PΣφ (13.109)

[[T̃]]φ : P(PΣφ)
id−→ P(PΣφ) (13.110)

Finally, let 〈�Ξ�, �T�〉 be a pair of global elements in PRφ and P(PΣφ) respec-
tively, so that �Ξ� : 1τφ → PRφ and �T� : 1τφ → P(PΣφ). Thus, �T� is the
name of a “truth object”, T, in τφ . Then, for the physical proposition “A ε Ξ”, we
have the truth value

ν
(

A ε Ξ ;T) = [[{s̃ | A(s̃) ∈ Δ̃} ∈ T̃]]φ ◦ 〈�Ξ�, �T�〉 : 1τφ → Ωτφ (13.111)

where 〈�Ξ�, �T�〉 : 1τφ → PRφ × P(PΣφ).

A small generalisation:

Slightly more generally, if J̃ and T̃ are variables of type PΣ and P(PΣ) respec-
tively, the term of interest is ‘ J̃ ∈ T̃’. In the representation, φ, of L(S), this term
maps to an arrow [[J̃ ∈ T̃]]φ : PΣφ × P(PΣφ) → Ωτφ

. Here, [[J̃ ∈ T̃]]φ =
ePΣφ

◦ [[J̃]]φ × [[T̃]]φ where [[J̃]]φ : PΣφ
id→ PΣφ and [[T̃]]φ : P(PΣφ)

id−→
P(PΣφ). Let �J�, �T� be global elements of PΣφ and P(PΣφ) respectively, so
that �J� : 1τφ

→ PΣφ and �T� : 1τφ
→ P(PΣφ). Then the truth of the (mathe-

matical) proposition “J ∈ T” is

ν
(

J ∈ T
) = [[J̃ ∈ T̃]]φ ◦ 〈�J�, �T�〉
= ePΣφ

◦ 〈�J�, �T�〉 : 1τφ
→ Ωτφ

(13.112)

13.6.2.4 The Example of Classical Physics

If classical physics is studied this way, the general formalism simplifies, and the
term “{s̃ | A(s̃) ∈ Δ̃} ∈ T̃” is represented by the function ν

(
A ε Δ;T) := [[{s̃ |

A(s̃) ∈ Δ̃} ∈ T̃]]σ : PR× P(PΣσ)→ ΩSets {0, 1} defined by

ν
(

A ε Δ;T) := [[{s̃ | A(s̃) ∈ Δ̃} ∈ T̃]]σ (Δ, T) (13.113)

=
{

1 if {s ∈ Σσ | Aσ (s) ∈ Δ} ∈ T;
0 otherwise

=
{

1 if A−1
σ (Δ) ∈ T;

0 otherwise
(13.114)

816 A. Döring and C. Isham

for all T ∈ P(PΣσ). We can clearly see the sense in which the truth object T is
playing the role of a state. Note that the result (13.114) of classical physics is a
special case of (13.111).

To recover the usual truth values given in (13.107), an appropriate truth object,
T

s , must be associated with each microstate s ∈ Σσ . The correct choice is

T
s := {J ⊆ Σσ | s ∈ J } (13.115)

for each s ∈ Σσ . It is clear that s ∈ A−1
σ (Δ) (or, equivalently, Aσ (s) ∈ Δ) if, and

only if, A−1
σ (Δ) ∈ T

s . Hence (13.114) can be rewritten as

ν
(

A ε Δ;Ts) =
{

1 if s ∈ A−1
σ (Δ);

0 otherwise.
(13.116)

which reproduces (13.107) once ν
(

A ε Δ; s
)

is identified with ν
(

A ε Δ;Ts
)
.

13.6.3 Truth Objects in Quantum Theory

13.6.3.1 Preliminary Remarks

We can now start to discuss the application of these ideas to quantum theory. In order
to use (13.111) (or (13.112)) we need to construct concrete truth objects, T, in the
topos τφ := SetsV(H)op

. Thus the presheaf T is a sub-object of PΣ ; equivalently,
�T� : 1τφ

→ P(PΣ).
However, we have to keep in mind the need to restrict to clopen sub-objects of

Σ . In particular, we must show that there is a well-defined presheaf PclΣ such that

Subcl(Σ) Γ (PclΣ) (13.117)

We will prove this in Sect. 13.6.5. Given (13.117) and J ∈ Subcl(Σ), it is then
clear that a truth object, T, actually has to be a sub-object of PclΣ in order that the
valuation ν

(
J ∈ T

)
in (13.112) is meaningful.

This truth value, ν
(

J ∈ T
)
, is a global element of Ω , and in the topos of

presheaves, SetsV(H)op
, we have (see (13.100))

ν
(

J ∈ T
)

V := {V ′ ⊆ V | J V ′ ∈ TV ′ } (13.118)

for each context V .
There are various examples of the presheaf J that are of interest to us. In par-

ticular, let J = δ(P̂) for some projector P̂ . Then, using the propositional language

PL(S) introduced earlier, the ‘truth’ of the proposition represented by P̂ (for exam-
ple, “A ε Δ”) is

ν
(
δ(P̂) ∈ T

)
V = {V ′ ⊆ V | δ(P̂)

V ′ ∈ TV ′ } (13.119)

for all stages V .

13 Topos Theory in the Foundations of Physics 817

When using the local language L(S), an important class of examples of the sub-
object J of Σ are of the form A−1

φ (Ξ), for some sub-object Ξ of R. This will yield

the truth value, ν
(

A ε Ξ;T)
, in (13.111). However, to discuss this further requires

the representation of function symbols A : Σ → R in the topos SetsV(H)op
, and

this is deferred until Sect. 13.7.

13.6.3.2 The Truth Objects T
|ψ〉

The definition of truth objects in quantum theory was studied in the original papers
[48–51]. It was shown there that to each quantum state |ψ〉 ∈ H, there corresponds
a truth object, T

|ψ〉, which was defined as the following sub-object of the outer
presheaf, O:

T
|ψ〉
V := {α̂ ∈ OV | Prob(α̂; |ψ〉) = 1}

= {α̂ ∈ OV | 〈ψ | α̂ |ψ〉 = 1} (13.120)

for all stages V ∈ Ob(V(H)). Here, Prob(α̂; |ψ〉) is the usual expression for the
probability that the proposition represented by the projector α̂ is true, given that the
quantum state is the (normalised) vector |ψ〉.

It is easy to see that (13.120) defines a genuine sub-object T
|ψ〉 = {T |ψ〉V | V ∈

Ob(V(H))} of O. Indeed, if β̂ � α̂, then 〈ψ | β̂ |ψ〉 ≥ 〈ψ | α̂ |ψ〉, and therefore,
if V ′ ⊆ V and α̂ ∈ OV , then 〈ψ | O(iV ′V)(α̂) |ψ〉 ≥ 〈ψ | α̂ |ψ〉. In particular, if
〈ψ | α̂ |ψ〉 = 1 then 〈ψ | O(iV ′V)(α̂) |ψ〉 = 1.

The next step is to define the presheaf PclΣ , and show that there is a monic arrow
O → PclΣ , so that O is a sub-object of PclΣ . Then, since T

|ψ〉 is a sub-object of
O , and O is a sub-object of PclΣ , it follows that T

|ψ〉 is a sub-object of PclΣ , as
required. The discussion of the construction of PclΣ is deferred to Sect. 13.6.5 so
as not to break the flow of the presentation.

With this definition of T
|ψ〉, the truth value, (13.119), for the propositional lan-

guage PL(S) becomes

ν
(
δ(P̂) ∈ T

|ψ〉)
V = {V ′ ⊆ V | 〈ψ | δ(P̂)V ′ |ψ〉 = 1} (13.121)

It is easy to see that the definition of a truth object in (13.120) can be extended
to a mixed state with a density-matrix operator ρ̂: simply replace the definition in
(13.120) with

T
ρ̂
V := {α̂ ∈ OV | Prob(α̂; ρ) = 1}
= {α̂ ∈ OV | tr(ρ̂α̂) = 1} (13.122)

However there is an important difference between the truth object associated with
a vector state, |ψ〉, and the one associated with a density matrix, ρ. In the vector
case, it is easy to see that the mapping |ψ〉 → T

|ψ〉 is one-to-one (up to a phase

818 A. Döring and C. Isham

factor on |ψ〉) so that, in principle, the state |ψ〉 can be recovered from T
|ψ〉 (up to

a phase-factor). On the other hand, there are simple counterexamples which show
that, in general, the density matrix, ρ cannot be recovered from T

ρ̂ .
In a sense, this should not surprise us. The analogue of a density matrix in

classical physics is a probability measure μ defined on the classical state space S.
Individual microstates s ∈ S are in one-to-one correspondence with probability
measures of the form μs defined by μs(J) = 1 if s ∈ J , μs(J) = 0 if s �∈ J .

However, one of the main claims of our programme is that any theory can be
made to “look like” classical physics in the appropriate topos. This suggests that,
in the topos version of quantum theory, a density matrix should be represented by
some sort of measure on the state object Σ in the topos τφ .

It was shown in [24] that this is indeed true: every state of the von Neumann
algebra B(H) gives a certain kind of probability measure on (the clopen sub-objects
of) the spectral presheaf, and conversely, each such measure determines a unique
state on B(H). Moreover, this result holds more generally for all von Neumann
algebras with no direct summand of type I2.67

13.6.4 The Pseudo-State Option

13.6.4.1 Some Background Remarks

We turn now to the third way mentioned above whereby a term, t , of type PΣ in
L(S) can be “converted” to a term of type Ω . Namely, choose a term, w, of type PΣ

and then use “w ⊆ t”. As we shall see, this idea is easy to implement in the case of
quantum theory and leads to an alternative way of thinking about truth objects.

Let us start by considering once more the case of classical physics. There, for
each microstate s in the symplectic state manifold Σσ , there is an associated truth
object, T

s , defined by T
s := {J ⊆ Σσ | s ∈ J }, as in (13.115). It is clear that the

state s can be uniquely recovered from the collection of sets T
s as

s =
⋂
{J ⊆ Σσ | s ∈ J } (13.123)

Note that (13.123) implies that T
s is an ultrafilter of subsets of Σσ .68 As we shall

shortly see, there is an intriguing analogue of this property for the quantum truth
objects.

67 Some related results on the topos-internal representation of states of a C∗-algebra can be found
in the recent work by Heunen et al. [42].
68 Let L be a lattice with zero element 0. A subset F ⊂ L is a “filter base” if (i) 0 /∈ F and (ii)
for all a, b ∈ F , there is some c ∈ F such that c ≤ a ∧ b. A subset D ⊂ L is called a “(proper)
dual ideal” or a “filter” if (i) 0 /∈ D, (ii) for all a, b ∈ D, a ∧ b ∈ D and (iii) a ∈ D and b > a
implies b ∈ D. A maximal dual ideal/filter F in a complemented, distributive lattice L is called
an “ultrafilter”. It has the property that for all a ∈ L, either a ∈ F or a′ ∈ F , where a′ is the
complement of a.

13 Topos Theory in the Foundations of Physics 819

The analogue of (13.123) in the case of quantum theory is rather interesting.
Now, of course, there are no microstates, but we do have the truth objects defined
in (13.120), one for each vector state |ψ〉 ∈ H. To proceed further we note that
〈ψ | α̂ |ψ〉 = 1 if and only if |ψ〉〈ψ | 	 α̂. Thus T

|ψ〉 can be rewritten as

T
|ψ〉
V := {α̂ ∈ OV | |ψ〉〈ψ | 	 α̂} (13.124)

for each stage V . Note that, as defined in (13.124), T
|ψ〉 is a sub-object of O; i.e.,

it is defined in terms of projection operators. However, as will be shown in Section
13.6.5.2, there is a monic arrow O → PclΣ , and by using this arrow, T

|ψ〉 can be
regarded as a sub-object of PclΣ ; hence Γ T

|ψ〉 is a collection of clopen sub-objects
of Σ . In this form, the definition of T

|ψ〉 involves clopen subsets of the spectral sets
ΣV , V ∈ Ob(V(H)).

It is clear from (13.124) that, for each V , T
|ψ〉
V is a filter of projection operators

in OV P(V); equivalently, it is a filter of clopen sub-sets of ΣV .
These ordering properties are associated with the following observation. If |ψ〉 is

any vector state, we can collect together all the projection operators that are ‘larger’
or equal to |ψ〉〈ψ | and define:

T |ψ〉 := {α̂ ∈ P(H) | |ψ〉〈ψ | 	 α̂} (13.125)

It is clear that, for all stages/contexts V ∈ Ob(V(H)), we have

T
|ψ〉
V = T |ψ〉 ∩ V (13.126)

Thus the presheaf T
|ψ〉 is obtained by “localising” T |ψ〉 at each context V .

The significance of this localisation property is that T |ψ〉 is a maximal (proper)
filter in the non-distributive lattice, P(H), of all projection operators on H. Such
maximal filters in the projection lattices of von Neumann algebras were extensively
discussed by de Groote [38] who called them “quasi-points”. In particular, T |ψ〉
is a, so-called, “atomic” quasi-point in P(H). Every pure state |ψ〉 gives rise to
an atomic quasi-point, T |ψ〉, and vice versa. We will return to these entities in
Sect. 13.8.4.

13.6.4.2 Using Pseudo-States in Lieu of Truth Objects

The equation (13.123) from classical physics suggests that, in the quantum case, we
look at the set-valued function on Ob(V(H)) defined by

V !→
∧
{α̂ ∈ T

|ψ〉
V } =

∧
{α̂ ∈ OV | |ψ〉〈ψ | 	 α̂} (13.127)

where we have used (13.124) as the definition of T
|ψ〉. It is easy to check that this is

a global element of O; in fact, the right hand side of (13.127) is nothing but the outer
daseinisation δ(|ψ〉〈ψ |) of the projection operator |ψ〉〈ψ | ! Evidently, the quantity

w |ψ〉 := δ(|ψ〉〈ψ |) = V !→
∧
{α̂ ∈ OV | |ψ〉〈ψ | 	 α̂} (13.128)

820 A. Döring and C. Isham

is of considerable interest. We shall refer to it as a “pseudo-state” for reasons that
appear below.

Note that w |ψ〉 is defined by (13.128) as an element of Γ O . However, because
of the monic O → PclΣ we can also regard w |ψ〉 as an element of Γ (PclΣ)
Subcl(Σ). The corresponding (clopen) sub-object of Σ will be denoted w |ψ〉 :=
δ(|ψ〉〈ψ |).

We know that the map |ψ〉 !→ T
|ψ〉 is injective. What can be said about the

map |ψ〉 !→ w |ψ〉? In this context, we note that T
|ψ〉 is readily recoverable from

w |ψ〉 ∈ Γ O as

T
|ψ〉
V = {α̂ ∈ OV | α̂ � w

|ψ〉
V } (13.129)

for all contexts V . From these relations it follows that is |ψ〉 !→ w |ψ〉 is injective.
Note that (13.129) essentially follows from the fact that, for each V , the collec-

tion, T
|ψ〉
V of projectors in OV is an upper set (in fact, as remarked earlier, it is a

filter). In this respect, the projectors/clopen subsets T
|ψ〉
V behave like the filter of

clopen neighbourhoods of a subset in a topological space. This remark translates
globally to the relation of the collection, Γ T

|ψ〉, of sub-objects of Σ to the specific
sub-object w |ψ〉.

It follows that there is a one-to-one correspondence between truth objects, T
|ψ〉,

and pseudo-states, w |ψ〉. However, the former is (a representation of) a term of type
P(PΣ), whereas the latter is of type PΣ . So how is this reflected in the assignment
of generalised truth values?

Note first that, from the definition of w |ψ〉, it follows that if α̂ ∈ T
|ψ〉
V then α̂ �

w
|ψ〉
V . On the other hand, from (13.129) we have that if α̂ � w

|ψ〉
V then α̂ ∈ T

|ψ〉
V .

Thus we have the simple, but important, result:

α̂ ∈ T
|ψ〉
V if, and only if α̂ � w

|ψ〉
V (13.130)

In particular, for any projector P̂ we have δ(P̂)V ∈ T
|ψ〉
V if, and only if δ(P̂)V �

w
|ψ〉
V .

In terms of sub-objects of Σ , we have δ(P̂)V � w
|ψ〉
V if and only if δ(P̂)

V
⊇

w
|ψ〉
V . Hence, (13.130) can be rewritten as

δ(P̂)V ∈ T
|ψ〉
V if, and only if δ(P̂)

V
⊇ wV (13.131)

and so (13.119) can be written as

ν
(
δ(P̂) ∈ T

)
V = {V ′ ⊆ V | δ(P̂)

V ′ ⊇ w
|ψ〉
V ′ } (13.132)

However, the right hand side of (13.132) is just the topos truth value, ν(w |ψ〉 ⊆
δ(P̂)). It follows that

13 Topos Theory in the Foundations of Physics 821

“δ(P̂) ∈ T
|ψ〉” is equivalent to “w |ψ〉 ⊆ δ(P̂)” (13.133)

and hence we can use the generalised truth values ν
(
δ(P̂) ∈ T

|ψ〉) or ν
(
w |ψ〉 ⊆

δ(P̂)
)

interchangeably.
Thus, if desired, a truth object in quantum theory can be regarded as a sub-

object of Σ , rather than a sub-object of PΣ . In a sense, these sub-objects, w |ψ〉,
of Σ are the “closest” we can get to global elements of Σ . This is why we
call them ‘pseudo-states’. However, note that a pseudo-state is not a minimal ele-
ment of the Heyting algebra Subcl(Σ) since there are clopen sub-objects S that
include stalks that are empty sets, something that is not possible for a pseudo-
state.69

13.6.4.3 Linguistic Implications

The result (13.133) is very suggestive for a more general development. In our
existing treatment, in the formal language L(S) we have concentrated on propo-
sitions of the form “ J̃ ∈ T̃” which, in a representation φ, maps to the arrow
[[J̃ ∈ T̃]]φ : PΣφ × P(PΣφ) → Ωτφ . Here J̃ and T̃ are variables of type PΣ and
P(PΣ) respectively.

What is suggested by the discussion above is that we could equally focus on
terms of the form “w̃ ⊆ J̃”, where both w̃ and J̃ are variables of type PΣ .

Note that, in general, the φ-representation of such a term is of the form

[[w̃ ⊆ J̃]]φ : PΣφ × PΣφ → Ωτφ (13.134)

where the “first slot” on the right hand side of the pairing in (13.134) is a truth object
(in pseudo-state form), and the second correspond to a proposition represented by a
sub-object of Σφ .

However, this raises the rather obvious question “What is a pseudo-state?”.
More precisely, we would like to know a generic set of characteristic properties
of those sub-objects of Σφ that can be regarded as “pseudo-states”. A first step
would be to answer this question in the case of quantum theory. In particular, are
there any quantum pseudo-states that are not of the form w |ψ〉 for some vector
|ψ〉 ∈ H?

In this context the localisation property expressed by (13.125) is rather sugges-
tive. In the case that H has infinite dimension, de Groote has shown that there exist

69 Note that the sub-objects w|ψ〉 do not have any global elements since any such would give a
global element of Σ and, of course, there are none. Thus if one is seeking examples of presheaves
with no global elements, the collection w|ψ〉, |ψ〉 ∈ H, afford many such.

822 A. Döring and C. Isham

quasi-points in P(H) that are not of the form T |ψ〉 for some |ψ〉 ∈ H [38].70 If
T is any such quasi-point, (13.125) suggests strongly that we define an associated
presheaf, T , by

T V = T ∩ V (13.135)

for all V ∈ Ob(V(H)). This construction seems natural enough from a mathematical
perspective, but we are not yet clear of the physical significance of the existence of
such “quasi truth objects”. The same applies to the associated “quasi pseudo-state”,
wT , defined by

wT
V :=

∧
{α̂ ∈ T V } =

∧
{α̂ ∈ T ∩ V } (13.136)

13.6.4.4 Time-Dependence and the Truth Object

As emphasised at the end of Sect. 13.3.2, the question of time dependence depends
on the theory-type being considered. The structure of the language L(S) that has
been used so far is such that the time variable lies outside the language. In this
situation, the time dependence of the system can be implemented in several ways.

For example, we can make the truth object time dependent, giving a family of
truth objects, t !→ T

t , t ∈ R. In the case of classical physics, with the truth objects
T

s , s ∈ Σσ , the time evolution comes from the time dependence, t !→ st , of the
microstate in accordance with the classical equations of motion. This gives the fam-
ily t !→ T

st of truth objects.
Something very similar happens in quantum theory, and we acquire a family,

t !→ T
|ψ〉t , of truth objects, where the states |ψ〉t satisfy the usual time-dependent

Schrödinger equation. Thus both classical and quantum truth objects belong to a
“Schrödinger picture” of time evolution. Of course, there is a pseudo-state analogue
of this in which we get a one-parameter family, t !→ w |ψ〉t , of clopen sub-objects
of Σ .

It is also possible to construct a “Heisenberg picture” where the truth object is
constant but the physical quantities and associated propositions are time dependent.
We will return to this in Sect. 13.10 when we discuss the use of unitary operators.

13.6.5 The Presheaf Pcl(Σ)

13.6.5.1 The Definition of Pcl(Σ)

We must now show that there really is a presheaf PclΣ .
The easiest way of defining PclΣ is to start with the concrete expression for the

normal power object PΣ [34]. First, if F is any presheaf over V(H), define the

70 However, he has also shown that, in an appropriate topology, the set of all atomic quasi-points
is dense in the set of all quasi-points. Of course, none of these intriguing structures arise in a
finite-dimensional Hilbert space. So, in that sense, it is unlikely that they will play any fundamental
role in explicating the topos representation of quantum theory.

13 Topos Theory in the Foundations of Physics 823

restriction of F to V to be the functor F ↓ V from the category71 ↓V to Sets that
assigns to each V1 ⊆ V , the set FV1

, and with the obvious induced presheaf maps.
Then, at each stage V , PΣV is the set of natural transformations from Σ ↓ V

to Ω ↓ V . These are in one-to-one correspondence with families of maps σ :=
{σV1 : ΣV1

→ ΩV1
| V1 ⊆ V }, with the following commutative diagram for all

V2 ⊆ V1 ⊆ V :72

Σ V 2
ΩV2σV2

ΣV1
ΩV1

σV1

Σ (iV2V1
) (iV2V1

)Ω

The presheaf maps are defined by

PΣ(iV1V) : PΣV → PΣV1
(13.137)

σ !→ {σV2 | V2 ⊆ V1} (13.138)

and the evaluation arrow ev : PΣ ×Σ → Ω , has the form, at each stage V :

evV : PΣV ×ΣV → ΩV (13.139)

(σ, λ) !→ σV (λ) (13.140)

Moreover, in general, given a map χ : ΣV → ΩV , the subset of ΣV associated
with the corresponding sub-object is χ−1(1), where 1 is the unit (“truth”) in the
Heyting algebra ΩV .

This suggests strongly that an object, PclΣ , in SetsV(H)op
can be defined using

the same definition of PΣ as above, except that the family of maps σ := {σV1 :
ΣV1

→ ΩV1
| V1 ⊆ V } must be such that, for all V1 ⊆ V , σ−1

V1
(1) is a clopen

subset of the (extremely disconnected) Hausdorff space ΣV1
. It is straightforward

to check that such a restriction is consistent, and that Subcl(Σ) Γ (PclΣ) as
required.

13.6.5.2 The Monic Arrow From O to Pcl (Σ)

We define ι : O ×Σ → Ω , with the power transpose �ι� : O → PclΣ , as follows.
First recall that in any topos, τ there is a bijection Homτ (A, C B) Homτ (A ×
B, C), and hence, in particular, (using PΣ = ΩΣ)

71 The notation ↓V means the partially-ordered set of all sub-algebras V ′ ⊆ V .
72 Note that any sub-object, J of Σ , gives rise to such a natural transformation from Σ ↓ V
to Ω ↓ V for all stages V . Namely, for all V1 ⊆ V , σV1 : ΣV1

→ ΩV1
is defined to be the

characteristic arrow χJ V1
: ΣV1

→ ΩV1
of the sub-object J of Σ .

824 A. Döring and C. Isham

HomSetsV(H)op (O, PΣ) HomSetsV(H)op (O ×Σ,Ω). (13.141)

Now let α̂ ∈ P(V), and let Sα̂ := {λ ∈ ΣV | 〈λ, α̂〉 = 1} be the clopen subset of
ΣV that corresponds to the projector α̂ via the spectral theorem; see (13.56). Then
we define ι : O ×Σ → Ω at stage V by

ιV (α̂, λ) := {V ′ ⊆ V | Σ(iV ′ V)(λ) ∈ SO(iV ′ V)(α̂)} (13.142)

for all (α̂, λ) ∈ OV ×ΣV .
On the other hand, the basic result relating coarse-graining to subsets of Σ is

SO(iV ′ V)(δ(α̂)V) = Σ(iV ′ V)(Sδ(α̂)V) (13.143)

for all V ′ ⊆ V and for all α̂ ∈ OV . It follows that

ιV (α̂, λ) := {V ′ ⊆ V | Σ(iV ′ V)(λ) ∈ Σ(iV ′ V)(Sα̂)} (13.144)

for all (α̂, λ) ∈ OV ×ΣV . In this form is is clear that ιV (α̂, λ) is indeed a sieve on
V ; i.e., an element of ΩV .

The next step is to show that the collection of maps ιV : OV × ΣV → ΩV
defined in (13.142) constitutes a natural transformation from the object O×Σ to the
object Ω in the topos SetsV(H)op

. This involves chasing around a few commutative
squares, and we will spare the reader the ordeal. There is some subtlety, since we
really want to deal with HomSetsV(H)op (O, PclΣ), not HomSetsV(H)op (O, PΣ); but
all works in the end.

To prove that �ι� : O → PclΣ is monic, it suffices to show that the map �ι�V :
OV → PclΣV is injective at all stages V . This is a straightforward exercise and the
details will not be given here.

The conclusion of this exercise is that, since �ι� : O → PclΣ is monic, the truth
sub-objects T

|ψ〉 of O can also be regarded as sub-objects of PclΣ , and hence the
truth value assignment in (13.119) is well-defined.

Finally then, for any given quantum state |ψ〉 the basic proposition “A ε Δ” can
be assigned a generalised truth value ν

(
A ε Δ; |ψ〉) in Γ Ω , where τ := SetsV(H)op

is the topos of presheaves over V(H). This is defined at each stage/context V as

ν
(

A ε Δ; |ψ〉)V := ν
(
δ(Ê[A ∈ Δ]) ∈ T

|ψ〉)
V

= {V ′ ⊆ V | δ(Ê[A ∈ Δ])
V ′
∈ T

|ψ〉
V ′ } (13.145)

13.6.6 Yet Another Perspective on the K-S Theorem

In classical physics, the pseudo-state ws ⊆ S associated with the microstate s ∈ S
is just ws := {s}. This gives the diagram

13 Topos Theory in the Foundations of Physics 825

{∗} PS

S

π

(13.146)

where �ws�(∗) := {s} and π is the canonical map

π : S −→ P S

s !→ {s} (13.147)

The singleton {∗} is the terminal object in the category, Sets, of sets, and the subset
embedding ws → S in (13.146) is the categorical pull-back by π of the monic
�ws� : {∗} → PS.

In the quantum case, the analogue of the diagram (13.146) is

1 PΣ
ψ〉

ψ〉 Σ

π

(13.148)

where the arrow π : Σ → PΣ has yet to be defined. To proceed further, let us first
return to the set-theory map

X → P X (13.149)

x !→ {x}

where X is any set.
We can think of (13.149) as the power transpose, �β� : X → P X , of the map

β : X × X → {0, 1} defined by

β(x, y) :=
{

1 if x = y;
0 otherwise.

(13.150)

In our topos case, the obvious definition for the arrow π : Σ → PΣ is the power
transpose �β� : Σ → PΣ , of the arrow β : Σ ×Σ → Ω , defined by

βV (λ1, λ2) := {V ′ ⊆ V | λ1|V ′ = λ2|V ′ } (13.151)

826 A. Döring and C. Isham

for all stages V . Note that, in linguistic terms, the arrow defined in (13.151) is just
the representation in the quantum topos SetsV(H)op

, of the term “σ̃1 = σ̃2”, where
σ̃1 and σ̃2 are terms of type Σ ; i.e., [[σ̃1 = σ̃2]] : Σ ×Σ → Ω.

With this definition of π , the diagram in (13.148) becomes meaningful: in par-
ticular the monic w |ψ〉 ↪→ Σ is the categorical pull-back by π of the monic
�w |ψ〉� : 1 → PΣ .

There is, however, a significant difference between (13.148) and its classical ana-
logue (13.146). In the latter case, the function �ws� : {∗} → PS can be “lifted” to
a function �ws�↑ : {∗} → S to give a commutative diagram: i.e., such that

π ◦ �w
s�↑ = �ws�. (13.152)

Indeed, simply define

�ws�↑(∗) := s (13.153)

However, in the quantum case there can be no “lift” �w |ψ〉�↑ : 1 → Σ , as this
would correspond to a global element of the spectral presheaf Σ , and of course
there are none. Thus, from this perspective, the Kochen-Specker theorem can be
understood as asserting the existence of an obstruction to lifting the arrow �w |ψ〉� :
1 → PΣ .

Lifting problems of the type

φ

A

π

C B
(13.154)

occur in many places in mathematics. A special, but very well-known, example of
(13.154) arises when trying to construct cross-sections of a non-trivial principle fiber
bundle π : P → M . In diagrammatic terms we have

M M
id

P

π

(13.155)

A cross-section of this bundle corresponds to a lifting of the map id : M → M .

13 Topos Theory in the Foundations of Physics 827

The obstructions to lifting id : M → M through π can be studied in various
ways. One technique is to decompose the bundle π : P → M into a series of
interpolating fibrations P → P1 → P2 → · · ·M where each fibration Pi → Pi+1
has the special property that the fiber is a particular Eilenberg-McLane space (this
is known as a “Postnikov tower”). One then studies the sequential lifting of the
function id : M → M , i.e., first try to lift it through the fibration P1 → M ;
if that is successful try to lift it through P2 → P1; and so on. Potential obstruc-
tions to performing these liftings appear as elements of the cohomology groups
Hk(M;πk−1(F)), k = 1, 2, . . ., where F is the fiber of the bundle.

We have long felt that it should possible to describe the non-existence of global
elements of Σ (i.e., the Kochen-Specker theorem) in some cohomological way, and
the remark above suggests one possibility. Namely, perhaps there is some analogue
of a “Postnikov factorisation” for the arrow π : Σ → PΣ that could give a coho-
mological description of the obstructions to a global element of Σ , i.e., to the lifting
of a pseudo-state �w |ψ〉� : 1 → PΣ through the arrow π : Σ → PΣ to give an
arrow 1 → Σ .

Related to this is the question of if there is a “pseudo-state object”, W, with the
defining property that Γ W is equal to the set of all pseudo-states. Of course, to do
this properly requires a definition of a pseudo-state that goes beyond the specific
constructions of the objects w |ψ〉, |ψ〉 ∈ H. In particular, are there pseudo-states
that are not of the form w |ψ〉?

If such an object, W, can be found then W will be a sub-object of PΣ , and in
the diagram in (13.148) one could then look to replace PΣ with W.

13.7 The de Groote Presheaves of Physical Quantities

13.7.1 Background Remarks

Our task now is to consider the representation of the local language, L(S), in the
case of quantum theory. We assume that the relevant topos is the same as that used
for the propositional language PL(S), i.e., SetsV(H)op

, but the emphasis is very
different.

From a physics perspective, the key symbols in L(S) are (i) the ground type
symbols, Σ and R—the linguistic precursors of the state object and the quantity-
value object respectively—and (ii) the function symbols A : Σ → R, which are the
precursors of physical quantities. In the quantum-theory representation, φ, of L(S),
the representation, Σφ , of Σ is defined to be the spectral presheaf Σ in the topos
SetsV(H)op

.
The critical question is to find the object, Rφ (provisionally denoted as a presheaf

R), in SetsV(H)op
that represents R, and is hence the quantity-value object. One

might anticipate that R is just the real-number object in the topos SetsV(H)op
, but

that turns out to be quite wrong, and the right answer cannot just be guessed. In
fact, the correct choice for R is found indirectly by considering a related question:

828 A. Döring and C. Isham

namely, how to represent each function symbol A : Σ → R, with a concrete arrow
Aφ : Σφ → Rφ in SetsV(H)op

, i.e., with a natural transformation Ă : Σ → R
between the presheaves Σ and R.

Critical to this task are the daseinisation operations on projection operators that
were defined earlier as (13.35) and (13.83), and which are repeated here for conve-
nience:

Definition 10 If P̂ is a projection operator, and V ∈ Ob(V(H)) is any context/stage,
we define:

1. The “outer daseinisation” operation is

δo(P̂)V :=
∧ {

α̂ ∈ P(V) | P̂ 	 α̂
}
. (13.156)

where “	” denotes the usual ordering of projection operators, and where P(V)

is the set of all projection operators in V .
2. Similarly, the “inner daseinisation” operation is defined in the context V as

δi (P̂)V :=
∨ {

β̂ ∈ P(V) | β̂ 	 P̂
}
. (13.157)

Thus δo(P̂)V is the best approximation to P̂ in V from “above”, being the small-
est projection in V that is larger than or equal to P̂ . Similarly, δi (P̂)V is the best
approximation to P̂ from “below”, being the largest projection in V that is smaller
than or equal to P̂ .

In Sect. 13.6.5, we showed that the outer presheaf is a sub-object of the power
object PclΣ (in the category SetsV(H)op

), and hence that the global element δo(P̂)

of O determines a (clopen) sub-object, δo(P̂), of the spectral presheaf Σ . By these
means, the quantum logic of the lattice P(H) is mapped into the Heyting algebra of
the set, Subcl(Σ), of clopen sub-objects of Σ .

Our task now is to perform the second stage of the programme: namely (i) iden-
tify the quantity-value presheaf, R; and (ii) show that any physical quantity can be
represented by an arrow from Σ to R.

13.7.2 The Daseinisation of an Arbitrary Self-Adjoint Operator

13.7.2.1 Spectral Families and Spectral Order

We now want to extend the daseinisation operations from projections to arbitrary
(bounded) self-adjoint operators. To this end, consider first a bounded, self-adjoint
operator, Â, whose spectrum is purely discrete. Then the spectral theorem can be
used to write Â = ∑∞

i=1 ai P̂i , where a1, a2, . . . are the eigenvalues of Â, and
P̂1, P̂2, . . . are the spectral projection operators onto the corresponding eigenspaces.

A construction that comes immediately to mind is to use the daseinisation oper-
ation on projections to define

13 Topos Theory in the Foundations of Physics 829

δo(Â)V :=
∞∑

i=1

ai δo(P̂i)V (13.158)

for each stage V . However, this procedure is rather unnatural. For one thing, the
projections, P̂i , i = 1, 2, . . . form a complete orthonormal set:

∞∑

i=1

P̂i = 1̂, (13.159)

P̂i P̂j = δi j P̂i , (13.160)

whereas, in general, the collection of daseinised projections, δo(P̂i)V , i = 1, 2, . . .

will not satisfy either of these conditions. In addition, it is hard to see how the
expression δo(Â)V := ∑∞

i=1 ai δo(P̂i)V can be generalised to operators, Â, with a
continuous spectrum.

The answer to this conundrum lies in the work of de Groote. He realised that
although it is not useful to daseinise the spectral projections of an operator Â, it is
possible to daseinise the spectral family of Â [37, 39].

Spectral families.

We first recall that a spectral family is a family of projection operators Êλ, λ ∈ R,
with the following properties:

1. If λ2 ≤ λ1 then Êλ2 	 Êλ1 .
2. The net λ !→ Êλ of projection operators in the lattice P(H) is bounded above

by 1̂, and below by 0̂. In fact,

lim
λ→∞ Êλ = 1̂, (13.161)

lim
λ→−∞ Êλ = 0̂. (13.162)

3. The map λ !→ Êλ is right-continuous:73

∧

ε↓0

Êλ+ε = Êλ (13.163)

for all λ ∈ R.

The spectral theorem asserts that for any self-adjoint operator Â, there exists a spec-
tral family, λ !→ Ê A

λ , such that

Â =
∫

R

λ d Ê A
λ (13.164)

73 It is a matter of convention whether one chooses right-continuous or left-continuous.

830 A. Döring and C. Isham

We are only concerned with bounded operators, and so the (weak Stieljes) integral
in (13.164) is really over the bounded spectrum of Â which, of course, is a com-
pact subset of R. Conversely, given a bounded spectral family {Êλ}λ∈R,74 there is a
bounded self-adjoint operator Â such that Â = ∫

R
λ d Êλ.

The spectral order.

A key element for our work is the so-called spectral order that was introduced in
[73].75 It is defined as follows. Let Â and B̂ be (bounded) self-adjoint operators with
spectral families {Ê A

λ }λ∈R and {Ê B
λ }λ∈R, respectively. Then define:

Â 	s B̂ if and only if Ê B
λ 	 Ê A

λ for all λ ∈ R. (13.165)

It is easy to see that (13.165) defines a genuine partial ordering on B(H)sa (the
self-adjoint operators in B(H)). In fact, B(H)sa is a ‘boundedly complete’ lattice
with respect to the spectral order, i.e., each bounded set S of self-adjoint operators
has a minimum

∧
S ∈ B(H)sa and a maximum

∨
S ∈ B(H)sa with respect to this

order.
If P̂, Q̂ are projections, then

P̂ 	s Q̂ if and only if P̂ 	 Q̂, (13.166)

so the spectral order coincides with the usual partial order on P(H). To ensure
this, the “reverse” relation in (13.165) is necessary, since the spectral family of a
projection P̂ is given by

E P̂
λ =

⎧
⎨

⎩

0̂ if λ < 0
1̂− P̂ if 0 ≤ λ < 1
1̂ if λ ≥ 1.

(13.167)

If Â, B̂ are self-adjoint operators such that (i) either Â or B̂ is a projection, or
(ii) [Â, B̂] = 0̂, then Â 	s B̂ if and only if Â 	 B̂. Here “	” denotes the usual
ordering on B(H)sa.76

Moreover, if Â, B̂ are arbitrary self-adjoint operators, then Â 	s B̂ implies Â 	
B̂, but not vice versa in general. Thus the spectral order is a partial order on B(H)sa
that is coarser than the usual one.

13.7.2.2 Daseinisation of Self-Adjoint Operators

De Groote’s crucial observation was the following. Let λ !→ Êλ be a spectral family
in P(H) (or, equivalently, a self-adjoint operator Â). Then, for each stage V , the
following maps:

74 That is to say, there are a, b ∈ R such that Êλ = 0̂ for all λ ≤ a and Êλ = 1̂ for all λ ≥ b.
75 The spectral order was later reinvented by de Groote, see [36].
76 The ‘usual’ ordering is Â 	 B̂ if 〈ψ | Â |ψ〉 ≤ 〈ψ | B̂ |ψ〉 for all vectors |ψ〉 ∈ H.

13 Topos Theory in the Foundations of Physics 831

λ !→
∧

μ>λ

δo(Êμ)V (13.168)

λ !→ δi (Êλ)V (13.169)

also define spectral families.77 These spectral families lie in P(V) and hence, by
the spectral theorem, define self-adjoint operators in V . This leads to the definition
of the two daseinisations of an arbitrary self-adjoint operator:

Definition 11 Let Â be an arbitrary self-adjoint operator. Then the outer and inner
daseinisations of Â are defined at each stage V as:

δo(Â)V :=
∫

R

λ d
(
δi

V (Ê A
λ)

)
, (13.170)

δi (Â)V :=
∫

R

λ d

⎛

⎝
∧

μ>λ

δo
V (Ê A

μ)

⎞

⎠ , (13.171)

respectively.

Note that for all λ ∈ R, and for all stages V , we have

δi (Êλ)V 	
∧

μ>λ

δo(Êμ)V (13.172)

and hence, for all V ,

δi (Â)V 	s δo(Â)V . (13.173)

This explains why the “i” and “o” superscripts in (13.170) and (13.171) are defined
the way round that they are.

Both outer daseinisation (13.170) and inner daseinisation (13.171) can be used to
“adapt” a self-adjoint operator Â to contexts V ∈ Ob(V(H)) that do not contain Â.
(On the other hand, if Â ∈ V , then δo(Â)V = δi (Â)V = Â.)

13.7.2.3 Properties of Daseinisation

We will now list some useful properties of daseinisation.
1. It is clear that the outer, and inner, daseinisation operations can be extended

to situations where the self-adjoint operator Â does not belong to B(H)sa, or where
V is not an abelian sub-algebra of B(H). Specifically, let N be an arbitrary von

77 The reason (13.168) and (13.169) have a different form is that λ !→ δi (Êλ)V is right contin-
uous whereas λ !→ δo(Êλ)V is not. On the other hand, the family λ !→ ∧

μ>λ δo(Êμ)V is right
continuous.

832 A. Döring and C. Isham

Neumann algebra, and let S ⊂ N be a proper von Neumann sub-algebra such that
1̂N = 1̂S = 1̂. Then outer and inner daseinisation can be defined as the mappings

δo : Nsa → Ssa

Â !→
∫

R

λ d
(
δi
S

(
Ê A

λ

))
, (13.174)

δi : Nsa → Ssa

Â !→
∫

R

λ d

⎛

⎝
∧

μ>λ

δo
S(Ê A

μ)

⎞

⎠ . (13.175)

A particular case is N = V and S = V ′ for two contexts V, V ′ such that V ′ ⊂ V .
Hence, a self-adjoint operator can be restricted from one context to a sub-context.

For the moment, we will let N be an arbitrary von Neumann algebra, with
S ⊂ N .

2. By construction,

δo(Â)S =
∧
{B̂ ∈ Ssa | B̂ �s Â}, (13.176)

where the minimum is taken with respect to the spectral order; i.e., δo(Â)S is the
smallest self-adjoint operator in S that is spectrally larger than (or equal to) Â. This
implies δo(Â)S � Â in the usual order. Likewise,

δi (Â)S =
∨
{B̂ ∈ Ssa | B̂ 	s Â}, (13.177)

so δi (Â)S is the largest self-adjoint operator in S spectrally smaller than (or equal
to) Â, which implies δi (Â)S 	 Â.

3. In general, neither δo(Â)S nor δi (Â)S can be written as Borel functions of the
operator Â, since daseinisation changes the elements of the spectral family, while a
function merely “shuffles them around”.

4. Let Â ∈ N be self-adjoint. The spectrum, sp(Â), consists of all λ ∈ R such
that the spectral family {Ê A

λ }λ∈R is non-constant on any neighbourhood of λ. By
definition, outer daseinisation of Â acts on the spectral family of Â by sending Ê A

λ

to Êδo(Â)S
λ = δi (Ê A

λ)S . If {Ê A
λ }λ∈R is constant on some neighbourhood of λ, then

the spectral family {Êδo(Â)S
λ }λ∈R of δo(Â)S is also constant on this neighbourhood.

This shows that

sp(δo(Â)S) ⊆ sp(Â) (13.178)

for all self-adjoint operators Â ∈ Nsa and all von Neumann sub-algebras S. Analo-
gous arguments apply to inner daseinisation.

Heuristically, this result implies that the spectrum of the operator δo(Â)S is more
degenerate than that of Â; i.e., the effect of daseinisation is to ‘collapse’ eigenvalues.

13 Topos Theory in the Foundations of Physics 833

5. Outer and inner daseinisation are both non-linear mappings, even on com-
muting operators. We will show this for projections explicitly. For example, let
Q̂ := 1̂ − P̂ . Then δo(Q̂ + P̂)S = δo(1̂)S = 1̂, while δo(1̂ − P̂)S � 1̂ − P̂ and
δo(P̂)S � P̂ in general, so δo(1̂− P̂)S + δo(P̂)S is the sum of two non-orthogonal
projections in general (and hence not equal to 1̂). For inner daseinisation, we have
δi (1̂− P̂)S ≺ 1̂− P̂ and δi (P̂)S ≺ P̂ in general, so δi (1̂− P̂)S + δi (P̂)S ≺ 1̂ =
δi (1̂− P̂ + P̂)S in general.

6. If a ≥ 0, then δo(a Â)S = aδo(Â)S and δi (a Â)S = aδi (Â)S . If a < 0, then
δo(a Â)S = aδi (Â)S and δi (a Â)S = aδo(Â)S . This is due the behaviour of spectral
families under the mapping Â !→ − Â.

7. Let Â be a self-adjoint operator, and let Ê[A ≤ λ] = Ê A
λ be an element of the

spectral family of Â. From (13.170) we get

Ê[δo
S(A) ≤ λ] = δi

S
(
Ê[A ≤ λ]) (13.179)

and then

Ê[δo(Â)S > λ] = 1̂− Ê[δo(Â)S ≤ λ] (13.180)

= 1̂− δi
S
(
Ê[A ≤ λ]) (13.181)

= δo
S
(
1̂− Ê[A ≤ λ]) (13.182)

where we have used the general result that, for any projection P̂ , we have 1̂ −
δi (P̂)S = δo

S(1̂− P̂). Then, (13.182) gives

Ê[δo(Â)S > λ] = δo(Ê[A > λ])S . (13.183)

13.7.2.4 The de Groote Presheaves

We know that V !→ δo(P̂)V and V !→ δi (P̂)V are global elements of the outer
presheaf, O , and inner presheaf, I , respectively. Using the daseinisation operation
for self-adjoint operators, it is straightforward to construct analogous presheaves
for which V !→ δo(Â)V and V !→ δi (Â)V are global elements. One of these
presheaves was briefly considered in [37]. We call these the “de Groote presheaves”
in recognition of the importance of de Groote’s work.

Definition 12 The outer de Groote presheaf, |O, is defined as follows:

(i) On objects V ∈ Ob(V(H)): We define |OV := Vsa, the collection of self-adjoint
members of V .

(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping |O(iV ′ V) : |OV → |OV ′ is given by

|O(iV ′ V)(Â) := δo(Â)V ′ (13.184)

=
∫

R

λ d
(
δi (Ê A

λ)V ′
)

(13.185)

834 A. Döring and C. Isham

=
∫

R

λ d
(
I (iV ′ V)(Ê A

λ)
)

(13.186)

for all Â ∈ |OV .

Here we used the fact that the restriction mapping I (iV ′ V) of the inner presheaf
I is the inner daseinisation of projections δi : P(V) → P(V ′).
Definition 13 The inner de Groote presheaf, II, is defined as follows:

(i) On objects V ∈ Ob(V(H)): We define IIV := Vsa, the collection of self-adjoint
members of V .

(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping II(iV ′ V) : IIV → IIV ′ is given
by

II(iV ′ V)(Â) := δi (Â)V ′ (13.187)

=
∫

R

λ d

⎛

⎝
∧

μ>λ

(δo(Ê A
μ)V ′

⎞

⎠ (13.188)

=
∫

R

λ d

⎛

⎝
∧

μ>λ

(O(iV ′ V)(Ê A
μ)

⎞

⎠ (13.189)

for all Â ∈ |OV (where O(iV ′ V) = δo : P(V)→ P(V ′)).

It is now clear that, by construction, δo(Â) := V !→ δo(Â)V is a global element
of |O, and δi (Â) := V !→ δi (Â)V is a global element of II.

De Groote found an example of an element of Γ |O that is not of the form δo(Â)

(as mentioned in [37]). The same example can be used to show that there are global
elements of the outer presheaf O that are not of the form δo(P̂) for any projection
P̂ ∈ P(H).

On the other hand, we have:

Theorem 4 The mapping

δi : B(H)sa → Γ II (13.190)

Â !→ δi (Â) (13.191)

from self-adjoint operators in B(H) to global sections of the outer de Groote
presheaf is injective. Likewise,

δo : B(H)sa → Γ |O (13.192)

Â !→ δo(Â) (13.193)

is injective.

13 Topos Theory in the Foundations of Physics 835

Proof By construction, Â ≥s δi (Â)V for all V ∈ Ob(V(H)). Since Â is contained
in at least one context, we have

Â =
∨

V∈Ob(V(H))

δi (Â)V , (13.194)

where the maximum is taken with respect to the spectral order. If δi (Â) = δi (B̂),
then we have

Â =
∨

V∈Ob(V(H))

δi (Â)V =
∨

V∈Ob(V(H))

δi (B̂)V = B̂. (13.195)

Analogously, Â ≤s δo(Â)V for all V ∈ Ob(V(H)), so

Â =
∧

V∈Ob(V(H))

δo(Â)V . (13.196)

If δo(Â) = δo(B̂), then we have

Â =
∧

V∈Ob(V(H))

δo(Â)V =
∧

V∈Ob(V(H))

δo(B̂)V = B̂. (13.197)

The same argument also holds more generally for arbitrary von Neumann alge-
bras, not just B(H).

13.7.3 Daseinisation from Galois Connections

In this short subsection, we show how daseinisation of projections and self-adjoint
operators relates to certain Galois connections: i.e., adjunctions between lattices of
projections resp. self-adjoint operators. The observation that daseinisation can be
understood in this way is due to F. William Lawvere78 and Pedro Resende79, whom
we thank. A forthcoming paper [31] will give a more detailed account.

Let V ∈ V(H) be an abelian von Neumann sub-algebra of B(H). Then there is
an inclusion

ιV B(H) : P(V) −→ P(H) (13.198)

P̂ !−→ P̂ (13.199)

of the projection lattice of V into the projection lattice of B(H). Both lattices are
complete, and the inclusion ιV B(H) obviously preserves arbitrary meets of projec-

78 Private communication.
79 Private communication.

836 A. Döring and C. Isham

tions. However, the meet operation is the product in the poset P(V), viewed as a
category, and hence ιV B(H) is an order-preserving functor that preserves arbitrary
products. Such a functor always has a left adjoint. In our case, we have the following
result.

Theorem 5 The left adjoint of ιV B(H) is the outer daseinisation to V of projections
in P(H):

δo
V : P(H) −→ P(V) (13.200)

Q̂ !−→ δo(Q̂)V , (13.201)

Proof To prove this we must show that for Q̂ ∈ P(H) and P̂ ∈ P(V),

Q̂ 	 ιV B(H)(P̂) iff δo(Q̂)V (P̂. (13.202)

Here, we use the symbol (for the partial order on P(V) in order to distinguish it
from the partial order on P(H). Assume that

Q̂ 	 ιV B(H)(P̂). (13.203)

Then

δo(Q̂)V (δo
V (ιV B(H)(P̂)), (13.204)

since δo
V : P(H) → P(V) is an order-preserving mapping. Obviously, we have

δo
V (ιV B(H)(P̂)) = P̂ , hence

δo(Q̂)V (P̂ . (13.205)

Conversely, assume that δo(Q̂)V (P̂ . Then

ιV B(H)(δ
o(Q̂)V) � Q̂, (13.206)

which simply means that δo(Q̂)V � Q̂ in P(H). Hence, since ιV B(H) : P(V) →
P(H) is order-preserving, we obtain

Q̂ 	 ιV B(H)(δ
o(Q̂)V) 	 ιV B(H)(P̂). (13.207)

This proves that δo
V is indeed the left adjoint of ιV B(H). Such an adjunction between

posets is called a Galois connection.

The inclusion functor ιV B(H) : P(V) → P(H) also preserves arbitrary
joins. Categorically, these are coproducts, and hence the functor ιV B(H) also
has a right adjoint. This is nothing but the inner daseinisation of projections
to V :

13 Topos Theory in the Foundations of Physics 837

δi
V : P(H) −→ P(V) (13.208)

Q̂ !−→ δi (Q̂)V . (13.209)

The proof that δi
V is indeed the right adjoint of ιV B(H) is very similar to the proof

that δo
V is the left adjoint, and we will not give the details here.

Interestingly, the results can be extended to all self-adjoint operators. The lattices
involved are the lattice (B(H),≤s) of self-adjoint operators in B(H), equipped with
the spectral order, and the lattice (Vsa,(s) of self-adjoint operators in V , also with
respect to the spectral order. On the sublattice of projections, the spectral and the
usual order coincide (both for P(H) and P(V)).

The obvious inclusion functor is

ιVsa B(H)sa
: Vsa −→ B(H)sa (13.210)

Â !−→ Â. (13.211)

However, since the lattices (B(H),≤s) and (Vsa,(s) are only boundedly complete,
the existence of left and right adjoints of ιVsa B(H)sa

is not guaranteed automatically.
Nevertheless, it is straightforward to show that the outer daseinisation functor

δo
V : B(H)sa −→ Vsa (13.212)

Â !−→ δo(Â)V (13.213)

is left adjoint to ιVsa B(H)sa
, and the inner daseinisation

δi
V : B(H)sa −→ Vsa (13.214)

Â !−→ δi (Â)V (13.215)

is right adjoint to ιVsa B(H)sa
.80

13.8 The Presheaves sp(Â)�, R
� and R

↔

13.8.1 Background to the Quantity-Value Presheaf R
Our goal now is to construct a “quantity-value” presheaf R with the property that
inner and/or outer daseinisation of an self-adjoint operator Â can be used to define
an arrow, i.e., a natural transformation, from Σ to R.81

80 Of course, taking a single context V and inner and outer daseinisation to this context is not
sufficient in the application to quantum theory. One rather has to consider all contexts V ∈ V(H)

in order to construct sub-objects of Σ (from outer daseinisation of projections), and natural trans-
formations that represent physical quantities (from inner and outer daseinisation of self-adjoint
operators, see following sections).
81 In fact, we will define several closely related presheaves that can serve as a quantity-value object.

838 A. Döring and C. Isham

The arrow corresponding to a self-adjoint operator Â ∈ B(H) is denoted for now
by Ă : Σ → R. At each stage V , we need a mapping

ĂV : ΣV → RV (13.216)

λ !→ ĂV (λ), (13.217)

and we make the basic assumption that this mapping is given by evaluation. More
precisely, λ ∈ ΣV is a spectral element82 of V and hence can be evaluated on opera-
tors lying in V . And, while Â will generally not lie in V , both the inner daseinisation
δi (Â)V and the outer daseinisation δo(Â)V do.

Let us start by considering the operators δo(Â)V , V ∈ Ob(V(H)). Each of these
is a self-adjoint operator in the commutative von Neumann algebra V , and hence, by
the spectral theorem, can be represented by a function, (the Gel’fand transform83)

δo(Â)V : ΣV → sp(δo(Â)V), with values in the spectrum sp(δo(Â)V) of the self-
adjoint operator δo(Â)V . Since the spectrum of a self-adjoint operator is a subset of

R, we can also write δo(Â)V : ΣV → R. The question now is whether the collection

of maps δo(Â)V : ΣV → R, V ∈ Ob(V(H)), can be regarded as an arrow from Σ

to some presheaf R.
To answer this we need to see how these operators behave as we go “down a

chain” of sub-algebras V ′ ⊆ V . The first remark is that if V ′ ⊆ V then δo(Â)V ′ �
δo(Â)V . When applied to the Gel’fand transforms, this leads to the equation

δo(Â)V ′(λ|V ′) ≥ δo(Â)V (λ) (13.218)

for all λ ∈ ΣV , where λ|V ′ denotes the restriction of the spectral element λ ∈ ΣV
to the sub-algebra V ′ ⊆ V . However, the definition of the spectral presheaf is such
that λ|V ′ = Σ(iV ′ V)(λ), and hence (13.218) can be rewritten as

δo(Â)V ′
(
Σ(iV ′ V)(λ)

) ≥ δo(Â)V (λ) (13.219)

for all λ ∈ ΣV .
It is a standard result that the Dedekind real number object, R, in a presheaf topos

SetsC
op

is the constant functor from Cop to R [66]. It follows that the family of

Gel’fand transforms, δo(Â)V , V ∈ Ob(V(H)), of the daseinised operators δo(Â)V ,
V ∈ Ob(V(H)), does not define an arrow from Σ to R, as this would require an
equality in (13.219), which is not true. Thus the quantity-value presheaf, R, in the
topos SetsV(H)op

is not the real-number object R, although clearly R has something

82 A “spectral element”, λ ∈ ΣV of V , is a multiplicative, linear functional λ : V → |C with
〈λ, 1̂〉 = 1, see also Definition 4.
83 This use of the “overline” symbol for the Gel’fand transform should not be confused with our
later use of the same symbol to indicate a co-presheaf.

13 Topos Theory in the Foundations of Physics 839

to do with the real numbers. We must take into account the growth of these real
numbers as we go from V to smaller sub-algebras V ′. Similarly, if we consider
inner daseinisation, we get a series of falling real numbers.

The presheaf, R, that we will choose, and which will be denoted by R
↔, incor-

porates both aspects (growing and falling real numbers).

13.8.2 Definition of the Presheaves sp(Â)�, R
� and R

↔

The inapplicability of the real-number object R may seem strange at first,84 but
actually it is not that surprising. Because of the Kochen-Specker theorem, we do
not expect to be able to assign (constant) real numbers as values of physical quan-
tities, at least not globally. Instead, we draw on some recent results of M. Jack-
son [54], obtained as part of his extensive study of measure theory on a topos of
presheaves. Here, we use a single construction in Jackson’s thesis: the presheaf of
“order-preserving functions” over a partially ordered set—in our case, V(H). In
fact, we will need both order-reversing and order-preserving functions.

Definition 14 Let (Q,) and (P,) be partially ordered sets. A function

μ : Q→ P (13.220)

is order-preserving if q1 	 q2 implies μ(q1) 	 μ(q2) for all q1, q2 ∈ Q. It is
order-reversing if q1 	 q2 implies μ(q1) � μ(q2). We denote by OP(Q,P) the
set of order-preserving functions μ : Q → P , and by OR(Q,P) the set of order-
reversing functions.85

We note that if μ is order-preserving, then −μ is order-reversing, and vice versa.
Adapting Jackson’s definitions slightly, if P is any partially-ordered set, we have

the following.

Definition 15 The P-valued presheaf, P�, of order-reversing functions over V(H)

is defined as follows:

(i) On objects V ∈ Ob(V(H)):

P�V := {μ :↓V → P | μ ∈ OR(↓V,P)} (13.221)

where ↓V ⊂ Ob(V(H)) is the set of all von Neumann sub-algebras of V .
(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping P�(iV ′ V) : P�V → P�V ′ is

given by

84 Indeed, it puzzled us for a while!
85 Order-preserving functions often are called monotone, while order-reversing functions are called
antitone.

840 A. Döring and C. Isham

P�(iV ′ V)(μ) := μ|V ′ (13.222)

where μ|V ′ denotes the restriction of the function μ to ↓V ′ ⊆↓V .

Jackson uses order-preserving functions with P := [0,∞) (the non-negative reals),
with the usual order ≤.

Clearly, there is an analogous definition of the P-valued presheaf, P	, of order-
preserving functions from ↓V to P . It can be shown that P� and P	 are isomorphic
objects in SetsV(H)op

.
Let us first consider P�. For us, the key examples for the partially ordered set P

are (i) R, the real numbers with the usual order ≤, and (ii) sp(Â) ⊂ R, the spectrum
of some bounded self-adjoint operator Â, with the order≤ inherited from R. Clearly,
the associated presheaf sp(Â)� is a sub-object of the presheaf R

�.

Now let Â ∈ B(H)sa, and let V ∈ Ob(V(H)). Then to each λ ∈ ΣV there is
associated the function

δ̆o(Â)V (λ) :↓V → sp(Â), (13.223)

given by

(
δ̆o(Â)V (λ)

)
(V ′) := δo(Â)V ′(Σ(iV ′V)(λ)) (13.224)

= δo(Â)V ′(λ|V ′) (13.225)

= 〈λ|V ′, δo(Â)V ′ 〉 (13.226)

= 〈λ, δo(Â)V ′ 〉 (13.227)

for all V ′ ⊆ V . We note that as V ′ becomes smaller, δo(Â)V ′ becomes larger
(or stays the same) in the spectral order, and hence in the usual order on opera-
tors. Therefore, δ̆o(Â)V (λ) :↓V → sp(Â) is an order-reversing function, for each
λ ∈ ΣV .

It is worth noting that daseinisation of Â, i.e., the approximation of the self-
adjoint operator Â in the spectral order, allows to define a function δ̆o(Â)V (λ) (for
each λ ∈ ΣV) with values in the spectrum of Â, since we have sp(δo(Â)V) ⊆ sp(Â),
see (13.178). If we had chosen an approximation in the usual linear order on
B(H)sa, then the approximated operators would not have a spectrum that is con-
tained in sp(Â) in general.

Let

δ̆o(Â)V : ΣV → sp(Â)�
V

(13.228)

λ !→ δ̆o(Â)V (λ) (13.229)

denote the set of order-reversing functions from ↓V to sp(Â) obtained in this way.
We then have the following, fundamental, result which can be regarded as a type of

13 Topos Theory in the Foundations of Physics 841

“non-commutative” spectral theorem in which each bounded, self-adjoint operator
Â is mapped to an arrow from Σ to R

�:

Theorem 6 The mappings δ̆o(Â)V , V ∈ Ob(V(H)), are the components of a natu-
ral transformation/arrow δ̆o(Â) : Σ → sp(Â)�.

Proof We only have to prove that, whenever V ′ ⊂ V , the diagram

Σ V′ sp(Â)�
V′

δ̆ o(Â)V ′

ΣV sp(Â)�
V

δ̆ o(Â)V

commutes. Here, the vertical arrows are the restrictions of the relevant presheaves
from the stage V to V ′ ⊆ V .

In fact, the commutativity of the diagram follows directly from the definitions.
For each λ ∈ ΣV , the composition of the upper arrow and the right vertical arrow
gives

(δ̆o(Â)V (λ))|V ′ = δ̆o(Â)V ′(λ|V ′), (13.230)

which is the same function that we get by first restricting λ from ΣV to ΣV ′ and
then applying δ̆o(Â)V ′ .

In this way, to each physical quantity Â in quantum theory there is assigned a
natural transformation δ̆o(Â) from the state object Σ to the presheaf sp(Â)�. Since

sp(Â)� is a sub-object of R
� for each Â, δ̆o(Â) can also be seen as a natural trans-

formation/arrow from Σ to R
�. Hence the presheaf R

� in the topos SetsV(H)op
is

one candidate for the quantity-value object of quantum theory. Note that it follows
from Theorem 4 that the mapping

θ : B(H)sa → HomSetsV(H)op (Σ, R
�) (13.231)

Â !→ δ̆o(Â) (13.232)

is injective.86

If S denotes our quantum system, then, on the level of the formal language L(S),
we expect the mapping A → Â to be injective, where A is a function symbol of

86 Interestingly, these results all carry over to an arbitrary von Neumann algebra N ⊆ B(H). In
this way, the formalism is flexible enough to adapt to situations where we have symmetries (which
can described mathematically by a von Neumann algebra N that has a non-trivial commutant) and
super-selection rules (which corresponds to N having a non-trivial centre).

842 A. Döring and C. Isham

signature Σ → R. It follows that we have obtained a a faithful representation of
these function symbols by arrows δ̆o(Â) : Σ → R

� in the topos SetsV(H)op
.

Similarly, there is an order-preserving function

δ̆i (Â)V (λ) :↓ V → sp(Â), (13.233)

that is defined for all V ′ ⊆ V by

(
δ̆i (Â)V (λ)

)
(V ′) = δi (Â)V ′(Σ(iV ′V)(λ)) (13.234)

= 〈λ, δi (Â)V ′ 〉. (13.235)

Since δi (Â)V ′ becomes smaller (or stays the same) as V ′ gets smaller, δ̆i (Â)V (λ)

indeed is an order-preserving function from ↓V to sp(Â) for each λ ∈ ΣV . Again,
approximation in the spectral order (in this case from below) allows us to define a
function with values in sp(Â), which would not be possible when using the linear
order.

Clearly, we can use the functions δ̆i (Â)V (λ), λ ∈ ΣV , to define a natural trans-
formation δ̆i (Â) : Σ → sp(Â)	 from the spectral presheaf, Σ , to the presheaf

sp(Â)	 of real-valued, order-preserving functions on ↓V with values in sp(Â). The

components of δ̆i (Â) are

δ̆i (Â)V : ΣV → sp(Â)	
V

(13.236)

λ !→ δ̆i (Â)V (λ). (13.237)

Since sp(Â)	 is a sub-presheaf of R
	, the presheaf of real-valued, order-preserving

functions, we also obtain a natural transformation from Σ to R
	. It follows from

Theorem 4 that the mapping from self-adjoint operators to natural transformations
δ̆i (Â) : Σ → R

	 is injective.
The functions obtained from inner and outer daseinisation can be combined to

give yet another presheaf, and one that will be particularly useful for the physical
interpretation of these constructions. The general definition is the following.

Definition 16 Let P be a partially-ordered set. The P-valued presheaf, P↔, of
order-preserving and order-reversing functions on V(H) is defined as follows:

(i) On objects V ∈ Ob(V(H)):

P↔V := {(μ, ν) | μ ∈ OP(↓V,P), ν ∈ OR(↓V,P), μ ≤ ν} (13.238)

where ↓V ⊂ Ob(V(H)) is the set of all sub-algebras V ′ of V . Note that we
introduce the condition μ ≤ ν, i.e., for all V ′ ∈↓V we demand μ(V ′) ≤ ν(V ′).

(ii) On morphisms iV ′V : V ′ ⊆ V :

13 Topos Theory in the Foundations of Physics 843

P↔(iV ′V) : P↔V −→ P↔V ′ (13.239)

(μ, ν) !−→ (μ|V ′ , ν|V ′), (13.240)

where μ|V ′ denotes the restriction of μ to ↓V ′ ⊆↓V , and analogously for ν|V ′ .

Note that since we have the condition μ ≤ ν in (i), the presheaf P↔ is not simply
the product of the presheaves P� and P	.

As we will discuss shortly, the presheaf, R
↔, of order-preserving and order-

reversing, real-valued functions is closely related to the “k-extension” of the
presheaf R

� (see the Appendix for details of the k-extension procedure).
Now let

δ̆(Â)V :=
(
δ̆i (Â)V (·), δ̆o(Â)V (·)

)
: ΣV → R

↔
V (13.241)

denote the set of all pairs of order-preserving and order-reversing functions from
↓V to R that can be obtained from inner and outer daseinisation. It is easy to see
that we have the following result:

Theorem 7 The mappings δ̆(Â)V , V ∈ Ob(V(H)), are the components of a natural
transformation δ̆(Â) : Σ → R

↔.

Again from Theorem 4, the mapping from self-adjoint operators to natural trans-
formations, Â → δ̆(Â), is injective.

Since δ̆i (Â)V (λ) ≤ δ̆o(Â)V (λ) for all λ ∈ ΣV , we can interpret each pair
(δ̆i (Â)V (λ), δ̆o(Â)V (λ)) of values as an interval, which gives a first hint at the
physical interpretation.

13.8.3 Inner and Outer Daseinisation from Functions on Filters

There is a close relationship between inner and outer daseinisation, and certain func-
tions on the filters in the projection lattice P(H) of B(H). We give a summary of
these results here: details can be found in de Groote’s work [37, 39], the article
[22], and a forthcoming paper [25]. This Subsection serves as a preparation for the
physical interpretation of the arrows δ̆(Â) : Σ → R

↔.

13.8.3.1 Filter Bases, Filters and Ultrafilters

We first need some basic definitions. Let L be a lattice with zero element 0. A subset
f of L is called a filter base if (i) 0 �= f and (ii) for all a, b ∈ f , there is a c ∈ f
such that c ≤ a ∧ b.

A subset F of a lattice L with zero element 0 is a (proper) filter (or dual ideal)
if (i) 0 /∈ F ; (ii) a, b ∈ F implies a ∧ b ∈ F ; and (iii) a ∈ F and b ≥ a imply
b ∈ F . In other words, a filter is an upper set in the lattice L that is closed under
finite minima.

844 A. Döring and C. Isham

By Zorn’s lemma, every filter is contained in a maximal filter. Obviously, such a
maximal filter is also a maximal filter base.

Let L
′ be a sublattice of L (with common 0), and let F ′ be a filter in L

′. Then,
seen as a subset of L, F ′ is a filter base in L. The smallest filter in L that contains
F ′ is the cone over F ′ in L:

CL(F ′) := {b ∈ L | ∃a ∈ F ′ : a ≤ b}. (13.242)

This is nothing but the upper set ↑F ′ of F ′ in L.
In our applications, L typically is the lattice P(H) of projections in B(H), and

L
′ is the lattice P(V) of projections in an abelian sub-algebra V .

If L is a Boolean lattice, i.e., if it is a distributive lattice with minimal element
0 and maximal element 1, and a complement (negation) ¬ : L → L such that
a ∨ ¬a = 1 for all a ∈ L, then we define an ultrafilter F̃ to be a maximal filter in
L. An ultrafilter F̃ is characterised by the following property: for all a ∈ L, either
a ∈ F̃ or¬a ∈ F̃ . This follows from the fact that for all a ∈ L, we have a∨¬a = 1.

Specifically, let us assume that F̃ is an ultrafilter and a /∈ F̃ . This means that
there is some b ∈ F̃ such that b∧a = 0. Using distributivity of the lattice L, we get

b = b ∧ (a ∨ ¬a) = (b ∧ a) ∨ (b ∧ ¬a) = b ∧ ¬a, (13.243)

so b ≤ ¬a. Since b ∈ F̃ and F̃ is a filter, this implies ¬a ∈ F̃ . Conversely, if
¬a /∈ F̃ , we obtain a ∈ F̃ .

The projection lattice P(V) of an abelian von Neumann algebra V is a Boolean
lattice. The maximal element is the identity operator 1̂ and, as we saw earlier, the
complement of a projection is given as ¬α̂ = 1̂ − α̂. Each ultrafilter F̃ in P(V)

hence contains either α̂ or 1̂− α̂ for all α̂ ∈ P(V).

13.8.3.2 Spectral Elements and Ultrafilters

Let V ∈ Ob(V(H)), and let λ ∈ ΣV be a spectral element of the von Neumann
algebra V . This means that λ is a multiplicative functional on V . For all projections
α̂ ∈ P(V), we have therefore

〈λ, α̂〉 = 〈λ, α̂2〉 = 〈λ, α̂〉〈λ, α̂〉, (13.244)

and so 〈λ, α̂〉 ∈ {0, 1}. Moreover, 〈λ, 0̂〉 = 0, 〈λ, 1̂〉 = 1, and if 〈λ, α̂〉 = 0, then
〈λ, 1̂− α̂〉 = 1 (since 〈λ, α̂〉 + 〈λ, 1̂− α̂〉 = 〈λ, 1̂〉). Hence, for each α̂ ∈ P(V) we
have either 〈λ, α̂〉 = 1 or 〈λ, 1̂− α̂〉 = 1. This shows that the family

Fλ := {α̂ ∈ P(V) | 〈λ, α̂〉 = 1} (13.245)

of projections is an ultrafilter in P(V). Conversely, each λ ∈ ΣV is uniquely deter-
mined by the set {〈λ, α̂〉 | α̂ ∈ P(V)} and hence by an ultrafilter in P(V). This

13 Topos Theory in the Foundations of Physics 845

shows that there is a bijection between the set Q(V) of ultrafilters in P(V) and the
Gel’fand spectrum ΣV .

13.8.3.3 Observable and Antonymous Functions

Let N be a von Neumann algebra, and let F(N) be the set of filters in the projection
lattice P(N) of N . De Groote has shown [39] that to each self-adjoint operator
Â ∈ N , there corresponds a, so-called, “observable function” f Â : F(N)→ sp(Â).

If N is abelian, N = V , then f Â|Q(V) is just the Gel’fand transform of Â. However,
it is striking that f Â can be defined even if N is non-abelian; for us, the important
example is N = B(H).

If {Ê A
μ }μ∈R is the spectral family of Â, then f Â is defined as

f Â : F(N) → sp(Â)

F !→ inf{μ ∈ R | Ê A
μ ∈ F}. (13.246)

Conversely, given a bounded function f : F(N) → R with certain properties, one
can find a unique self-adjoint operator Â ∈ N such that f = f Â.

It can be shown that each observable function is completely determined by its
restriction to the space of maximal filters [39]. Let Q(N) denote the space of max-
imal filters in P(N). The sets

QP̂ (N) := {F ∈ Q(N) | P̂ ∈ F}, P̂ ∈ P(N), (13.247)

form the base of a totally disconnected topology on Q(N). Following de Groote,
this space is called the Stone spectrum of N . If N is abelian, N = V , then, upon
the identification of maximal filters (which are ultrafilters) in P(V) and spectral
elements in ΣV , the Stone spectrum Q(V) is the Gel’fand spectrum ΣV of V .

This shows that for an arbitrary von Neumann algebra N , the Stone spectrum
Q(N) is a generalisation of the Gel’fand spectrum (the latter is only defined for
abelian algebras). The observable function f Â is a generalisation of the Gel’fand

transform of Â.
We want to show that the observable function f

δo(V̂)A
of the outer daseinisation

of Â to V can be expressed by the observable function f Â of Â directly. Since this
works for all V ∈ Ob(V(H)), we obtain a nice encoding of all the functions f

δo(Â)V

and hence of the self-adjoint operators δo(Â)V . The result (already shown in [37])
is that, for all stages V ∈ Ob(V(H)) and all filters F in F(V),

f
δo(Â)V

(F) = f Â(CB(H)(F)). (13.248)

We want to give an elementary proof of this. We need

Lemma 2 Let N be a von Neumann algebra, S a von Neumann sub-algebra of N ,
and let δi

S : P(N) → P(S) be the inner daseinisation map on projections. Then,
for all filters F ∈ F(S),

846 A. Döring and C. Isham

(δi
S)−1(F) = CN (F). (13.249)

Proof If Q̂ ∈ F ⊂ P(S), then (δi
S)−1(Q̂) = {P̂ ∈ P(N) | δi (P̂)S = Q̂}. Let

P̂ ∈ P(N) be such that there is a Q̂ ∈ F with Q̂ ≤ P̂ , i.e., P̂ ∈ CN (F). Then
δi (P̂)S ≥ Q̂, which implies δi (P̂)S ∈ F , since F is a filter in P(S). This shows
that CN (F) ⊆ (δi

S)−1(F). Now let P̂ ∈ P(N) be such that there is no Q̂ ∈ F

with Q̂ ≤ P̂ . Since δi (P̂)S ≤ P̂ , there also is no Q̂ ∈ F with Q̂ ≤ δi (P̂)S , so
P̂ /∈ (δi

S)−1(F). This shows that (δi
S)−1(F) ⊆ CN (F).

We now can prove

Theorem 8 Let Â ∈ Nsa. For all von Neumann sub-algebras S ⊆ N and all filters
F ∈ F(S), we have

f
δo(Â)S

(F) = f Â(CN (F)). (13.250)

Proof We have

f
δo(Â)S (F)

= inf{λ ∈ R | Êδo(Â)S
λ ∈ F}

= inf{λ ∈ R | δi (Ê A
λ)S ∈ F}

= inf{λ ∈ R | Ê A
λ ∈ (δi

S)−1(F)}
= inf{λ ∈ R | Ê A

λ ∈ CN (F)}
= f Â(CN (F)).

The second equality is the definition of outer daseinisation (on the level of spectral
projections, see (13.169)). In the penultimate step, we used Lemma 2.

This clearly implies (13.248). We saw above that to each λ ∈ ΣV there corre-
sponds a unique ultrafilter Fλ ∈ Q(V). Since δo(Â)V ∈ Vsa, the observable function
f
δo(Â)V

is the Gel’fand transform of δo(Â)V , and so, upon identifying the ultrafilter
Fλ with the spectral element λ, we have

f
δo(Â)V

(Fλ) = δo(Â)V (λ) = 〈λ, δo(Â)V 〉. (13.251)

From (13.248) we have

〈λ, δo(Â)V 〉 = f
δo(Â)V

(Fλ) = f Â(CB(H)(Fλ)) (13.252)

for all V ∈ Ob(V(H)) and for all λ ∈ ΣV . In this sense, the observable function f Â

encodes all the outer daseinisations δo(Â)V , V ∈ Ob(V(H)), of Â.
There is also a function, gÂ, on the filters in P(H) that encodes all the inner

daseinisations δi (Â)V , V ∈ Ob(V(H)). This function is given for an arbitrary von
Neumann algebra N by

13 Topos Theory in the Foundations of Physics 847

gÂ : F(N) → sp(Â) (13.253)

F !→ sup{λ ∈ R | 1̂− Ê A
λ ∈ F} (13.254)

and is called the antonymous function of Â [22]. If N is abelian, then gÂ|Q(V) is

the Gel’fand transform of Â and coincides with f Â on the space Q(V) of maximal
filters, i.e.,ultrafilters in P(V). As functions on F(V), f Â and gÂ are different also in
the abelian case. For an arbitrary von Neumann algebra N , the antonymous function
gÂ is another generalisation of the Gel’fand transform of Â.

There is a close relationship between observable and antonymous functions [39,
22]: for all von Neumann algebras N and all self-adjoint operators Â ∈ Nsa, it holds
that

− f Â = g− Â. (13.255)

There is a relation analogous to (13.248) for antonymous functions: for all V ∈
Ob(V(H)) and all filters F in F(V),

g
δi (Â)V

(F) = gÂ(CB(H)(F)). (13.256)

This follows from

Theorem 9 Let Â ∈ Nsa. For all von Neumann sub-algebras S ⊆ N and all filters
F ∈ F(S), we have

g
δi (Â)S

(F) = gÂ(CN (F)). (13.257)

Proof We have

g
δi (Â)S

(F) = sup{λ ∈ R | 1̂− Êδi (Â)S
λ ∈ F}

= sup{λ ∈ R | 1̂−
∧

μ>λ

δo(Ê A
μ)S ∈ F}

= sup{λ ∈ R | 1̂− δo(Ê A
λ)S ∈ F}

= sup{λ ∈ R | δi (1̂− Ê A
λ)S ∈ F}

= sup{λ ∈ R | 1̂− Ê A
λ ∈ (δi

S)−1(F)}
= sup{λ ∈ R | 1̂− Ê A

λ ∈ CN (F)}
=gÂ(CN (F)),

where in the penultimate step we used Lemma 2.

Let λ ∈ ΣV , and let Fλ ∈ Q(V) be the corresponding ultrafilter. Since δi (Â)V ∈
V , the antonymous function g

δi (Â)V
is the Gel’fand transform of δi (Â)V , and we

have

848 A. Döring and C. Isham

g
δi (Â)V

(Fλ) = δi (Â)V (λ) = 〈λ, δi (Â)V 〉. (13.258)

From (13.256), we get

〈λ, δi (Â)V 〉 = g
δi (Â)V

(Fλ) = gÂ(CB(H)(Fλ)) (13.259)

for all V ∈ Ob(V(H)) and all λ ∈ ΣV . Thus the antonymous function gÂ encodes

all the inner daseinisations δi (Â)V , V ∈ Ob(V(H)), of Â.

13.8.4 A Physical Interpretation of the Arrow δ̆(Â) : Σ → R
↔

Let |ψ〉 ∈ H be a unit vector in the Hilbert space of the quantum system. The
expectation value of a self-adjoint operator Â ∈ B(H) in the state |ψ〉 is given by

〈ψ | Â |ψ〉 =
∫ || Â||

−|| Â||
λ d〈ψ | Ê A

λ |ψ〉. (13.260)

In the discussion of truth objects in Sect. 13.6, we introduced the maximal filter
T |ψ〉 in P(H),87 given by (cf. (13.125))

T |ψ〉 := {α̂ ∈ P(H) | α̂ � |ψ〉〈ψ | }, (13.261)

where |ψ〉〈ψ | is the projection onto the one-dimensional subspace of H generated
by |ψ〉. As shown in [22], the expectation value 〈ψ | Â |ψ〉 can be written as

〈ψ | Â |ψ〉 =
∫ f Â(T |ψ〉)

gÂ(T |ψ〉)
λ d〈ψ | Ê A

λ |ψ〉. (13.262)

In an instrumentalist interpretation,88 one would interpret gÂ(T |ψ〉), resp.
f Â(T |ψ〉), as the smallest, resp. largest, possible result of a measurement of the

physical quantity A when the state is |ψ〉. If |ψ〉 is an eigenstate of Â, then
〈ψ | Â |ψ〉 is an eigenvalue of Â, and in this case, 〈ψ | Â |ψ〉 ∈ sp(Â); moreover,

〈ψ | Â |ψ〉 = gÂ(T |ψ〉) = f Â(T |ψ〉). (13.263)

If |ψ〉 is not an eigenstate of Â, then

gÂ(T |ψ〉) < 〈ψ | Â |ψ〉 < f Â(T |ψ〉). (13.264)

87 Since P(H) is not distributive, T |ψ〉 is not an ultrafilter; i.e., there are projections P̂ ∈ P(H)

such that neither P̂ ∈ T |ψ〉 nor 1̂− P̂ ∈ T |ψ〉.
88 Which we avoid in general, of course!

13 Topos Theory in the Foundations of Physics 849

For details, see [22].
Let V be an abelian sub-algebra of B(H) such that ΣV contains the spectral

element, λ |ψ〉, associated with |ψ〉.89 The corresponding ultrafilter in P(V) consists
of those projections α̂ ∈ P(V) such that α̂ � |ψ〉〈ψ | . This is just the evaluation,
T
|ψ〉
V , at stage V of our truth object, T

|ψ〉; see (13.124).

Hence the cone C(T
|ψ〉
V) := CB(H)(T

|ψ〉
V) consists of all projections R̂ ∈ P(H)

such that R̂ � |ψ〉〈ψ | ; and so, for all stages V such that |ψ〉〈ψ | ∈ P(V) we have

C(T
|ψ〉
V) = T |ψ〉. (13.265)

This allows us to write the expectation value as

〈ψ | Â |ψ〉 =
∫ f Â(C(T

|ψ〉
V)

gÂ(C(T
|ψ〉
V)

λ d〈ψ | Ê A
λ |ψ〉 (13.266)

=
∫ f

δo(Â)V
(T
|ψ〉
V)

g
δi (Â)V

(T
|ψ〉
V)

λ d〈ψ | Ê A
λ |ψ〉 (13.267)

for these stages V .
Equations (13.251) and (13.258) show that f

δo(Â)V
(T
|ψ〉
V) = 〈ψ | δo(Â)V |ψ〉 and

g
δi (Â)V

(T
|ψ〉
V) = 〈ψ | δi (Â)V |ψ〉. In the language of instrumentalism, for stages V

for which λ |ψ〉 ∈ ΣV , the value 〈ψ | δi (Â)V |ψ〉 ∈ sp(Â) is the smallest possible
measurement result for Â in the quantum state |ψ〉; and 〈ψ | δo(Â)V |ψ〉 ∈ sp(Â) is
the largest possible result.

These results depend on the fact that we use (inner and outer) daseinisation, i.e.,
approximations in the spectral, not the linear order.

If λ ∈ ΣV is not of the form λ = λ |ψ〉, for some |ψ〉 ∈ H, then the cone
C(Fλ) over the ultrafilter Fλ corresponding to λ cannot be identified with a vector
in H. Nevertheless, the quantity C(Fλ) is well-defined, and (13.248) and (13.256)
hold. If we go from V to a sub-algebra V ′ ⊆ V , then δi (Â)V ′ 	 δi (Â)V and
δo(Â)V ′ � δo(Â)V , hence

〈λ, δi (Â)V ′ 〉 ≤ 〈λ, δi (Â)V 〉, (13.268)

〈λ, δo(Â)V ′ 〉 ≥ 〈λ, δo(Â)V 〉 (13.269)

for all λ ∈ ΣV .
We can interpret the function

δ̆(Â)V : ΣV → R
↔

V (13.270)

89 This is the element defined by λ |ψ〉(Â) := 〈ψ | Â |ψ〉 for all Â ∈ V . It is characterised by the
fact that λ |ψ〉(|ψ〉〈ψ |) = 1 and λ |ψ〉(Q̂) = 0 for all Q̂ ∈ P(V) such that Q̂ |ψ〉〈ψ | = 0̂. We
have λ |ψ〉 ∈ ΣV if and only if |ψ〉〈ψ | ∈ P(V).

850 A. Döring and C. Isham

λ !→ δ̆(Â)V (λ) =
(
δ̆i (Â)V (λ), δ̆o(Â)V (λ)

)
(13.271)

as giving the “spread” or “range” of the physical quantity A at stages V ′ ⊆ V . Each
element λ ∈ ΣV gives its own “spread” δ̆(Â)V (λ) :↓V → sp(Â) × sp(Â). The
intuitive idea is that at stage V , given a point λ ∈ ΣV , the physical quantity A
“spreads over” the subset of the spectrum, sp(Â), of Â given by the closed interval
of sp(Â) ⊂ R defined by

[δ̆i (Â)V (λ)(V), δ̆o(Â)V (λ)(V)] ∩ sp(Â) = [〈λ, δi (Â)V 〉, 〈λ, δo(Â))V 〉] ∩ sp(Â).

(13.272)

For a proper sub-algebra V ′ ⊂ V , the spreading is over the (potentially larger)
subset

[δ̆i (Â)V (λ)(V ′), δ̆o(Â)V (λ)(V ′)] ∩ sp(Â) = [〈λ, δi (Â)V ′ 〉, 〈λ, δo(Â)V ′ 〉] ∩ sp(Â).

(13.273)

All this is local in the sense that these expressions are defined at a stage V and
for sub-algebras, V ′, of V , where λ ∈ ΣV . No similar global construction or inter-
pretation is possible, since the spectral presheaf Σ has no global elements, i.e., no
points (while the set ΣV does have points).

As we go down to smaller sub-algebras V ′ ⊆ V , the spread gets larger. This
comes from the fact that Â has to be adapted more and more as we go to smaller sub-
algebras V ′. More precisely, Â is approximated from below by δi (Â)V ′ ∈ V ′ and
from above by δo(Â)V ′ ∈ V ′. This approximation gets coarser as V ′ gets smaller,
which basically means that V ′ contains less and less projections.

It should be remarked that δ̆(Â) does not assign actual values to the physical
quantity A, but rather the possible range of such values; and these are independent
of any state |ψ〉. This is analogous to the classical case where physical quantities are
represented by real-valued functions on state space. The range of possible values is
state-independent, but the actual value possessed by a physical quantity does depend
on the state of the system.

13.8.4.1 The Quantity-Value Presheaf R
↔ and the Interval Domain

Heunen et al. observed [42] that the presheaf R
↔ is closely related to the inter-

val domain in our topos. This object has mainly been considered in theoretical
computer science [33] and can be used to systematically encode situations where
real numbers are only known—or can only be defined—up to a certain degree of
accuracy. Approximation processes can be well described using the mathematics
of domain theory. Clearly, this has close relations to our physical situation, where
the real numbers are spectral values of self-adjoint operators and coarse-graining
(or rather the inverse process of fine-graining) can be understood as a process of
approximation.

13 Topos Theory in the Foundations of Physics 851

13.8.5 The Value of a Physical Quantity in a Quantum State

We now want to discuss how physical quantities, represented by natural transfor-
mations δ̆(Â), acquire “values” in a given quantum state. Of course, this is not as
straightforward as in the classical case, since from the Kochen-Specker theorem, we
know that physical quantities do not have real numbers as their values. As we saw,
this is related to the fact that there are no microstates, i.e., the spectral presheaf has
no global elements.

In classical physics, a physical quantity A is represented by a function Ă : S →
R from the state space S to the real numbers. A point s ∈ S is a microstate, and the
physical quantity A has the value Ă(s) in this state.

We want to mimic this as closely as possible in the quantum case. In order to do
so, we take a pseudo-state

w
|ψ〉 := δ(|ψ〉〈ψ |) = V !→

∧
{α̂ ∈ OV | |ψ〉〈ψ | 	 α̂} (13.274)

(see (13.128)) and consider it as a sub-object of Σ . This means that at each stage
V ∈ Ob(V(H)), we consider the set

w
|ψ〉
V := {λ ∈ ΣV | 〈λ, δo(|ψ〉〈ψ |)V 〉 = 1} ⊆ ΣV . (13.275)

Of course, the sub-object of Σ that we get simply is δo(|ψ〉〈ψ |). Sub-objects of
this kind are as close to microstates as we can get, see the discussion in Sect. 13.6.3
and [23]. We can then form the composition

w |ψ〉 → Σ
δ̆(Â)−→ R

↔, (13.276)

which is also denoted by δ̆(Â)(w |ψ〉). One can think of this arrow as being the
“value” of the physical quantity A in the state described by w |ψ〉.

The first question is if we actually obtain a sub-object of R
↔ in this way. Let

V, V ′ ∈ Ob(V(H)), V ′ ⊆ V . We have to show that

R
↔(iV ′V)(δ̆(Â)V (w

|ψ〉
V)) ⊆ δ̆(Â)V ′(w

|ψ〉
V ′). (13.277)

Let λ ∈ w
|ψ〉
V , then

R
↔(iV ′V)(δ̆(Â)V (λ)) = (δ̆(Â)V (λ))|V ′ = δ̆(Â)V ′(λ|V ′). (13.278)

By definition, we have

w
|ψ〉
V ′ = Σ(iV ′V)(w

|ψ〉
V) = {λ|V ′ | λ ∈ w

|ψ〉
V }, (13.279)

852 A. Döring and C. Isham

that is, every λ′ ∈ w
|ψ〉
V ′ is given as the restriction of some λ ∈ w

|ψ〉
V . This implies

that we even obtain the equality

R
↔(iV ′V)(δ̆(Â)V (w

|ψ〉
V)) = δ̆(Â)V ′(w

|ψ〉
V ′), (13.280)

so δ̆(Â)(w |ψ〉) is indeed a sub-object of R
↔.

13.8.5.1 Values as Pairs of Functions and Eigenvalues

At each stage V ∈ Ob(V(H)), we have pairs of order-preserving and order-
reversing functions δ̆(Â)(λ), one function for each λ ∈ w

|ψ〉
V . If |ψ〉 is an eigenstate

of Â and V is an abelian sub-algebra that contains Â, then δi (Â)V = δo(Â)V = Â.
Moreover, w

|ψ〉
V contains the single element λ |ψ〉〈ψ | ∈ ΣV , which is the pure state

that assigns 1 to |ψ〉〈ψ | and 0 to all projections in P(V) orthogonal to |ψ〉〈ψ | .
Evaluating δ̆(Â)(w |ψ〉) at V hence gives a pair, consisting of an order-

preserving function δ̆i (Â)V (λ |ψ〉〈ψ |) : ↓V → sp(Â) and an order-reversing function
δ̆o(Â)V (λ |ψ〉〈ψ |) : ↓V → sp(Â):

δ̆(Â)V (w
|ψ〉
V) = (δ̆i (Â)V (λ |ψ〉〈ψ |), δ̆o(Â)V (λ |ψ〉〈ψ |)). (13.281)

The value of both functions at stage V is Â(λ |ψ〉〈ψ |) = 〈λ |ψ〉〈ψ | , Â〉, which is the
eigenvalue of Â in the state |ψ〉. In this sense, we get back the ordinary eigenvalue
of Â when the system is in the eigenstate ψ .

13.8.5.2 A Simple Example

We consider the value of the self-adjoint projection operator |ψ〉〈ψ | , seen as (the
representative of) a physical quantity, in the (pseudo-)state w |ψ〉. We remark that
sp(|ψ〉〈ψ |) = {0, 1}. By definition,

δ̆(|ψ〉〈ψ |)V (λ) = (δ̆i (|ψ〉〈ψ |)V (λ), δ̆o(|ψ〉〈ψ |)V (λ)) (13.282)

for all V ∈ Ob(V(H)) and all λ ∈ ΣV . In particular, the function

δ̆o(|ψ〉〈ψ |)V (λ) :↓V → {0, 1} (13.283)

is given as (see (13.227), for all V ′ ⊆ V ,

δ̆o(|ψ〉〈ψ |)V (λ)(V ′) = 〈λ, δo(|ψ〉〈ψ |)V ′ 〉. (13.284)

If λ ∈ w
|ψ〉
V , then 〈λ, δo(|ψ〉〈ψ |)V 〉 = 1, see (13.275). Hence, for all λ ∈ w

|ψ〉
V , we

obtain, for all V ′ ⊆ V ,

13 Topos Theory in the Foundations of Physics 853

δ̆o(|ψ〉〈ψ |)V (λ)(V ′) = 〈λ, δo(|ψ〉〈ψ |)V ′ 〉 = 1. (13.285)

If we denote the constant function on ↓V with value 1 as 1↓V , then we can write

δ̆(|ψ〉〈ψ |)V (λ) = (δ̆i (|ψ〉〈ψ |)V (λ), 1↓V) (13.286)

for all V and all λ ∈ w
|ψ〉
V . The constant function 1↓V trivially is an order-reversing

function from ↓V to sp(|ψ〉〈ψ |). We now consider the function

δ̆i (|ψ〉〈ψ |)V (λ) :↓V → {0, 1}. (13.287)

It is given as (see (13.235), for all V ′ ⊆ V ,

δ̆i (|ψ〉〈ψ |)V (λ)(V ′) = 〈λ, δi (|ψ〉〈ψ |)V ′ 〉. (13.288)

If |ψ〉〈ψ | ∈ P(V ′), then, for all λ ∈ w
|ψ〉
V ′ , we have 〈λ, δi (|ψ〉〈ψ |)V ′ 〉 =

〈λ, |ψ〉〈ψ | 〉 = 1. If |ψ〉〈ψ | /∈ P(V ′), then δi (|ψ〉〈ψ |)V ′ = 0̂, since

δi (|ψ〉〈ψ |)V 	 |ψ〉〈ψ | (13.289)

and |ψ〉〈ψ | is a projection onto a one-dimensional subspace, so δi (|ψ〉〈ψ |)V ′ must
project onto the zero-dimensional subspace.

Thus we get, for all V , for all λ ∈ w
|ψ〉
V and all V ′ ⊆ V :

δ̆i (|ψ〉〈ψ |)V (λ)(V ′) =
{

1 if |ψ〉〈ψ | ∈ V ′
0 if |ψ〉〈ψ | /∈ V ′ (13.290)

Summing up, we have completely described the “value” δ̆(|ψ〉〈ψ |)(w |ψ〉) of the
physical quantity described by |ψ〉〈ψ | in the pseudo-state given by w |ψ〉.

There is an immediate generalisation of one part of this result: Consider an arbi-
trary non-zero projection P̂ ∈ V(H),90 the corresponding sub-object δo(P̂) of Σ

obtained from outer daseinisation, and the sub-object δ̆(P̂)(δo(P̂)) of R
↔. For all

V ∈ Ob(V(H)) and all λ ∈ δo(P̂)
V

, a completely analogous argument to the one

given above shows that for the order-reversing functions δ̆o(P̂)V (λ) :↓V → {0, 1},
we always obtain the constant function 1↓V .

The behaviour of the order-preserving functions δ̆i (P̂)V (λ) :↓ V → {0, 1} is
more complicated than in the case that P̂ projects onto a one-dimensional subspace.
In general, P̂ /∈ V ′ does not imply δ̆i (P̂)V ′(λ)(V ′) = 0 for λ ∈ δo(P̂)

V
, so the

analogue of (13.290) does not hold in general.

90 Of course, if P̂ is not a projection onto a one-dimensional subspace, then it cannot be identified
with a state.

854 A. Döring and C. Isham

13.8.6 Properties of R
↔

From the perspective of our overall programme, Theorem 7 is a key result and shows
that R

↔ is a possible choice for the quantity-value object for quantum theory. To
explore this further, we start by noting some elementary properties of the presheaf
R
↔. Analogous arguments apply to the presheaves R

	 and R
�.

1. The presheaf R
↔ has global elements: namely, pairs of order-preserving and

order-reversing functions on the partially-ordered set Ob(V(H)) of objects in
the category V(H); i.e., pairs of functions (μ, ν) : Ob(V(H))→ R such that:

∀V1, V2 ∈ Ob(V(H)), V2 ⊆ V1 : μ(V2) ≤ μ(V1), ν(V2) ≥ ν(V1). (13.291)

2. (a) Elements of Γ R
↔ can be added: i.e., if (μ1, ν1), (μ2, ν2) ∈ Γ R

↔, define
(μ1, ν1)+ (μ2, ν2) at each stage V by

((μ1, ν1)+ (μ2, ν2))(V ′) := (μ1(V ′)+μ2(V ′), ν1(V ′)+ ν2(V ′)) (13.292)

for all V ′ ⊆ V . Note that if V2 ⊆ V1 ⊆ V , then μ1(V2) ≤ μ1(V1) and
μ2(V2) ≤ μ2(V1), and so μ1(V2)+ μ2(V2) ≤ μ1(V1)+ μ2(V1). Likewise,
ν1(V2)+ν2(V2) ≥ ν1(V1)+ν2(V1). Thus the definition of (μ1, ν1)+(μ2, ν2)

in (13.292) makes sense. Obviously, addition is commutative and associa-
tive.

(b) However, it is not possible to define “(μ1, ν1) − (μ2, ν2)” in this way
since the difference between two order-preserving functions may not be
order-preserving, nor need the difference of two order-reversing functions
be order-reversing. This problem is addressed in Sect. 13.9.

(c) A zero/unit element can be defined for the additive structure on Γ R
↔ as

0(V) := (0, 0) for all V ∈ Ob(V(H)), where (0, 0) denotes a pair of two
copies of the function that is constantly 0 on Ob(V(H)).
It follows from (a) and (c) that Γ R

↔ is a commutative monoid (i.e., a semi-
group with a unit).

The commutative monoid structure for Γ R
↔ is a reflection of the stronger fact

that R
↔ is a commutative-monoid object in the topos SetsV(H)op

. Specifically,
there is an arrow

+ : R↔ × R
↔ → R

↔, (13.293)

+V ((μ1, ν1), (μ2, ν2)) := (μ1 + μ2, ν1 + ν2) (13.294)

for all (μ1, ν1), (μ2, ν2) ∈ R
↔

V , and for all stages V ∈ Ob(V(H)). Here, (μ1+
μ2, ν1 + ν2) denotes the real-valued function on ↓V defined by

(μ1 + μ2, ν1 + ν2)(V ′) := (μ1(V ′)+ μ2(V ′), ν1(V ′)+ ν2(V ′)) (13.295)

for all V ′ ⊆ V .

13 Topos Theory in the Foundations of Physics 855

3. The real numbers, R, form a ring, and so it is natural to see if a multiplicative
structure can be put on Γ R

↔. The obvious “definition” would be, for all V ,

(μ1, ν1)(μ2, ν2)(V) := (μ1(V)μ2(V), ν1(V)ν2(V)) (13.296)

for (μ1, ν1), (μ2, ν2) ∈ Γ R
↔. However, this fails because the right hand side

of (13.296) may not be a pair consisting of an order-preserving and an order-
reversing function. This problem arises, for example, if ν1(V) and ν2(V) become
negative: then, as V gets smaller, the product ν1(V)ν2(V) gets larger and thus
defines an order-preserving function.

13.8.7 The Representation of Propositions From Inverse Images

In Sect. 13.3.2, we introduced a simple propositional language, PL(S), for each
system S, and discussed its representations for the case of classical physics. Then,
in Sect. 13.5 we analysed the, far more complicated, quantum-theoretical represen-
tation of this language in the set of clopen subsets of the spectral presheaf, Σ , in the
topos SetsV(H)op

. This gives a representation of the primitive propositions “A ε Δ”
as sub-objects of Σ :

πqt(A ε Δ) := δo(Ê[A ∈ Δ]) (13.297)

where “δo” is the (outer) daseinisation operation, and Ê[A ∈ Δ] is the spectral
projection corresponding to the subset Δ ∩ sp(Â) of the spectrum, sp(Â), of the
self-adjoint operator Â.

We now want to remark briefly on the nature, and representation, of propositions
using the “local” language L(S).

In any classical representation, σ , of L(S) in Sets, the representation, Rσ , of the
quantity-value symbol R is always just the real numbers R. Therefore, it is simple
to take a subset Δ ⊆ R of R, and construct the propositions “A ε Δ”. In fact, if Aσ :
Σσ → R is the representation of the function symbol A with signature Σ → R,
then A−1

σ (Δ) is a subset of the symplectic manifold Σσ (the representation of the
ground type Σ). This subset, A−1

σ (Δ) ⊆ Σσ , represents the proposition “A ε Δ” in
the Boolean algebra of all (Borel) subsets of Σσ .

We should consider the analogue of these steps in the representation, φ, of the
same language, L(S), in the topos τφ := SetsV(H)op

. In fact, the issues to be dis-
cussed apply to a representation in any topos.

We first note that if Ξ is a sub-object of Rφ , and if Aφ : Σφ → Rφ , then there is
an associated sub-object of Σφ , denoted A−1

φ (Ξ). Specifically, if χΞ : Rφ → Ωτφ

is the characteristic arrow of the sub-object Ξ , then A−1
φ (Ξ) is defined to be the

sub-object of Σφ whose characteristic arrow is χΞ ◦ Aφ : Σφ → Ωτφ
. These

sub-objects are analogues of the subsets, A−1
σ (Δ), of the classical state space Σσ :

as such, they can represent propositions. In this spirit, we could denote by “A ε Ξ”

856 A. Döring and C. Isham

the proposition which the sub-object A−1
φ (Ξ) represents. Of course, the proposition

“A ε Ξ” must be interpreted with respect to the quantity-value object and the state
object of the topos under consideration.91

In the case of quantum theory, the arrows Aφ : Σφ → Rφ are of the form
δ̆(Â) : Σ → R

↔ where Rφ = R
↔. It follows that the propositions in our L(S)-

theory are represented by the sub-objects δ̆(Â)−1(Ξ) of Σ , where Ξ is a sub-object
of R

↔.
To interpret such propositions, note first that in the PL(S)-propositions “A ε Δ”,

the range “Δ” belongs to the world that is external to the language. Consequently,
the meaning of Δ is given independently of PL(S). This “externally interpreted” Δ

is then inserted into the quantum representation of PL(S) via the daseinisation of
propositions discussed in Sect. 13.5.

However, the situation is very different for the L(S)-propositions “A ε Ξ”. Here,
the quantity “Ξ” belongs to the particular topos τφ , and hence it is representation
dependent. The implication is that the “meaning” of “A ε Ξ” can only be discussed
from “within the topos” using the internal language that is associated with τφ , which,
we recall, carries the translation of L(S) given by the topos-representation φ.

From a conceptual perspective, this situation is “relational”, with the meanings of
the various propositions being determined by their relations to each other as formu-
lated in the internal language of the topos. Concomitantly, the meaning of “truth”
cannot be understood using the correspondence theory (much favoured by instru-
mentalists) for there is nothing external to which a proposition can “correspond”.
Instead, what is needed is more like a coherence theory of truth in which a whole
body of propositions is considered together [35]. This is a fascinating subject, but
further discussion must be deferred to later work.

13.8.8 The Relation Between the Formal Languages L(S)

and PL(S)

In the propositional language PL(S), we have symbols “A ε Δ” representing prim-
itive propositions. In the quantum case, such a primitive proposition is represented
by the outer daseinisation δo(P̂) of the projection corresponding to the proposition.
(The spectral theorem gives the link between propositions and projections.)

We now want to show that the sub-objects of Σ of the form δo(P̂) for P̂ ∈ P(H)

also are part of the language L(S). More precisely, we will show that δo(P̂) can be
obtained as the inverse image of a certain sub-object of R

↔.
The sub-object of R

↔ that we consider is δ̆(P̂)(δo(P̂)). We take the inverse

image of this sub-object under the natural transformation δ̆(P̂) : Σ → R
↔. This

91 Compare Sect. 13.8.5, where it is shown for the quantum topos SetsV(H)op
how physical quan-

tities aquire values.

13 Topos Theory in the Foundations of Physics 857

means that we assume that the language L(S) contains a function symbol P : Σ →
R that is represented by the natural transformation δ̆(P̂).

One more remark: although it may look as if we put in from the start the sub-
object δo(P̂) that we want to construct, this is not the case: we can take the inverse

of an arbitrary sub-object of R
↔, and we happen to choose δ̆(P̂)(δo(P̂)). Forming

the inverse image of a sub-object of R
↔ under the natural transformation δ̆(P̂) is

analogous to taking the inverse image f −1{r} of some real value r under some
real-valued function f . The real value r can be given as the value r = f (x) of the
function at some element x of its domain. This does not imply that f −1{r} = {x}:
the inverse image may contain more elements than just {x}. Likewise, we have to
discuss whether the inverse image δ̆(P̂)−1(δ̆(P̂)(δo(P̂))) equals δo(P̂) or is some
larger sub-object of Σ .

We start with the case that P̂ = |ψ〉〈ψ | , i.e., P̂ is the projection onto a
one-dimensional subspace. We use the fact that δo(|ψ〉〈ψ |) = w |ψ〉 (see Defi-
nition (13.128) and discussion thereafter).

Theorem 10 The inverse image δ̆(|ψ〉〈ψ |)−1(δ̆(|ψ〉〈ψ |)(w |ψ〉)) is w |ψ〉.
Proof Let S := δ̆(|ψ〉〈ψ |)−1(δ̆(|ψ〉〈ψ |)(w |ψ〉)). In any case, we have

S ⊇ w |ψ〉. (13.298)

Let us assume that the inclusion is proper. Then there exists some V ∈ Ob(V(H))

such that

S(V) ⊃ w
|ψ〉
V = {λ ∈ ΣV | 〈λ, δo(|ψ〉〈ψ |)V 〉 = 1}, (13.299)

which is equivalent to the existence of some λ0 ∈ SV such that

〈λ0, δ
o(|ψ〉〈ψ |)V 〉 = 0. (13.300)

By definition, we have S(V) = {λ ∈ ΣV | δ̆(|ψ〉〈ψ |)V (λ) ∈ δ̆(|ψ〉〈ψ |)V (w |ψ〉)}.
For all λ̃ ∈ w

|ψ〉
V , it holds that

〈λ̃, δo(|ψ〉〈ψ |)V 〉 = 1, (13.301)

see (13.285). This implies that for all λ ∈ S(V), we must have 〈λ, δo(|ψ〉〈ψ |)V 〉 =
1, which contradicts (13.300). Hence there cannot be a proper inclusion S ⊃ w |ψ〉,
and we rather have equality

S(V) = w
|ψ〉
V (13.302)

for all V ∈ Ob(V(H)).

The proof is based on the fact that the order-reversing functions of the form
δ̆o(|ψ〉〈ψ |)V (λ) : ↓V → {0, 1}, where V ∈ Ob(V(H)) and λ ∈ w

|ψ〉
V , are constant

858 A. Döring and C. Isham

functions 1↓V . The remark at the end of Sect. 13.8.5 shows that this holds more
generally for arbitrary non-zero projections P̂ . Hence we obtain:

Corollary 1 The inverse image δ̆(P̂)−1(δ̆(P̂)(δo(P̂))) is δo(P̂).

13.9 Extending the Quantity-Value Presheaf to an Abelian
Group Object

13.9.1 Preliminary Remarks

We have shown how each self-adjoint operator, Â, on the Hilbert space H gives
rise to an arrow δ̆(Â) : Σ → R

↔ in the topos SetsV(H)op
. Thus, in the topos

representation, φ, of L(S) for the theory-type ‘quantum theory’, the arrow δ̆(Â) :
Σ → R

↔ is one possible choice92 for the representation, Aφ : Σφ → Rφ , of the
function symbol, A : Σ → R.

This implies that the quantity-value object, Rφ , is the presheaf, R
↔. However,

although such an identification is possible, it does impose certain restrictions on the
formalism. These stem from the fact that R

↔ is only a monoid-object in SetsV(H)op
,

and Γ R
↔ is only a monoid, whereas the real numbers of standard physics are an

abelian group; indeed, they are a commutative ring.
In standard classical physics, HomSets

(
Σσ , R

)
is the set of real-valued functions

on the manifold Σσ ; as such, it possesses the structure of a commutative ring. On
the other hand, the set of arrows HomSetsV(H)op

(
Σ, R

↔)
has only the structure

of an additive monoid. This additive structure is defined locally in the following
way. Let α, β ∈ HomSetsV(H)op

(
Σ, R

↔)
. At each stage V ∈ Ob(V(H)), αV is a

pair (μ1,V , ν1,V), consisting of a function μ1,V from ΣV to R
	

V , and a function
ν1,V from ΣV to R

�
V . For each λ ∈ ΣV , one has an order-preserving function

μ1,V (λ) :↓V → R, and an order-reversing function ν1,V (λ) :↓V → R. We use the
notation αV (λ) := (μ1,V (λ), ν1,V (λ)).

Similarly, β is given at each stage V by a pair of functions (μ2,V, ν2,V), and for
all λ ∈ ΣV , we write βV (λ) := (μ2,V (λ), ν2,V (λ))

We define, for all V ∈ Ob(V(H)), and all λ ∈ ΣV , (c.f. (13.295))

(α + β)V (λ) = ((μ1,V (λ), ν1,V (λ))+ (μ2,V (λ), ν2,V (λ))) (13.303)

:= (μ1,V (λ)+ μ2,V (λ), ν1,V (λ)+ ν2,V (λ)) (13.304)

= αV (λ)+ βV (λ), (13.305)

It is clear that (α + β)V (λ) is a pair consisting of an order-preserving and an order-
reversing function for all V and all λ ∈ ΣV , so that α + β is well defined.93

92 Another choice is to use the presheaf R
� as the quantity-value object, or the isomorphic presheaf

R
	.

93 To avoid confusion we should emphasise that, in general, the sum δ̆(Â) + δ̆(B̂) is not equal to
δ̆(Â + B̂).

13 Topos Theory in the Foundations of Physics 859

Arguably, the fact that HomSetsV(H)op
(
Σ, R

↔)
is only a monoid94 is a weak-

ness in so far as we are trying to make quantum theory “look” as much like
classical physics as possible. Of course, in more obscure applications such as
Planck-length quantum gravity, the nature of the quantity-value object is very
much open for debate. But when applied to regular physics, we might like our
formalism to look more like classical physics than the monoid-only structure of
HomSetsV(H)op

(
Σ, R

↔)
.

The need for a subtraction, i.e., some sort of abelian group structure on
R
↔, brings to mind the well-known Grothendieck k-construction that is much

used in algebraic topology and other branches of pure mathematics. This gives
a way of “extending” an abelian semi-group to become an abelian group, and
this technique can be adapted to the present situation. The goal is to construct a
“Grothendieck completion”, k(R↔), of R

↔ that is an abelian-group object in the
topos SetsV(H)op

.95

Of course, we can apply the k-construction also to the presheaf R
� (or R

	, if we
like). This comes with an extra advantage: it is then possible to define the square
of an arrow δ̆o(Â) : Σ → R

�, as is shown in the Appendix. Hence, given arrows

δ̆o(Â) and δ̆o(Â2), we can define an “intrinsic dispersion”:96

∇(Â) := δ̆o(Â2)− δ̆o(Â)2. (13.306)

Since the whole k-construction is quite complicated and is not used in this article
beyond the present section, we have decided to put all the relevant definitions into
the Appendix where it can be read at leisure by anyone who is interested.

Interestingly, there is a close relation between R
↔ and k(R�), as shown in the

next Subsection.

13.9.2 The Relation Between R
↔ and k(R�)

In Sect. 13.8.2, we considered the presheaf R
↔ of order-preserving and order-

reversing functions as a possible quantity-value object. The advantage of this
presheaf is the symmetric utilisation of inner and outer daseinisation, and the asso-
ciated physical interpretation of arrows from Σ to R

↔.
It transpires that R

↔ is closely related to k(R�). Namely, for each V , we can
define an equivalence relation ≡ on R

↔
V by

94 An internal version of this result would show that the exponential object R
↔ Σ is a monoid

object in the topos SetsV(H)op
. This could well be true, but we have not studied it in detail.

95 Ideally, we might like k(R�) or k(R↔) to be a commutative-ring object, but this is not true.
96 The notation used here is potentially a little misleading. We have not given any meaning to “A2”
in the language L(S); i.e., in its current form, the language does not give meaning to the square of a

function symbol. Therefore, when we write δ̆o(Â2) this must be understood as being the Gel’fand
transform of the outer daseinisation of the operator Â2.

860 A. Döring and C. Isham

(μ1, ν1) ≡ (μ2, ν2) iff μ1 + ν1 = μ2 + ν2. (13.307)

Then R
↔/ ≡ is isomorphic to k(R�) under the mapping

[μ, ν] !→ [ν,−μ] ∈ k(R�)V (13.308)

for all V and all [μ, ν] ∈ (R↔/ ≡)V .97

However, there is a difference between the arrows that represent physical quan-
tities. The arrow [δ̆o(Â)] : Σ → k(R�) is given by first sending Â ∈ B(H)sa
to δ̆o(Â) and then taking k-equivalence classes—a construction that only involves
outer daseinisation. On the other hand, there is an arrow [δ̆(Â)] : Σ → R

↔/ ≡,
given by first sending Â to δ̆(Â) and then taking the equivalence classes defined in
(13.307). This involves both inner and outer daseinisation.

We can show that [δ̆o(Â)] uniquely determines Â as follows: Let

[δ̆o(Â)] : Σ → k(R�) (13.309)

denote the natural transformation from the spectral presheaf to the abelian group-
object k(R�), given by first sending Â to δ̆o(Â) and then taking the k-equivalence
classes at each stage V . The monoid R

� is embedded into k(R�) by sending ν ∈
R
�

V to [ν, 0] ∈ k(R�)V for all V , which implies that Â is also uniquely determined
by [δ̆o(Â)].98 We note that, currently, it is an open question if [δ̆(Â)] also fixes Â
uniquely.

We now have constructed several presheaves that are abelian group objects within
SetsV(H)op

, namely k(R↔), k(R�) and R
↔/ ≡. The latter two are isomorphic

presheaves, as we have shown. All three presheaves can serve as the quantity-value
presheaf if one wants to have an abelian-group object for this purpose. Intuitively,
if the quantity-value object is only an abelian-monoid object like R

↔, then the
“values” can only be added, while in the case of an abelian-group object, they can
be added and subtracted.

13.9.3 Algebraic Properties of the Potential Quantity-Value
Presheaves

As matters stand, we have several possible choices for the quantity-value presheaf,
which is the representation for quantum theory of the symbol R of the formal
language L(S) that describes our physical system. In this sub-section, we want to

97 This identification also explains formula (13.307), which may look odd at first sight. Recall that
[μ, ν] ∈ (R↔/ ≡)V means that μ is order-preserving and ν is order-reversing.
98 In an analogous manner, one can show that the arrows δ̆i (Â) : Σ → R

	 and [δ̆i (Â)] : Σ →
k(R) uniquely determine Â, and that the arrow δ̆(Â) : Σ → R

↔ also uniquely determines Â.

13 Topos Theory in the Foundations of Physics 861

compare the algebraic properties of these various presheaves. In particular, we will
consider the presheaves R

�, k(R�), R
↔ and k(R↔).99

13.9.3.1 Global Elements

We first note that all these presheaves have global elements. For example, a global
element of R

� is given by an order-reversing function ν : V(H) → R. As remarked
in the Appendix, we have Γ k(R�) k(Γ R

�). Global elements of R
↔ are pairs

(μ, ν) consisting of an order-preserving function μ : V(H) → R and an order-
reversing function ν : V(H) → R. Finally, it is easy to show that Γ k(R↔)
k(Γ R

↔).

13.9.3.2 The Real Number Object as a Sub-object

In a presheaf topos SetsC
op

, the Dedekind real number object R is the constant
functor from Cop to R. The presheaf R is an internal field object (see e.g. [55]).

The presheaf R
� contains the constant presheaf R as a sub-object: let V ∈

Ob(V(H)) and r ∈ RV R. Then the function cr,V :↓V → R that has the constant
value r is an element of R

�
V since it is an order-reversing function. Moreover, the

global sections of R are given by constant functions r : V(H) → R, and such
functions are also global sections of R

�.
The presheaf R

� can be seen as a sub-object of k(R�): let V ∈ V(H) and ν ∈
R
�

V , then [ν, 0] ∈ k(R�)V . Thus the real number object R is also a sub-object of
k(R�).

A real number r ∈ RV defines the pair (cr,V , cr,V) consisting of two copies
of the constant function cr,V :↓V → R. Since cr,V is both order-preserving and
order-reversing, (cr,V , cr,V) is an element of R

↔
V and hence R is a sub-object of

R
↔. Since R

↔ is a sub-object of k(R↔), the latter presheaf also contains the real
number object R as a sub-object.

13.9.3.3 Multiplying with Real Numbers and Vector Space Structure

Let cr ∈ Γ R be the constant function on V(H) with value r . The global element cr
of R defines locally, at each V ∈ V(H), a constant function cr,V : ↓V → R. We
want to consider if, and how, multiplication with these constant functions is defined
in the various presheaves. We will call this “multiplying with a real number”.

Let μ ∈ R
�

V . For all V ′ ∈↓V , we define the product

(cr,V μ)(V ′) := cr,V (V ′)μ(V ′) = rμ(V ′). (13.310)

If r ≥ 0, then rμ :↓V → R is an order-reversing function again. However, if r < 0,
then rμ is order-preserving and hence not an element of R

�
V . This shows that for

the presheaf R
� only multiplication by non-negative real numbers is well-defined.

99 The presheaf R
	 is isomorphic to R

� and hence will not be considered separately.

862 A. Döring and C. Isham

However, if we consider k(R�) then multiplication with an arbitrary real number
is well-defined. For simplicity, we first consider r = −1, i.e., negation. Let [ν, κ] ∈
R
�

V , then, for all V ′ ∈↓V ,

(c−1,V [ν, κ])(V ′) := c−1,V (V ′)[ν(V ′), κ(V ′)] (13.311)

= −[ν(V ′), κ(V ′)] (13.312)

= [κ(V ′), ν(V ′)], (13.313)

so we have

c−1,V [ν, κ] = −[ν, κ] = [κ, ν]. (13.314)

This multiplication with the real number−1 is, of course, defined in such a way that
it fits in with the additive group structure on k(R�).

It follows that multiplying an element [ν, κ] of k(R�)V with an arbitrary real
number r can be defined as

cr,V [ν, κ] :=
{ [cr,V ν, cr,V κ] = [rν, rκ] if r ≥ 0
−[c−r,V ν, c−r,V κ] = [−rκ,−rν] if r < 0.

(13.315)

Remark 1 In this way, the group object k(R�) in SetsV(H)op
becomes a vector space

object, with the field object R as the scalars.

Interestingly, one can define multiplication with arbitrary real numbers also for
R
↔, although this presheaf is not a group object in SetsV(H)op

. Let (μ, ν) ∈ R
↔

V ,
so that μ :↓V → R is an order-preserving function and ν :↓V → R is order-
reversing. Let r be an arbitrary real number. We define

cr,V (μ, ν) :=
{

(cr,V μ, cr,V ν) = (rμ, rν) if r ≥ 0
(cr,V ν, cr,V μ) = (rν, rμ) if r < 0.

(13.316)

This is well-defined since if μ is order-preserving, then −μ is order-reversing, and
if ν is order-reversing, then −ν is order-preserving. For r = −1, we obtain

c−1,V (μ, ν) = −(μ, ν) = (−ν,−μ). (13.317)

But this does not mean that −(μ, ν) is an additive inverse of (μ, ν). Such inverses
do not exist in R

↔, since it is not a group object. Rather, we get

(μ, ν)+ (−(μ, ν)) = (μ, ν)+ (−ν,−μ) = (μ− ν, ν − μ). (13.318)

If, for all V ′ ∈↓ V , we interpret the absolute value |(μ − ν)(V ′)| as a measure
of uncertainty as given by the pair (μ, ν) at stage V ′, then we see from (13.318)
that adding (μ, ν) and (−ν,−μ) gives a pair (μ− ν, ν − μ) ∈ R

↔
V concentrated

13 Topos Theory in the Foundations of Physics 863

around (0, 0), but with an uncertainty twice as large (for all stages V ′). We call
−(μ, ν) = (−ν,−μ) the pseudo-inverse of (μ, ν) ∈ R

↔.
More generally, we can define a second monoid structure (besides addition) on

R
↔, called pseudo-subtraction and given by

(μ1, ν1)− (μ2, ν2) := (μ1, ν1)+ (−ν2,−μ2) = (μ1 − ν2, ν1 − μ2). (13.319)

This operation has a neutral element, namely (c0,V, c0,V), for all stages V ∈ V(H),
which of course is also the neutral element for addition. In this sense, R

↔ is close
to being a group object. Taking equivalence classes as described in (13.307) makes
R
↔ into a group object, R

↔/ ≡, isomorphic to k(R�).
Since multiplication with arbitrary real numbers is well-defined, the presheaf R

↔
is “almost a vector space object” over R.

Elements of k(R↔)V are of the form [(μ1, ν1), (μ2, ν2)]. Multiplication with an
arbitrary real number r is defined in the following way:

cr,V [(μ1, ν1), (μ2, ν2)] :=
{ [(rμ1, rν1), (rμ2, rν2)] if r ≥ 0
[(−rμ2,−rν2), (−rμ1,−rν1)] if r < 0.

(13.320)

The additive group structure on k(R↔) implies

− [(μ1, ν1), (μ2, ν2)] = [(μ2, ν2), (μ1, ν1)], (13.321)

so the multiplication with the real number−1 fits in with the group structure. On the
other hand, this negation is completely different from the negation on R

↔ (where
−(μ, ν) = (−ν,−μ) for all (μ, ν) ∈ R

↔
V and all V ∈ Ob(V(H))).

Remark 2 The presheaf k(R↔) is a vector space object in SetsV(H)op
, with R as the

scalars.

13.10 The Role of Unitary Operators

13.10.1 The Daseinisation of Unitary Operators

Unitary operators play an important role in the formulation of quantum theory, and
we need to understand the analogue of this in our topos formalism.

Unitary operators arise in the context of both “covariance” and “invariance”. In
elementary quantum theory, the “covariance” aspect comes the fact that if we have
made the associations

Physical state !→ state vector |ψ〉 ∈ H

Physical observable A !→ self-adjoint operator Â acting on H

864 A. Döring and C. Isham

then the same physical predictions will be obtained if the following associations are
used instead

Physical state !→ state vector Û |ψ〉 ∈ H (13.322)

Physical observable A !→ self-adjoint operator Û ÂÛ−1acting on H

for any unitary operator Û . Thus the mathematical representatives of physical quan-
tities are defined only up to arbitrary transformations of the type above. In non-
relativistic quantum theory, this leads to the canonical commutation relations; the
angular-momentum commutator algebra; and the unitary time displacement opera-
tor. Similar considerations in relativistic quantum theory involve the Poincaré group.

The “invariance” aspect of unitary operators arises when the operator commutes
with the Hamiltonian, giving rise to conserved quantities.

13.10.1.1 Daseinisation of Unitary Operators

As a side remark, we first consider the question if daseinisation can be applied to a
unitary operator Û . The answer is clearly “yes”, via the spectral representation:

Û =
∫

R

eiλd ÊU
λ (13.323)

where λ !→ EÛ
λ is the spectral family for Û . Then, in analogy with (13.170) and

(13.171) we have the following:

Definition 17 The outer daseinisation, δo(Û), resp. the inner daseinisation, δi (Û),
of a unitary operator Û are defined as follows:

δo(Û)V :=
∫

R

eiλ d
(
δi

V (ÊU
λ)

)
, (13.324)

δi (Û)V :=
∫

R

eiλ d
(∧

μ>λ

δo
V (ÊU

μ)
)
, (13.325)

at each stage V .

To interpret these entities100 we need to introduce a new presheaf defined as
follows.

Definition 18 The outer, unitary de Groote presheaf, |U, is defined by:

(i) On objects V ∈ Ob(V(H)): |UV := Vun, the collection of unitary operators in
V .

100 It would be possible to “complexify” the presheaf k(R�) in order to represent unitary operators
as arrows from Σ to |Ck(R�). Similar remarks apply to the presheaf R

↔. However, there is no
obvious physical use for this procedure.

13 Topos Theory in the Foundations of Physics 865

(ii) On morphisms iV ′V : V ′ ⊆ V : The mapping |U(iV ′ V) : |UV → |UV ′ is given by

|U(iV ′ V)(α̂) := δo(α̂)V ′ (13.326)

=
∫

R

eiλ d
(
δi (Êα

λ)V ′
)

(13.327)

=
∫

R

eiλ d
(
I (iV ′ V)(Êα

λ)
)

(13.328)

for all α̂ ∈ |UV .

Clearly, (i) there is an analogous definition of an “inner”, unitary de Groote presheaf;
and (ii) the map V !→ δo(Û)V defines a global element of |U.

This definition has the interesting consequence that, at each stage V ,

δo(ei Â)V = eiδo(Â)V (13.329)

A particular example of this construction is the one-parameter family of unitary

operators, t !→ eit Ĥ , where Ĥ is the Hamiltonian of the system.
Of course, in our case everything commutes. Thus suppose g !→ Ûg is a rep-

resentation of a Lie group G on the Hilbert space H. Then these operators can be
daseinised to give the map g !→ δo(Ûg), but generally this is not a representation of
G (or of its Lie algebra) since, at each stage V we have

δo(Ûg1)V δo(Ûg2)V = δo(Ûg2)V δo(Ûg1)V (13.330)

for all g1, g2 ∈ G. Clearly, there is an analogous result for inner daseinisation.

13.10.2 Unitary Operators and Arrows in SetsV(H)op

13.10.2.1 The Definition of �Û : Ob(V(H)) → Ob(V(H))

In classical physics, the analogue of unitary operators are “canonical transforma-
tions”; i.e., symplectic diffeomorphisms from the state space S to itself. This sug-
gests that should try to associate arrows in SetsV(H)op

with each unitary operator Û .
Thus we want to see if unitary operators can act on the objects in SetsV(H)op

. In
fact, if U(H) denotes the group of all unitary operators in H, we would like to find
a realisation of U(H) in the topos SetsV(H)op

.
As a first step, if Û ∈ U(H) and V ∈ Ob(V(H)) is an abelian von Neumann

sub-algebra of B(H), let us define

�Û (V) := {Û ÂÛ−1 | Â ∈ V }. (13.331)

866 A. Döring and C. Isham

It is clear that �Û (V) is a unital, abelian algebra of operators, and that self-
adjoint operators are mapped into self-adjoint operators. Furthermore, the map
Â !→ Û ÂÛ−1 is continuous in the weak-operator topology, and hence, if { Âi }i∈I

is a weakly-convergent net of operators in V , then {Û Âi Û−1}i∈I is a weakly-
convergent net of operators in �Û (V), and vice versa.

It follows that �Û (V) is an abelian von Neumann algebra (i.e., it is weakly
closed), and hence �Û can be viewed as a map �Û : Ob(V(H)) → Ob(V(H)).
We note the following:

1. Clearly, for all Û1, Û2 ∈ U(H),

�Û1
◦ �Û2

= �Û1Û2
(13.332)

Thus Û !→ �Û is a realisation of the group U(H) as a group of transformations
of Ob(V(H)).

2. For all U ∈ U(H), V and �Û (V) are isomorphic sub-algebras of B(H), and

�−1
Û
= �Û−1 .

3. If V ′ ⊆ V , then, for all Û ∈ U(H),

�Û (V ′) ⊆ �Û (V). (13.333)

Hence, each transformation �Û preserves the partial-ordering of the poset cate-
gory V(H).
From this it follows that each �Û : Ob(V(H)) → Ob(V(H)) is a functor from
the category V(H) to itself.

4. One consequence of the order-preserving property of �Û is as follows. Let S be
a sieve of arrows on V , i.e., a collection of sub-algebras of V with the property
that if V ′ ∈ S, then, for all V ′′ ⊆ V ′ we have V ′′ ∈ S. Then

�Û (S) := {�Û (V ′) | V ′ ∈ S} (13.334)

is a sieve of arrows on �Û (V).101

5. It is easy to see that U(H) acts as a group of transformations on the set, Subcl(Σ)

of clopen subobjcts of Σ . Namely, if S ∈ Subcl(Σ) we have an associated family,
ŜV , of projection operators in V , and then we define, for all V ,

(ρÛ Ŝ)V := Û Ŝ�Û−1 (V)Û
−1 (13.335)

where have used the fact that if α̂ ∈ PL(W) then Û α̂Û−1 belongs to PL(�Û W).
It is easy to see that (13.335) satisfies

101 In the partially ordered set V(H), an arrow from V ′ to V can be identified with the sub-algebra
V ′ ⊆ V , since there is exactly one arrow from V ′ to V .

13 Topos Theory in the Foundations of Physics 867

ρÛ2
◦ ρÛ1

= ρÛ2Û1
(13.336)

for all Û1, Û2 ∈ U(H). Thus we do indeed obtain an action of the group U(H)

on Subcl(Σ).

13.10.2.2 The Effect of �Û on Daseinisation

We recall that if P̂ is any projection, then the (outer) daseinisation, δo(P̂)V , of P̂ at
stage V is (13.35)

δo(P̂)V :=
∧ {

Q̂ ∈ P(V) | Q̂ � P̂
}

(13.337)

where we have resorted once more to using the propositional language PL(S). Thus

Ûδo(P̂)V Û−1 = Û
∧ {

Q̂ ∈ P(V) | Q̂ � P̂
}
Û−1

=
∧{

Û Q̂Û−1 ∈ P(�Û (V)) | Q̂ � P̂
}

=
∧{

Û Q̂Û−1 ∈ P(�Û (V)) | Û Q̂Û−1 � Û P̂Û−1}

= δo(Û P̂Û−1)�Û (V) (13.338)

where we used the fact that the map Q̂ !→ Û Q̂Û−1 is weakly continuous.
Thus we have the important result

Ûδo(P̂)V Û−1 = δo(Û P̂Û−1)�Û (V) (13.339)

for all unitary operators Û , and for all stages V . There is an analogous result for
inner daseinisation. Note that (13.335) and (13.339) together imply that

(ρÛ δo(P̂))V = δo(Û P̂Û−1)V (13.340)

for all stages V . Thus the action of U(H) on P̂ H marches in harmony with its action
on Subcl(Σ) via daseinisation.

Note that Eq. (13.339) can be applied to the de Groote presheaf |O to give

Ûδo(Â)V Û−1 = δo(Û ÂÛ−1)�Û (V) (13.341)

for unitary operators Û , and all stages V .

13.10.2.3 The Covariance of Truth Values

We now turn to the crucial issue of how unitary operators act on truth values of phys-
ical propositions. We recall that the truth sub-object, T

|ψ〉, of the outer presheaf, O ,

868 A. Döring and C. Isham

is defined at each stage V by (cf. (13.83))

T
|ψ〉
V : = {α̂ ∈ OV | Prob(α̂; |ψ〉) = 1}

= {α̂ ∈ OV | 〈ψ | α̂ |ψ〉 = 1} (13.342)

The neo-realist, physical interpretation of T
|ψ〉 is that the “truth” of the proposition

represented by P̂ is

ν
(
δo(P̂) ∈ T

|ψ〉)
V := {V ′ ⊆ V | δo(P̂)V ′ ∈ T

|ψ〉
V ′ } (13.343)

= {V ′ ⊆ V | 〈ψ | δo(P̂)V ′ |ψ〉 = 1} (13.344)

for all stages V . We then get

�Û

(
ν
(
δo(P̂) ∈ T

|ψ〉)
V

= �Û {V ′ ⊆ V | 〈ψ | δo(P̂)V ′ |ψ〉 = 1} (13.345)

= {�Û (V ′) ⊆ �Û (V) | 〈ψ | δo(P̂)V ′ |ψ〉 = 1} (13.346)

= {�Û (V ′) ⊆ �Û (V) | 〈ψ | Û−1Ûδo(P̂)V ′Û
−1Û |ψ〉 = 1} (13.347)

= {�Û (V ′) ⊆ �Û (V) | 〈ψ | Û−1δo(Û P̂Û−1)�Û (V)Û |ψ〉 = 1} (13.348)

= ν
(
δo(Û P̂Û−1) ∈ T

Û |ψ〉)
�Û (V).

(13.349)

Thus we get the important result

ν
(
δo(Û P̂Û−1) ∈ T

Û |ψ〉)
�Û (V)

= �Û

(
ν
(
δo(P̂) ∈ T

|ψ〉)
V

)
. (13.350)

This can be viewed as the topos analogue of the statement in (13.322) about the
invariance of the results of quantum theory under the transformations |ψ〉 !→
Û |ψ〉, Â !→ Û ÂÛ−1. Of course, there is a pseudo-state analogue of all these
expressions involving the sub-objects w |ψ〉, |ψ〉 ∈ H.

13.10.2.4 The Û-Twisted Presheaf

It is important to realise that (13.350) is all that is needed from a physics perspective:
the unitary group, U(H), acts on the set Subcl(Σ) of clopen sub-objects of Σ in such
a way that the physical results (truth values) transform in a suitably covariant way.

However, it is natural to see if this action can be derived from an internal arrow
ρÛ : Σ → Σ in the topos. To investigate this let us return once more to the def-
inition (13.331) of the functor �Û : V(H) → V(H). As we shall see later, any

such functor induces a “geometric morphism” from SetsV(H)op
to SetsV(H)op

. The
exact definition is not needed here: it suffices to remark that part of this geometric
morphism is an arrow �∗

Û
: SetsV(H)op → SetsV(H)op

defined by

13 Topos Theory in the Foundations of Physics 869

F !→ �∗
Û

F := F ◦ �Û . (13.351)

Note that, if Û1, Û2 ∈ U(H) then, for all presheaves F ,

�∗
Û2

(�∗
Û1

F) = (�∗
Û1

F) ◦ �Û2
= (F ◦ �Û1

) ◦ �Û2

= F ◦ (�Û1
◦ �Û2

) = F ◦ �Û1Û2

= �∗
Û1Û2

F . (13.352)

Since this is true for all functors F in SetsV(H)op
, we deduce that

�∗
Û2
◦ �∗

Û1
= �∗

Û1Û2
(13.353)

and hence the map Û !→ �∗
Û

is an (anti-)representation of the group U(H) by arrows

in the topos SetsV(H)op
.

Of particular interest to us are the presheaves �∗
Û

Σ and �∗U k(R�). We denote

them by ΣÛ and k(R�)Û respectively and say that they are ‘Û -twisted’.

Theorem 11 For each Û ∈ U(H), there is a natural isomorphism ι : Σ → ΣÛ as
given in the following diagram

ΣV ΣÛ
V

ιÛV

ΣV ΣÛ
V

ιÛV

Σ(iV V) ΣÛ(iV V)

where, at each stage V ,

(ιUV (λ))(Â) := 〈λ, Û−1 ÂÛ 〉 (13.354)

for all λ ∈ ΣV , and all Â ∈ Vsa.

The proof, which just involves chasing round the diagram above using the basic
definitions, is not included here.

Even simpler is the following theorem:

Theorem 12 For each Û ∈ U(H), there is a natural isomorphism κÛ : R
� →

(R�)Û whose components κÛ
V : R�V → (R�)Û

V are given by

κÛ
V (μ)(�Û (V ′)) := μ(V ′) (13.355)

for all V ′ ⊆ V .

870 A. Döring and C. Isham

Here, we recall μ ∈ R
�

V is a function μ :↓V → R such that if V2 ⊆ V1 ⊆ V
then μ(V2) ≥ μ(V1), i.e., an order-reversing function. In (13.355) we have used the
fact that there is a bijection between the sets ↓�Û (V) and ↓V .

Finally,

Theorem 13 We have the following commutative diagram:

� �Û .
κ Û

Σ Σ
Ûι Û

δ̆ (Â) δ̆ (Û−1Â Û)

13.10.3 Covariance Transformations for a General Topos

It is interesting to reflect on the analogue of the above constructions for a general
topos. It soon becomes clear that, once again, we encounter the antithetical concepts
of “internal” and “external”.

For example, in the discussion above, the unitary operators and the group U(H)

lie outside the topos SetsV(H)op
and enter directly from the underlying, standard

quantum formalism. As such, they are external to both the languages PL(S) and
L(S). And, as we have seen, the direct action of the group is on the set, Subcl(Σ)

of sub-objects of Σ , and this does not derive from an internal action of the form
ρÛ : Σ → Σ (or, indeed from an arrow ρÛ : PclΣ → PclΣ)

This, essentially external, action of U(H) is all that is needed from a physical
perspective. In particular, it encodes all that is necessary for the notion of quantum
covariance to be implemented in this topos scheme.

Time evolution is simply obtained by using the one-parameter family of pseudo-
states, t !→ w |ψ〉t , and it is easy to see how the notion of ‘symmetry’ (invariance
under time evolutions) is incorporated. Specifically, we say that the quantum theory
is symmetric under the action of a unitary operator Û if

ρÛ w
|ψ〉t = w

|ψ〉t (13.356)

for all time t . It is easy to check that (13.356) is equivalent to

Ûe−i Ĥ t Û−1 = e−i Ĥ t (13.357)

for all t , where Ĥ is the hamiltonian. The Eq. (13.357), of course, is just the usual
quantum theory definition of a system to be symmetric under the action of a unitary
operator Û .

One might anticipate that notions of “covariance” and “symmetry” have appli-
cations well beyond those in classical physics and quantum physics. However, it is

13 Topos Theory in the Foundations of Physics 871

worth noting that many covariance transformations that arise in physics are related
to external, fixed structures in the theory. This is true par excellence in the case
of anything to do with space-time. In classical general relativity, there is a fixed
space-time manifold whose diffeomorphism group plays a major role in the theory.
When one comes to canonical quantum gravity only the spatial diffeomorphisms are
manifestly present, this being just one feature of the infamous “problem of time” in
canonical quantum gravity whereby time is not regarded as an external quantity but
rather something that is defined/determined by the field content of the theory. If one
could construct a theory in which physical space “emerged” from some more basic
structure, then the spatial diffeomorphisms would also not be present at the basic
level.

It seems likely that this will be a general feature of any topos theory of physics.
That is, external covariance groups will be represented externally by bijective trans-
formations of the set, Sub(Σφ,S), of sub-objects of the state object Σφ,S , but not by
arrows internal to the topos. However, there may also be an internal, “covariance”
group object in the topos, which acts via arrows in the topos.

The notion of “symmetry” could also play a significant role in a general topos
theory. However, this, of course, is closely related to the concept to time, and time
development, which opens up a Pandora’s box of possibilities in regard to internal
realisations of these and related concepts. These issues are important, and await
further development.

13.11 The Category of Systems

13.11.1 Background Remarks

We now return to the more general aspects of our theory, and study its application
to a collection of systems, each one of which may be associated with a different
topos. For example, if S1, S2 is a pair of systems, with associated topoi τ(S1) and
τ(S2), and if S1 is a sub-system of S2, then we wish to consider how τ(S1) is related
to τ(S2). Similarly, if a composite system is formed from a pair of systems S1, S2,
what relations are there between the topos of the composite system and the topoi of
the constituent parts?

Of course, in one sense, there is only one true “system”, and that is the universe as
a whole. Concomitantly, there is just one local language, and one topos. However, in
practice, the science community divides the universe conceptually into portions that
are sufficiently simple to be amenable to theoretical and/or empirical discussion. Of
course, this division is not unique, but it must be such that the coupling between
portions is weak enough that, to a good approximation, their theoretical models
can be studied in isolation from each other. Such an essentially isolated102 portion
of the universe is called a “sub-system”. By an abuse of language, sub-systems

102 The ideal monad has no windows.

872 A. Döring and C. Isham

of the universe are usually called “systems” (so that the universe as a whole is
one super-system), and then we can talk about “sub-systems” of these systems; or
“composites” of them; or sub-systems of the composite systems, and so on.

In practice, references by physicists to systems and sub-systems103 do not gen-
erally signify actual sub-systems of the real universe but rather idealisations of pos-
sible systems. This is what a physics lecturer means when he or she starts a lecture
by saying “Consider a point particle moving in three dimensions.....”.

To develop these ideas further we need mathematical control over the systems
of interest, and their interrelations. To this end, we start by focussing on some
collection, Sys, of physical systems to which a particular theory-type is deemed
to be applicable. For example, we could consider a collection of systems that are
to be discussed using the methodology of classical physics; or systems to be dis-
cussed using standard quantum theory; or whatever. For completeness, we require
that every sub-system of a system in Sys is itself a member of Sys, as is every
composite of members of Sys.

We shall assume that the systems in Sys are all associated with local languages
of the type discussed earlier, and that they all have the same set of ground symbols
which, for the purposes of the present discussion, we take to be just Σ and R. It
follows that the languages L(S), S ∈ Sys, differ from each other only in the set of
function symbols FL(S)

(
�,R

)
; i.e., the set of physical quantities.

As a simple example of the system-dependence of the set of function sym-
bols let system S1 be a point particle moving in one dimension, and let the
set of physical quantities be FL(S1)

(
�,R

) = {x, p, H}. In the language
L(S1), these function-symbols represent the position, momentum, and energy
of the system respectively. On the other hand, if S2 is a particle moving in
three dimensions, then in the language L(S2) we could have FL(S2)

(
�,R

) =
{x, y, z, px , py, pz, H} to allow for three-dimensional position and momentum. Or,
we could decide to add angular momentum as well, to give the set FL(S2)

(
�,R

) =
{x, y, z, px , py, pz, Jx , Jy, Jz, H}.

13.11.2 The Category Sys

13.11.2.1 The Arrows and Translations for the Disjoint Sum S1
 S2

The use of local languages is central to our overall topos scheme, and therefore we
need to understand, in particular, (i) the relation between the languages L(S1) and
L(S2) if S1 is a sub-system of S2; and (ii) the relation between L(S1), L(S2) and
L(S1 , S2), where S1 , S2 denotes the composite of systems S1 and S2.

103 The word “sub-system” does not only mean a collection of objects that is spatially localised.
One could also consider sub-systems of field systems by focussing on a just a few modes of the
fields as is done, for example, in the Robertson-Walker model for cosmology. Another possibility
would be to use fields localised in some fixed space, or space-time region provided that this is
consistent with the dynamics.

13 Topos Theory in the Foundations of Physics 873

These discussions can be made more precise by regarding Sys as a category
whose objects are the systems.104 The arrows in Sys need to cover two basic types
of relation: (i) that between S1 and S2 if S1 is a “sub-system” of S2; and (ii) that
between a composite system, S1 , S2, and its constituent systems, S1 and S2.

This may seem straightforward but, in fact, care is needed since although the idea
of a “sub-system” seems intuitively clear, it is hard to give a physically acceptable
definition that is universal. However, some insight into this idea can be gained by
considering its meaning in classical physics. This is very relevant for the general
scheme since one of our main goals is to make all theories “look” like classical
physics in the appropriate topos.

To this end, let S1 and S2 be classical systems whose state spaces are the sym-
plectic manifolds S1 and S2 respectively. If S1 is deemed to be a sub-system of S2,
it is natural to require that S1 is a sub-manifold of S2, i.e., S1 ⊆ S2. However, this
condition cannot be used as a definition of a “sub-system” since the converse may
not be true: i.e., if S1 ⊆ S2, this does not necessarily mean that, from a physical
perspective, S1 could, or would, be said to be a sub-system of S2.105

On the other hand, there are situations where being a sub-manifold clearly does
imply being a physical sub-system. For example, suppose the state space S of a
system S is a disconnected manifold with two components S1 and S2, so that S is the
disjoint union, S1

∐
S2, of the sub-manifolds S1 and S2. Then it seems physically

appropriate to say that the system S itself is disconnected, and to write S = S1 - S2
where the symplectic manifolds that represent the sub-systems S1 and S2 are S1 and
S2 respectively.

One reason why it is reasonable to call S1 and S2 “sub-systems” in this particular
situation is that any continuous dynamical evolution of a state point in S S1 - S2
will always lie in either one component or the other. This suggests that perhaps, in
general, a necessary condition for a sub-manifold S1 ⊆ S2 to represent a physical
sub-system is that the dynamics of the system S2 must be such that S1 is mapped
into itself under the dynamical evolution on S2; in other words, S1 is a dynamically-
invariant sub-manifold of S2. This correlates with the idea mentioned earlier that
sub-systems are weakly-coupled with each other.

However, such a dynamical restriction is not something that should be coded into
the languages, L(S1) and L(S2): rather, the dynamics is to be associated with the
representation of these languages in the appropriate topoi.

Still, this caveat does not apply to the disjoint sum S1 - S2 of two systems S1, S2,
and we will assume that, in general, (i.e., not just in classical physics) it is legitimate
to think of S1 and S2 as being sub-systems of S1 - S2; something that we indicate
by defining arrows i1 : S1 → S1 - S2, and i2 : S2 → S1 - S2 in Sys.

104 To control the size of Sys we assume that the collection of objects/systems is a set rather than
a more general class.
105 For example, consider the diagonal sub-manifold Δ(S) ⊂ S × S of the symplectic manifold
S × S that represents the composite S , S of two copies of a system S. Evidently, the states in
Δ(S) correspond to the situation in which both copies of S “march together”. It is doubtful if this
would be recognised physically as a sub-system.

874 A. Döring and C. Isham

To proceed further it is important to understand the connection between the puta-
tive arrows in the category Sys, and the “translations” of the associated languages.
The first step is to consider what can be said about the relation between L(S1 - S2),
and L(S1) and L(S2). All three languages share the same ground type symbols,
and so what we are concerned with is the relation between the function symbols of
signature Σ → R in these languages.

By considering what is meant intuitively by the disjoint sum, it seems plausible
that each physical quantity for the system S1 - S2 produces a physical quantity for
S1, and another one for S2. Conversely, specifying a pair of physical quantities—one
for S1 and one for S2—gives a physical quantity for S1 - S2. In other words,

FL(S1-S2)

(
�,R

) FL(S1)

(
�,R

)× FL(S2)

(
�,R

)
(13.358)

However, it is important not to be too dogmatic about statements of this type since
in non-classical theories new possibilities can arise that are counter to intuition.

Associated with (13.358) are the maps L(i1) : FL(S1-S2)

(
�,R

) →
FL(S1)

(
�,R

)
and L(i2) : FL(S1-S2)

(
�,R

)→ FL(S2)

(
�,R

)
, defined as the projec-

tion maps of the product. In the theory of local languages, these transformations are
essentially translations [11] of L(S1 - S2) in L(S1) and L(S2) respectively; a situa-
tion that we denote L(i1) : L(S1 - S2) → L(S1), and L(i2) : L(S1 - S2)→ L(S2).

To be more precise, these operations are translations if, taking L(i1) as the
explanatory example, the map L(i1) : FL(S1-S2)

(
�,R

) → FL(S1)

(
�,R

)
is sup-

plemented with the following map from the ground symbols of L(S1 - S2) to those
of L(S1):

L(i1)(Σ) := Σ, (13.359)

L(i1)(R) := R, (13.360)

L(i1)(1) := 1, (13.361)

L(i1)(Ω) := Ω. (13.362)

Such a translation map is then extended to all type symbols using the definitions

L(i1)(T1 × T2 × · · · × Tn) = L(i1)(T1)× L(i1)(T2)× · · · × L(i1)(Tn), (13.363)

L(i1)(PT) = P[L(i1)(T)] (13.364)

for all finite n and all type symbols T, T1, T2, . . . , Tn . This, in turn, can be extended
inductively to all terms in the language. Thus, in our case, the translations act triv-
ially on all the type symbols.

Arrows in Sys are Translations

Motivated by this argument we now turn everything around and, in general, define
an arrow j : S1 → S in the category Sys to mean that there is some physically
meaningful way of transforming the physical quantities in S to physical quantities

13 Topos Theory in the Foundations of Physics 875

in S1. If, for any pair of systems S1, S there is more than one such transformation,
then there will be more than one arrow from S1 to S.

To make this more precise, let Loc denote the collection of all (small106) local
languages. This is a category whose objects are the local languages, and whose
arrows are translations between languages. Then our basic assumption is that the
association S !→ L(S) is a covariant functor from Sys to Locop, which we denote
as L : Sys → Locop.

Note that the combination of a pair of arrows in Sys exists in so far as the asso-
ciated translations can be combined.

13.11.2.2 The Arrows and Translations for the Composite System S1 � S2

Let us now consider the composition S1 , S2 of a pair of systems. In the case of
classical physics, if S1 and S2 are the symplectic manifolds that represent the sys-
tems S1 and S2 respectively, then the manifold that represents the composite system
is the cartesian product S1 × S2. This is distinguished by the existence of the two
projection functions pr1 : S1 × S2 → S1 and pr2 : S1 × S2 → S2.

It seems reasonable to impose the same type of structure on Sys: i.e., to require
there to be arrows p1 : S1 , S2 → S1 and p2 : S1 , S2 → S2 in Sys.
However, bearing in mind the definition above, these arrows p1, p2 exist if, and
only if, there are corresponding translations L(p1) : L(S1) → L(S1 , S2), and
L(p2) : L(S2) → L(S1 , S2). But there are such translations: for if A1 is a phys-
ical quantity for system S1, then L(p1)(A1) can be defined as that same physical
quantity, but now regarded as pertaining to the combined system S1 , S2; and anal-
ogously for system S2.107 We shall denote this translated quantity, L(p1)(A1), by
A1 , 1.

Note that we do not postulate any simple relation between FL(S1,S2)

(
�,R

)
and

FL(S1)

(
�,R

)
and FL(S2)

(
�,R

)
; i.e., there is no analogue of (13.358) for combina-

tions of systems.
The definitions above of the basic arrows suggest that we might also want to

impose the following conditions:

1. The arrows i1 : S1 → S1 - S2, and i2 : S2 → S1 - S2 are monic in Sys.
2. The arrows p1 : S1 , S2 → S1 and p2 : S1 , S2 → S2 are epic arrows in Sys.

However, we do not require that S1 - S2 and S1 , S2 are the co-product and product,
respectively, of S1 and S2 in the category Sys.

106 This means that the collection of symbols is a set, not a more general class.
107 For example, if A is the energy of particle 1, then we can talk about this energy in the combi-
nation of a pair of particles. Of course, in—for example—classical physics there is no reason why
the energy of particle 1 should be conserved in the composite system, but that, dynamical, question
is a different matter.

876 A. Döring and C. Isham

13.11.2.3 The Concept of “Isomorphic” Systems

We also need to decide what it means to say that two systems S1 and S2 are iso-
morphic, to be denoted S1 S2. As with the concept of sub-system, the notion of
isomorphism is to some extent a matter of definition rather than obvious physical
structure, albeit with the expectation that isomorphic systems in Sys will corre-
spond to isomorphic local languages, and be represented by isomorphic mathemat-
ical objects in any concrete realisation of the axioms: for example, by isomorphic
symplectic manifolds in classical physics.

To a considerable extent, the physical meaning of “isomorphism” depends on
whether one is dealing with actual physical systems, or idealisations of them. For
example, an electron confined in a box in Cambridge is presumably isomorphic to
one confined in the same type of box in London, although they are not the same
physical system. On the other hand, when a lecturer says “Consider an electron
trapped in a box”, he/she is referring to an idealised system.

One could, perhaps, say that an idealised system is an equivalence class (under
isomorphisms) of real systems, but even working only with idealisations does not
entirely remove the need for the concept of isomorphism.

For example, in classical mechanics, consider the (idealised) system S of a point
particle moving in a box, and let 1 denote the ‘trivial system’ that consists of just
a single point with no internal or external degrees of freedom. Now consider the
system S , 1. In classical mechanics this is represented by the symplectic mani-
fold S × {∗}, where {∗} is a single point, regarded as a zero-dimensional manifold.
However, S × {∗} is isomorphic to the manifold S, and it is clear physically that
the system S , 1 is isomorphic to the system S. On the other hand, one cannot
say that S , 1 is literally equal to S, so the concept of “isomorphism” needs to be
maintained.

One thing that is clear is that if S1 S2 then FL(S1)

(
�,R

) FL(S2)

(
�,R

)
,

and if any other non-empty sets of function symbols are present, then they too must
be isomorphic.

Note that when introducing a trivial system, 1, it necessary to specify its local
language, L(1). The set of function symbols FL(1)

(
�,R

)
is not completely empty

since, in classical physics, one does have a preferred physical quantity, which is
just the number 1. If one asks what is meant in general by the “number 1” the
answer is not trivial since, in the reals R, the number 1 is the multiplicative identity.
It would be possible to add the existence of such a unit to the axioms for R but
this would involve introducing a multiplicative structure and we do not know if
there might be physically interesting topos representations that do not have this
feature.

For the moment then, we will say that the trivial system has just a single physical
quantity, which in classical physics translates to the number 1. More generally, for
the language L(1) we specify that FL(1)

(
�,R

) := {I }, i.e., FL(1)

(
�,R

)
has just a

single element, I , say. Furthermore, we add the axiom

: ∀s̃1∀s̃2, I (s̃1) = I (s̃2), (13.365)

13 Topos Theory in the Foundations of Physics 877

where s̃1 and s̃2 are variables of type Σ . In fact, it seems natural to add such a trivial
quantity to the language L(S) for any system S, and from now on we will assume
that this has been done.

A related issue is that, in classical physics, if A is a physical quantity, then
so is r A for any r ∈ R. This is because the set of classical quantities Aσ :
Σσ → Rσ R forms a ring whose structure derives from the ring structure
of R. It would be possible to add ring axioms for R to the language L(S), but
this is too strong, not least because, as shown earlier, it fails in quantum theory.
Clearly, the general question of axioms for R needs more thought: a task for later
work.

If desired, an empty system, 0, can be added too, with FL(0)

(
�,R

) := ∅.
This, so called, “pure language”, L(0), is an initial object in the category
Loc.

13.11.2.4 An Axiomatic Formulation of the Category Sys

Let us now summarise, and clarify, our list of axioms for a category Sys:

1. The collection Sys is a small category se objects are the systems of interest (or, if
desired, morphism classes of such systems) and whose ows are defined as above.
Thus the fundamental property of an arrow j : S1 → S in Sys is that it induces,
and is essentially defined by, a translation L(j) : L(S) → L(S1). Physically, this
corresponds to the physical quantities for system S being ‘pulled-back’ to give
physical quantities for system S1.
Arrows of particular interest are those associated with “sub-systems” and “com-
posite systems”, as discussed above.

2. The axioms for a category are satisfied because:

(a) Physically, the ability to form composites of arrows follows from the con-
cept of “pulling-back” physical quantities. From a mathematical perspec-
tive, if j : S1 → S2 and k : S2 → S3, then the translations give func-
tions L(j) : FL(S2)

(
�,R

) → FL(S1)

(
�,R

)
and L(k) : FL(S3)

(
�,R

) →
FL(S2)

(
�,R

)
. Then clearly L(j) ◦ L(k) : FL(S3)

(
�,R

) → FL(S1)

(
�,R

)
,

and this can thought of as the translation corresponding to the arrow k ◦ j :
S1 → S3.
The associativity of the law of arrow combination can be proved in a similar
way.

(b) We add by hand a special arrow idS : S → S which is defined to correspond
to the translation L(idS) that is given by the identity map on FL(S)

(
�,R

)
.

Clearly, idS : S → S acts an an identity morphism should.

3. For any pair of systems S1, S2, there is a disjoint sum, denoted S1 - S2. The
disjoint sum has the following properties:

(a) For all systems S1, S2, S3 in Sys:

(S1 - S2) - S3 S1 - (S2 - S3). (13.366)

878 A. Döring and C. Isham

(b) For all systems S1, S2 in Sys:

S1 - S2 S2 - S1. (13.367)

(c) There are arrows in Sys:

i1 : S1 → S1 - S2 and i2 : S2 → S1 - S2 (13.368)

that are associated with translations in the sense discussed in Sect. 13.11.2.
These are associated with the decomposition

FL(S1-S2)

(
�,R

) FL(S1)

(
�,R

)× FL(S2)

(
�,R

)
. (13.369)

We assume that if S1, S2 belong to Sys, then Sys also contains S1 - S2.
4. For any given pair of systems S1, S2, there is a composite system in Sys,

denoted108 S1 , S2, with the following properties:

(a) For all systems S1, S2, S3 in Sys:

(S1 , S2) , S3 S1 , (S2 , S3). (13.370)

(b) For all systems S1, S2 in Sys:

S1 , S2 S2 , S1. (13.371)

(c) There are arrows in Sys:

p1 : S1 , S2 → S1 and p2 : S1 , S2 → S2 (13.372)

that are associated with translations in the sense discussed in Sect. 13.11.2.2.

We assume that if S1, S2 belong to Sys, then Sys also contains the composite
system S1 , S2.

5. It seems physically reasonable to add the axiom

(S1 - S2) , S (S1 , S) - (S2 , S) (13.373)

for all systems S1, S2, S. However, physical intuition can be a dangerous thing,
and so, as with most of these axioms, we are not dogmatic, and feel free to change
them as new insights emerge.

108 The product operation in a monoidal category is often written “⊗”. However, a different symbol
has been used here to avoid confusion with existing usages in physics of the tensor product sign
“⊗”.

13 Topos Theory in the Foundations of Physics 879

6. There is a trivial system, 1, such that for all systems S, we have

S , 1 S 1 , S (13.374)

7. It may be convenient to postulate an “empty system”, 0, with the properties

S , 0 0 , S 0 (13.375)

S - 0 0 - S S (13.376)

for all systems S.
Within the meaning given to arrows in Sys, 0 is a terminal object in Sys. This is
because the empty set of function symbols of signature Σ → R is a subset of
any other set of function symbols of this signature.

It might seem tempting to postulate that composition laws are well-behaved with
respect to arrows. Namely, if j : S1 → S2, then, for any S, there is an arrow
S1 , S → S2 , S and an arrow S1 - S → S2 - S.109

In the case of the disjoint sum, such an arrow can be easily constructed using
(13.369). First split the function symbols in FL(S1-S)

(
�,R

)
into FL(S1)

(
�,R

) ×
FL(S)

(
�,R

)
and the function symbols in FL(S2-S)

(
�,R

)
into FL(S2)

(
�,R

) ×
FL(S)

(
�,R

)
. Since there is an arrow j : S1 → S2, there is a translation L(j) :

L(S2) → L(S1), given by a mapping L(j) : FL(S2)

(
�,R

) → FL(S1)

(
�,R

)
.

Of course, then there is also a mapping L(j) × L(idS) : FL(S2)

(
�,R

) ×
FL(S)

(
�,R

) → FL(S1)

(
�,R

)×FL(S)

(
�,R

)
, i.e., a translation between L(S2 - S)

and L(S1 - S). Since we assume that there is an arrow in Sys whenever there is a
translation (in the opposite direction), there is indeed an arrow S1 - S → S2 - S.

In the case of the composition, however, this would require a translation
L(S2 , S) → L(S1 , S), and this cannot be done in general since we have no prima
facie information about the set of function symbols FL(S2,S)

(
�,R

)
. However, if

we restrict the arrows in Sys to be those associated with sub-systems, combination
of systems, and compositions of such arrows, then it is easy to see that the required
translations exist (the proof of this makes essential use of (13.373)).

If we make this restriction of arrows, then the axioms (13.371), (13.374),
(13.375), (13.376) and (13.377), mean that, essentially, Sys has the structure of a
symmetric monoidal110 category in which the monoidal product operation is “,”,
and the left and right unit object is 1. There is also a monoidal structure associated
with the disjoint sum “-”, with 0 as the unit object.

109 A more accurate way of capturing this idea is to say that the operation Sys × Sys → Sys in
which

〈S1, S2〉 !→ S1 , S2 (13.377)

is a bi-functor from Sys× Sys to Sys. Ditto for the operation in which 〈S1, S2〉 !→ S1 - S2.
110 In the actual definition of a monoidal category the two isomorphisms in (13.374) are separated
from each other, whereas we have identified them. Further more, these isomorphism are required
to be natural. This seems a correct thing to require in our case, too.

880 A. Döring and C. Isham

We say “essentially” because in order to comply with all the axioms of a
monoidal category, Sys must satisfy certain additional, so-called, “coherence”
axioms. However, from a physical perspective these are very plausible statements
about (i) how the unit object 1 intertwines with the ,-operation; how the null object
intertwines with the --operation; and (iii) certain properties of quadruple products
(and disjoint sums) of systems.

A Simple Example of a Category Sys

It might be helpful at this point to give a simple example of a category Sys. To that
end, let S denote a point particle that moves in three dimensions, and let us suppose
that S has no sub-systems other than the trivial system 1. Then S , S is defined to
be a pair of particles moving in three dimensions, and so on. Thus the objects in our
category are 1, S, S , S, . . ., S , S , · · · S . . . where the “,” operation is formed any
finite number of times.

At this stage, the only arrows are those that are associated with the constituents
of a composite system. However, we could contemplate adding to the systems the
disjoint sum S - (S , S) which is a system that is either one particle or two particles
(but, of course, not both at the same time). And, clearly, we could extend this to
S - (S , S)- (S , S , S), and so on. Each of these disjoint sums comes with its own
arrows, as explained above.

Note that this particular category of systems has the property that it can be treated
using either classical physics or quantum theory.

13.11.3 Representations of Sys in Topoi

We assume that all the systems in Sys are to be treated with the same theory type.
We also assume that systems in Sys with the same language are to be represented in
the same topos. Then we define:111

Definition 19 A topos realisation of Sys is an association, φ, to each system S in
Sys, of a triple φ(S) = 〈ρφ,S,L(S), τφ(S)〉 where:

(i) τφ(S) is the topos in which the theory-type applied to system S is to be realised.
(ii) L(S) is the local language in Loc that is associated with S. This is not depen-

dent on the realisation φ.
(iii) ρφ,S is a representation of the local language L(S) in the topos τφ(S). As a

more descriptive piece of notation we write ρφ,S : L(S) � τφ(S). The key
part of this representation is the map

ρφ,S : FL(S)

(
�,R

)→ Homτφ(S)

(
Σφ,S,Rφ,S

)
(13.378)

111 As emphasised already, the association S !→ L(S) is generally not one-to-one: i.e., many sys-
tems may share the same language. Thus, when we come discuss the representation of the language
L(S) in a topos, the extra information about the system S is used in fixing the representation.

13 Topos Theory in the Foundations of Physics 881

where Σφ,S and Rφ,S are the state object and quantity-value object, respec-
tively, of the representation φ in the topos τφ(S). As a convenient piece of
notation we write Aφ,S := ρφ,S(A) for all A ∈ FL(S)

(
�,R

)
.

This definition is only partial; the possibility of extending it will be discussed
shortly.

Now, if j : S1 → S is an arrow in Sys, then there is a translation arrow L(j) :
L(S) → L(S1). Thus we have the beginnings of a commutative diagram

S 〈ρφ,S, L(S),τ φ (S)〉
φ

S1 〈ρφ,S1 , L(S1),τ φ (S1)〉φ

j ? × L(j)×?

(13.379)

However, to be useful, the arrow on the right hand side of this diagram should refer
to some relation between (i) the topoi τφ(S1) and τφ(S); and (ii) the realisations
ρφ,S1 : L(S1) � τφ(S1) and ρφ,S : L(S) � τφ(S): this is the significance of the
two ‘?’ symbols in the arrow written “?× L(j)×?”.

Indeed, as things stand, Definition 19 says nothing about relations between the
topoi representations of different systems in Sys. We are particularly interested in
the situation where there are two different systems S1 and S with an arrow j : S1 →
S in Sys.

We know that the arrow j is associated with a translation L(j) : L(S) → L(S1),
and an attractive possibility, therefore, would be to seek, or postulate, a “covering”
map φ(L(j)) : Homτφ(S)

(
Σφ,S,Rφ,S

) → Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
to be con-

strued as a topos representation of the translation L(j) : L(S) → L(S1), and hence
of the arrow j : S1 → S in Sys.

This raises the questions of what properties these “translation representations”
should possess in order to justify saying that they “cover” the translations. A
minimal requirement is that if k : S2 → S1 and j : S1 → S, then the map
φ(L(j ◦ k)) : Homτφ(S)

(
Σφ,S,Rφ,S

)→ Homτφ(S2)

(
Σφ,S2 ,Rφ,S2

)
factorises as

φ(L(j ◦ k)) = φ(L(k)) ◦ φ(L(j)). (13.380)

We also require that

φ(L(idS)) = id : Homτφ(S)

(
Σφ,S,Rφ,S

)→ Homτφ(S)

(
Σφ,S,Rφ,S

)
(13.381)

for all systems S.
The conditions (13.380) and (13.381) seem eminently plausible, and they are not

particularly strong. A far more restrictive axiom would be to require the following
diagram to commute:

882 A. Döring and C. Isham

FL(S1) Σ,R)
Homτ

τ

φ(S1) Σφ,S1, Rφ,S1

)
ρφ,S1

FL(S) Σ,R)
Hom

φ(S) Σφ,S , Rφ,S
)ρφ,S

L(j) φ(L(j))

(13.382)

At first sight, this requirement seems very appealing. However, caution is
needed when postulating “axioms” for a theoretical structure in physics. It is
easy to get captivated by the underlying mathematics and to assume, erro-
neously, that what is mathematically elegant is necessarily true in the physical
theory.

The translation φ(L(j)) maps an arrow from Σφ,S to Rφ,S to an arrow from
Σφ,S1 to Rφ,S1 . Intuitively, if Σφ,S1 is a “much larger” object than Σφ,S (although
since they lie in different topoi, no direct comparison is available), the translation
can only be “faithful” on some part of Σφ,S1 that can be identified with (the “image”
of) Σφ,S . A concrete example of this will show up in the treatment of composite
quantum systems, see Sect. 13.13.3. As one might expect, a form of entanglement
plays a role here.

13.11.4 Classical Physics in This Form

13.11.4.1 The Rules so Far

Constructing maps φ(L(j)) : Homτφ(S)

(
Σφ,S,Rφ,S

) → Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)

is likely to be complicated when τφ(S) and τφ(S1) are different topoi, and so we
begin with the example of classical physics, where the topos is always Sets.

In general, we are interested in the relation(s) between the representations ρφ,S1 :
L(S1) � τφ(S1) and ρφ,S : L(S) � τφ(S) that is associated with an arrow j :
S1 → S in Sys. In classical physics, we only have to study the relation between the
representations ρσ,S1 : L(S1) � Sets and ρσ,S : L(S) � Sets.

Let us summarise what we have said so far (with σ denoting the Sets-realisation
of classical physics):

1. For any system S in Sys, a representation ρσ,S : L(S) � Sets consists of the
following ingredients.

(a) The ground symbol Σ is represented by a symplectic manifold, Σσ,S :=
ρσ,S(Σ), that serves as the classical state space.

(b) For all systems S, the ground symbol R is represented by the real numbers
R, i.e., Rσ,S = R, where Rσ,S := ρσ,S(R).

13 Topos Theory in the Foundations of Physics 883

(c) Each function symbol A : Σ → R in FL(S)

(
�,R

)
is represented by a

function Aσ,S = ρσ,S(A) : Σσ,S → R in the set of functions112 C(Σσ,S, R).

2. The trivial system is mapped to a singleton set {∗} (viewed as a zero-dimensional
symplectic manifold):

Σσ,1 := {∗}. (13.383)

The empty system is represented by the empty set:

Σσ,0 := ∅. (13.384)

3. Propositions about the system S are represented by (Borel) subsets of the state
space Σσ,S .

4. The composite system S1 , S2 is represented by the Cartesian product Σσ,S1 ×
Σσ,S2 ; i.e.,

Σσ, S1,S2 Σσ,S1 ×Σσ,S2 . (13.385)

The disjoint sum S1 - S2 is represented by the disjoint union Σσ,S1

∐
Σσ,S2 ; i.e.,

Σσ,S1-S2 Σσ,S1

∐
Σσ,S2 . (13.386)

5. Let j : S1 → S be an arrow in Sys. Then

(a) There is a translation map L(j) : FL(S)

(
�,R

)→ FL(S1)

(
�,R

)
.

(b) There is a symplectic function σ(j) : Σσ,S1 → Σσ,S from the symplectic
manifold Σσ,S1 to the symplectic manifold Σσ,S .

The existence of this function σ(j) : Σσ,S1 → Σσ,S follows directly from the
properties of sub-systems and composite systems in classical physics. It is discussed
in detail below in Sect. (13.11.4.2). As we shall see, it underpins the classical reali-
sation of our axioms.

These properties of the arrows stem from the fact that the linguistic function
symbols in FL(S)

(
�,R

)
are represented by real-valued functions in C(Σσ,S, R).

Thus we can write ρσ,S : FL(S)

(
�,R

) → C(Σσ,S, R), and similarly ρσ,S1 :
FL(S1)

(
�,R

) → C(Σσ,S1 , R). The diagram in (13.382) now becomes

FL(S1) Σ,R)
C(Σσ,S1 ,)ρσ,S1

FL(S) Σ,R)
C(Σσ,S ,)

ρσ,S

L(j) σ(L(j))

(13.387)

112 In practice, these functions are required to be measurable with respect to the Borel structures
on the symplectic manifold Σσ and R. Many of the functions will also be smooth, but we will not
go into such details here.

884 A. Döring and C. Isham

and, therefore, the question of interest is if there is a “translation representation”
function σ(L(j)) : C(Σσ,S, R) → C(Σσ,S1 , R) so that this diagram commutes.

Now, as stated above, a physical quantity, A, for the system S is represented in
classical physics by a real-valued function Aσ,S = ρσ,S(A) : Σσ,S → R. Similarly,
the representation of L(j)(A) for S1 is given by a function Aσ,S1 := ρσ,S1(A) :
Σσ,S1 → R. However, in this classical case we also have the function σ(j) :
Σσ,S1 → Σσ,S , and it is clear that we can use it to define [ρσ,S1(L(j)(A)](s) :=
ρσ,S(A)

(
σ(j)(s)

)
for all s ∈ Σσ,S1 . In other words

ρσ,S1

(
L(j)(A)

) = ρσ,S(A) ◦ σ(j) (13.388)

or, in simpler notation

(
(L(j)(A)

)
σ,S1

= Aσ,S ◦ σ(j). (13.389)

But then it is clear that a translation-representation function σ(L(j)) :
C(Σσ,S, R) → C(Σσ,S1 , R) with the desired property of making (13.387) commute
can be defined by

σ(L(j))(f) := f ◦ σ(j) (13.390)

for all f ∈ C(Σσ,S, R); i.e., the function σ(L(j))(f) : Σσ,S1 → R is the usual
pull-back of the function f : Σσ,S → R by the function σ(j) : Σσ,S1 → Σσ,S .
Thus, in the case of classical physics, the commutative diagram in (13.379) can be
completed to give

S 〈ρσ,S , L(S), Sets〉σ

S1 〈ρσ,S1 ,L(S1), Sets〉σ

j σ(L(j)) × L(j) × id

(13.391)

13.11.4.2 Details of the Translation Representation

The Translation Representation for a Disjoint Sum of Classical Systems

We first consider arrows of the form

S1
i1→ S1 - S2

i2← S2 (13.392)

from the components S1, S2 to the disjoint sum S1 - S2. The systems S1, S2 and
S1- S2 have symplectic manifolds Σσ,S1 , Σσ,S2 and Σσ,S1-S2 = Σσ,S1

∐
Σσ,S2 . We

write i := i1.

13 Topos Theory in the Foundations of Physics 885

Let S be a classical system. We assume that the function symbols A ∈
FL(S)

(
�,R

)
in the language L(S) are in bijective correspondence with an appro-

priate subset of the functions Aσ,S ∈ C(Σσ,S, R).113

There is an obvious translation representation. For if A ∈ FL(S1-S2)

(
�,R

)
, then

since Σσ,S1-S2 = Σσ,S1

∐
Σσ,S1 , the associated function Aσ,S1-S2 : Σσ,S1-S2 → R

is given by a pair of functions A1 ∈ C(Σσ,S1 , R) and A2 ∈ C(Σσ,S2 , R); we write
Aσ,S1-S2 = 〈A1, A2〉. It is natural to demand that the translation representation
σ(L(i))(Aσ,S1-S2) is A1. Note that what is essentially being discussed here is the
classical-physics representation of the relation (13.358).

The canonical choice for σ(i) is

σ(i) : Σσ,S1 → Σσ,S1-S2 = Σσ,S1

∐
Σσ,S2 (13.393)

s1 !→ s1. (13.394)

Then the pull-back along σ(i),

σ(i)∗ : C(Σσ,S1-S2 , R) → C(Σσ,S1 , R) (13.395)

Aσ,S1-S2 !→ Aσ,S1-S2 ◦ σ(i), (13.396)

maps (or “translates”) the topos representative Aσ,S1-S2 = 〈A1, A2〉 of the function
symbol A ∈ FL(S1-S2)

(
�,R

)
to a real-valued function Aσ,S1-S2 ◦ σ(i) on Σσ,S1 .

This function is clearly equal to A1.

The Translation in the Case of a Composite Classical System

We now consider arrows in Sys of the form

S1
p1← S1 , S2

p2→ S2 (13.397)

from the composite classical system S1 , S2 to the constituent systems S1 and S2.
Here, p1 signals that S1 is a constituent of the composite system S1 , S2, like-
wise p2. The systems S1, S2 and S1 , S2 have symplectic manifolds Σσ,S1 , Σσ,S2

and Σσ,S1,S2 = Σσ,S1 × Σσ,S2 , respectively; i.e., the state space of the composite
system S1 , S2 is the cartesian product of the state spaces of the components. For
typographical simplicity in what follows we denote p := p1.

There is a canonical translation L(p) between the languages L(S1) and
L(S1 , S2) whose representation is the following. Namely, if A is in FL(S1)

(
�,R

)
,

then the corresponding function Aσ,S1 ∈ C(Σσ,S1 , R) is translated to a function
σ(L(p))(Aσ,S1) ∈ C(Σσ,S1,S2 , R) such that

σ(L(p))(Aσ,S1)(s1, s2) = Aσ,S1(s1) (13.398)

for all (s1, s2) ∈ Σσ,S1 ×Σσ,S2 .

113 Depending on the setting, one can assume that FL(S)

(
�,R

)
contains function symbols corre-

sponding bijectively to measurable, continuous or smooth functions.

886 A. Döring and C. Isham

This natural translation representation is based on the fact that, for the symplectic
manifold Σσ,S1,S2 = Σσ,S1 ×Σσ,S2 , each point s ∈ Σσ,S1,S2 can be identified with
a pair, (s1, s2), of points s1 ∈ Σσ,S1 and s2 ∈ Σσ,S2 . This is possible since the
cartesian product Σσ,S1 × Σσ,S2 is a product in the categorial sense and hence has
projections Σσ,S1 ← Σσ,S1 × Σσ,S2 → Σσ,S2 . Then the translation representation
of functions is constructed in a straightforward manner. Thus, let

σ(p) : Σσ,S1 ×Σσ,S2 → Σσ,S1

(s1, s2) !→ s1 (13.399)

be the canonical projection. Then, if Aσ,S1 ∈ C(Σσ,S1 , R), the function

Aσ,S1 ◦ σ(p) ∈ C(Σσ,S1 ×Σσ,S2 , R) (13.400)

is such that, for all (s1, s2) ∈ Σσ,S1 ×Σσ,S2 ,

Aσ,S1 ◦ σ(p)(s1, s2) = Aσ,S1(s1). (13.401)

Thus we can define

σ(L(p))(Aσ,S1) := Aσ,S1 ◦ σ(p). (13.402)

Clearly, σ(L(p))(Aσ,S1) can be seen as the representation of the function symbol
A , 1 ∈ FL(S1,S2)

(
�,R

)
.

13.12 Theories of Physics in a General Topos

13.12.1 The Pull-Back Operations

13.12.1.1 The Pull-Back of Physical Quantities

Motivated by the above, let us try now to see what can be said about the scheme
in general. Basically, what is involved is the topos representation of translations
of languages. To be more precise, let j : S1 → S be an arrow in Sys, so that
there is a translation L(j) : L(S) → L(S1) defined by the translation function
L(j) : FL(S)

(
�,R

) → FL(S1)

(
�,R

)
. Now suppose that the systems S and S1 are

represented in the topoi τφ(S) and τφ(S1) respectively. Then, in these representa-
tions, the function symbols of signature Σ → R in L(S) and L(S1) are represented
by elements of Homτφ(S)

(
Σφ,S,Rφ,S

)
and Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
respectively.

Our task is to find a function

φ(L(j)) : Homτφ(S)

(
Σφ,S,Rφ,S

)→ Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
(13.403)

13 Topos Theory in the Foundations of Physics 887

that can be construed as the topos representation of the translation L(j) : L(S) →
L(S1), and hence of the arrow j : S1 → S in Sys. We are particularly interested
in seeing if φ(L(j)) can be chosen so that the following diagram, (see (13.382))
commutes:

FL(S1) Σ,R)
Homτφ(S1) Σφ,S1 , Rφ,S1

)
ρφ,S1

FL(S) Σ,R)
Homτφ(S) Σφ,S , Rφ,S

)ρφ,S

L(j) φ(L(j))

(13.404)

However, as has been emphasised already, it is not clear that one should expect to
find a function φ(L(j)) : Homτφ(S)

(
Σφ,S,Rφ,S

)→ Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
with

this property. The existence and/or properties of such a function will be dependent
on the theory-type , and it seems unlikely that much can be said in general about
the diagram (13.404). Nevertheless, let us see how far we can get in discussing the
existence of such a function in general.

Thus, if μ ∈ Homτφ(S)

(
Σφ,S,Rφ,S

)
, the critical question is if there is some ‘nat-

ural’ way whereby this arrow can be ‘pulled-back’ to give an element φ(L(j))(μ) ∈
Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
.

The first pertinent remark is that μ is an arrow in the topos τφ(S), whereas the
sought-for pull-back will be an arrow in the topos τφ(S1), and so we need a mecha-
nism for getting from one topos to the other (this problem, of course, does not arise
in classical physics since the topos of every representation is always Sets).

The obvious way of implementing this change of topos is via some functor, τφ(j)
from τφ(S) to τφ(S1). Indeed, given such a functor, an arrow μ : Σφ,S → Rφ,S in
τφ(S) is transformed to the arrow

τφ(j)(μ) : τφ(j)(Σφ,S)→ τφ(j)(Rφ,S) (13.405)

in τφ(S1).
To convert this to an arrow from Σφ,S1 to Rφ,S1 , we need to supplement (13.405)

with a pair of arrows φ(j), βφ(j) in τφ(S1) to get the diagram:

Σφ,S1 φ,S1R

τφ (j)(Σφ,S) τφ,(j)(Rφ,S)
τφ (j)(μ)

φ(j) βφ(j)

(13.406)

The pull-back, φ(L(j))(μ) ∈ Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
, with respect to these

choices can then be defined as

φ(L(j))(μ) := βφ(j) ◦ τφ(j)(μ) ◦ φ(j). (13.407)

888 A. Döring and C. Isham

It follows that a key part of the construction of a topos representation, φ, of Sys
will be to specify the functor τφ(j) from τφ(S) to τφ(S1), and the arrows φ(j) :
Σφ,S1 → τφ(j)(Σφ,S) and βφ(j) : τφ(j)(Rφ,S) → Rφ,S1 in the topos τφ(S1).
These need to be defined in such a way as to be consistent with a chain of arrows
S2 → S1 → S.

When applied to the representative Aφ,S : Σφ,S → Rφ,S of a physical quantity
A ∈ FL(S)

(
�,R

)
, the diagram (13.406) becomes (augmented with the upper half)

Σφ,S1 Rφ,S1φ(L(j)

τφ (j)(Σφ,S) τφ (j)(Rφ,S)

φ(j) βφ(j)

τφ (j)(Aφ,S)

)(Aφ,S)

Σφ,S Rφ,S
Aφ,S

τφ (j) τφ(j)

(13.408)

The commutativity of (13.404) would then require

φ(L(j))(Aφ,S) = (L(j)A)φ,S1 (13.409)

or, in a more expanded notation,

φ(L(j)) ◦ ρφ,S = ρφ,S1 ◦ L(j), (13.410)

where both the left hand side and the right hand side of (13.410) are mappings from
FL(S)

(
�,R

)
to Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)
.

Note that the analogous diagram in classical physics is simply

Σσ,S1 σ(L(j))(Aσ,S)

Σσ,S
Aσ,S

σ(j) id

(13.411)

and the commutativity/pull-back condition (13.409) becomes

σ(L(j))(Aσ,S) = (L(j)A)φ,S1 (13.412)

which is satisfied by virtue of (13.390).
It is clear from the above that the arrow φ(j) : Σφ,S1 → τφ(j)(Σφ,S) can

be viewed as the topos analogue of the map σ(j) : Σσ,S1 → Σσ,S that arises in
classical physics whenever there is an arrow j : S1 → S.

13 Topos Theory in the Foundations of Physics 889

13.12.1.2 The Pull-Back of Propositions

More insight can be gained into the nature of the triple 〈τφ(j), φ(j), βφ(j)〉 by con-
sidering the analogous operation for propositions. First, consider an arrow j : S1 →
S in Sys in classical physics. Associated with this there is (i) a translation L(j) :
L(S) → L(S1); (ii) an associated translation mapping L(j) : FL(S)

(
�,R

) →
FL(S1)

(
�,R

)
; and (iii) a symplectic function σ(j) : Σσ,S1 → Σσ,S .

Let K be a (Borel) subset of the state space, Σσ,S ; hence K represents a propo-
sition about the system S. Then σ(j)∗(K) := σ(j)−1(K) is a subset of Σσ,S1 and,
as such, represents a proposition about the system S1. We say that σ(j)∗(K) is
the pull-back to Σσ,S1 of the S-proposition represented by K . The existence of such
pull-backs is part of the consistency of the representation of propositions in classical
mechanics, and it is important to understand what the analogue of this is in our topos
scheme.

Consider the general case with the two systems S1, S as above. Then let K be
a proposition, represented as a sub-object of Σφ,S , with a monic arrow iK : K ↪→
Σφ,S . The question now is if the triple 〈τφ(j), φ(j), βφ(j)〉 can be used to pull K
back to give a proposition in τ(S1), i.e., a sub-object of Σφ,S1 ?

The first requirement is that the functor τφ(j) : τφ(S) → τφ(S1) should preserve
monics. In this case, the monic arrow iK : K ↪→ Σφ,S in τφ(S) is transformed to
the monic arrow

τφ(j)(iK) : τφ(j)(K) ↪→ τφ(j)(Σφ,S) (13.413)

in τφ(S1); thus τφ(j)(K) is a sub-object of τφ(j)(Σφ,S) in τφ(S1). It is a property
of a topos that the pull-back of a monic arrow is monic ; i.e., if M ↪→ Y is monic,
and if ψ : X → Y , then ψ−1(M) is a sub-object of X . Therefore, in the case
of interest, the monic arrow τφ(j)(iK) : τφ(j)(K) ↪→ τφ(j)(Σφ,S) can be pulled
back along φ(j) : Σφ,S1 → τφ(j)(Σφ,S) (see diagram (13.408)) to give the monic
φ(j)−1(τφ(j)(K)) ⊆ Σφ,S1 . This is a candidate for the pull-back of the proposition
represented by the sub-object K ⊆ Σφ,S .

In conclusion, propositions can be pulled-back provided that the functor τφ(j) :
τφ(S) → τφ(S1) preserves monics. A sufficient way of satisfying this requirement
is for τφ(j) to be left-exact. However, this raises the question of “where do left-exact
functors come from?”.

13.12.1.3 The Idea of a Geometric Morphism

It transpires that there is a natural source of left-exact functors, via the idea of a
geometric morphism. This fundamental concept in topos theory is defined as follows
[66].

Definition 20 A geometric morphism φ : F → E between topoi F and E is a pair
of functors φ∗ : E → F and φ∗ : F → E such that

890 A. Döring and C. Isham

(i) φ∗ 1 φ∗, i.e., φ∗ is left adjoint to φ∗;
(ii) φ∗ is left exact, i.e., it preserves all finite limits.

The morphism φ∗ : E → F is called the inverse image part of the geometric mor-
phism ϕ; φ∗ : F → E is called the direct image part.

Geometric morphisms are very important because they are the topos equivalent
of continuous functions. More precisely, if X and Y are topological spaces, then
any continuous function f : X → Y induces a geometric morphism between the
topoi Sh(X) and Sh(Y) of sheaves on X and Y respectively. In practice, just as the
arrows in the category of topological spaces are continuous functions, so in any
category whose objects are topoi, the arrows are normally defined to be geometric
morphisms. In our case, as we shall shortly see, all the examples of left-exact func-
tors that arise in the quantum case do, in fact, come from geometric morphisms.
For these reasons, from now on we will postulate that any arrows between our topoi
arise from geometric morphisms.

One central property of a geometric morphism is that it preserves expressions
written in terms of geometric logic. This greatly enhances the attractiveness of
assuming from the outset that the internal logic of the system languages, L(S), is
restricted to the sub-logic afforded by geometric logic.

En passant, another key result for us is the following theorem ([66] p359):

Theorem 14 If ϕ : C → D is a functor between categories C and D, then it induces
a geometric morphism (also denoted ϕ)

ϕ : SetsC
op → SetsD

op
(13.414)

for which the functor ϕ∗ : SetsD
op → SetsC

op
takes a functor F : D → Sets to the

functor

ϕ∗(F) := F ◦ ϕop (13.415)

from C to Sets.
In addition, ϕ∗ has a left adjoint ϕ!; i.e., ϕ! 1 ϕ∗.

We will use this important theorem in several crucial places.

13.12.2 The Topos Rules for Theories of Physics

We will now present our general rules for using topos theory in the mathematical
representation of physical systems and their theories.

Definition 21 The category M(Sys) is the following:

1. The objects of M(Sys) are the topoi that are to be used in representing the sys-
tems in Sys.

13 Topos Theory in the Foundations of Physics 891

2. The arrows from τ1 to τ2 are defined to be the geometric morphisms from τ2 to
τ1. Thus the inverse part, ϕ∗, of an arrow ϕ∗ : τ1 → τ2 is a left-exact functor
from τ1 to τ2.

Definition 22 The rules for using topos theory are as follows:

1. A topos realisation, φ, of Sys in M(Sys) is an assignment, to each system S in
Sys, of a triple φ(S) = 〈ρφ,S,L(S), τφ(S)〉 where:

(a) τφ(S) is the topos in M(Sys) in which the physical theory of system S is to
be realised.

(b) L(S) is the local language that is associated with S. This is independent of
the realisation, φ, of Sys in M(Sys).

(c) ρφ,S : L(S) � τφ(S) is a representation of the local language L(S) in the
topos τφ(S).

(d) In addition, for each arrow j : S1 → S in Sys there is a triple 〈τφ(j),φ(j),
βφ(j)〉 that interpolates between ρφ,S : L(S) � τφ(S) and ρφ,S1 : L(S1) �
τφ(S1); for details see below.

2. (a) The representations, ρφ,S(Σ) and ρφ,S(R), of the ground symbols Σ and
R in L(S) are denoted Σφ,S and Rφ,S , respectively. They are known as the
“state object” and “quantity-value object” in τφ(S).

(b) The representation by ρφ,S of each function symbol A : Σ → R of the
system S is an arrow, ρφ,S(A) : Σφ,S → Rφ,S in τφ(S); we will usually
denote this arrow as Aφ,S : Σφ,S → Rφ,S .

(c) Propositions about the system S are represented by sub-objects of Σφ,S .
These will typically be of the form A−1

φ,S(Ξ), where Ξ is a sub-object of

Rφ,S .114

3. Generally, there are no “microstates” for the system S; i.e., no global elements
(arrows 1 → Σφ,S) of the state object Σφ,S ; or, if there are any, they may not be
enough to determine Σφ,S as an object in τφ(S).
Instead, the role of a state is played by a “truth sub-object” T of PΣφ,S .115 If
J ∈ Sub(Σφ,S) Γ (PΣφ,S), the ‘truth of the proposition represented by J ’ is
defined to be

ν
(

J ∈ T
) = [[J̃ ∈ T̃]]φ ◦ 〈�J�, �T�〉 (13.416)

See Sect. 13.6.2 for full information on the idea of a “truth object”. Alternatively,
one may use pseudo-states rather than truth objects, in which case the relevant
truth values are of the form ν(w ⊆ J).

114 Here, A−1
φ,S(Ξ) denotes the sub-object of Σφ,S whose characteristic arrow is χΞ ◦ Aφ,S :

Σφ,S → Ωτφ(S), where χΞ : Rφ,S → Ωτφ(S) is the characteristic arrow of the sub-object Ξ .
115 In classical physics, the truth object corresponding to a microstate s is the collection of all
propositions that are true in the state s.

892 A. Döring and C. Isham

4. There is a “unit object” 1M(Sys) in M(Sys) such that if 1Sys denotes the trivial
system in Sys then, for all topos realisations φ,

τφ(1Sys) = 1M(Sys). (13.417)

Motivated by the results for quantum theory (see Sect. 13.13.2), we postulate
that the unit object 1M(Sys) in M(Sys) is the category of sets:

1M(Sys) = Sets. (13.418)

5. To each arrow j : S1 → S in Sys, we have the following:

(a) There is a translation L(j) : L(S) → L(S1). This is specified by a map
between function symbols: L(j) : FL(S)

(
�,R

)→ FL(S1)

(
�,R

)
.

(b) With the translation L(j) : FL(S)

(
�,R

) → FL(S1)

(
�,R

)
there is associ-

ated a corresponding function

φ(L(j)) : Homτφ(S)

(
Σφ,S,Rφ,S

)→ Homτφ(S1)

(
Σφ,S1,Rφ,S1

)
. (13.419)

These may, or may not, fit together in the commutative diagram:

FL(S1) Σ , R)
Homτφ(S1) Σφ,S1

, Rφ,S1

)
ρφ,S1

FL(S) Σ , R)
Homτφ(S) Σφ,Σ ↪ Rφ,S

)ρφ,S

L(j) φ(L(j))

(13.420)

(c) The function φ(L(j)) : Homτφ(S)

(
Σφ,S,Rφ,S

)→ Homτφ(S1)

(
Σφ,S1 ,Rφ,S1

)

is built from the following ingredients. For each topos realisation φ, there is
a triple 〈νφ(j), φ(j), βφ(j)〉 where:

(i) νφ(j) : τφ(S1) → τφ(S) is a geometric morphism; i.e., an arrow in the
category M(Sys) (thus νφ(j)∗ : τφ(S) → τφ(S1) is left exact).

N.B. To simplify the notation a little we will denote νφ(j)∗ by τφ(j).
This is sensible in so far as, for the most part, only the inverse part of
νφ(j) will be used in our constructions.

(ii) φ(j) : Σφ,S1 → τφ(j)
(
Σφ,S

)
is an arrow in the topos τφ(S1).

(iii) βφ(j) : τφ(j)
(
Rφ,S

)→ Rφ,S1 is an arrow in the topos τφ(S1).

These fit together in the diagram

13 Topos Theory in the Foundations of Physics 893

Σ 1 R 1

φ(L(j))()

τφ (j)(Σ) τφ (j)(R)

φ(j) βφ (j)
τφ (j)()

Σφ,Σ RA

τφ (j) τφ (j)

φ,S
φ,S

Aφ,S

Aφ,S

φ,S

φ,S φ,S

φ,S

(13.421)

The arrows φ(j) and βφ(j) should behave appropriately under composition
of arrows in Sys.
The commutativity of the Diagram (13.420) is equivalent to the relation

φ(L(j))(Aφ,S) = [L(j)(A)]φ,S1 (13.422)

for all A ∈ FL(φ,S)

(
�,R

)
. As we keep emphasising, the satisfaction or

otherwise of this relation will depend on the theory-type and, possibly, the
representation φ.

(d) If a proposition in τφ(S) is represented by the monic arrow, K ↪→
Σφ,S , the “pull-back” of this proposition to τφ(S1) is defined to be
φ(j)−1

(
τφ(j)(K)

) ⊆ Σφ,S1 .

6.
(a) If S1 is a sub-system of S, with an associated arrow i : S1 → S in Sys then,

in the diagram in (13.421), the arrow φ(j) : Σφ,S1 → τφ(j)(Σφ,S) is a
monic arrow in τφ(S1).
In other words, Σφ,S1 is a sub-object of τφ(j)(Σφ,S), which is denoted

Σφ,S1 ⊆ τφ(j)(Σφ,S). (13.423)

We may also want to conjecture

Rφ,S1 τφ(j)
(
Rφ,S

)
. (13.424)

(b) Another possible conjecture is the following: if j : S1 → S is an epic
arrow in Sys, then, in the diagram in (13.421), the arrow φ(j) : Σφ,S1 →
τφ(j)(Σφ,S) is an epic arrow in τφ(S1).
In particular, for the epic arrow p1 : S1 , S2 → S1, the arrow φ(p1) :
Σφ,S1,S2 → τφ

(
Σφ,S1

)
is an epic arrow in the topos τφ(S1 , S2).

One should not read Rule 2. above as implying that the choice of the state object
and quantity-value object are unique for any given system S. These objects would at
best be selected only up to isomorphism in the topos τ(S). Such morphisms in the

894 A. Döring and C. Isham

τ(S)116 can be expected to play a key role in developing the topos analogue of the
important idea of a symmetry, or covariance transformation of the theory.

In the example of classical physics, for all systems we have τ(S) = Sets and Σσ,S

is a symplectic manifold, and the collection of all symplectic manifolds is a category.
It would be elegant if we could assert that, in general, for a given theory-type the
possible state objects in a given topos τ form the objects of an internal category
in τ . However, to make such a statement would require a general theory of state
objects and, at the moment, we do not have such a thing.

From a more conceptual viewpoint we note that the “similarity” of our axioms to
those of standard classical physics is reflected in the fact that (i) physical quantities
are represented by arrows Aφ,S : Σφ,S → Rφ,S ; (ii) propositions are represented
by sub-objects of Σφ,S ; and (iii) propositions are assigned truth values. Thus any
theory satisfying these axioms ‘looks’ like classical physics, and has an associated
neo-realist interpretation.

13.13 The General Scheme Applied to Quantum Theory

13.13.1 Background Remarks

We now want to study the extent to which our “rules” apply to the topos representa-
tion of quantum theory.

For a quantum system with (separable) Hilbert space H, the appropriate topos
(what we earlier called τφ(S)) is SetsV(H)op

: the category of presheaves over the
category (actually, partially-ordered set) V(H) of unital, abelian von Neumann sub-
algebras of the algebra, B(H), of bounded operators on H.

A particularly important object in SetsV(H)op
is the spectral presheaf Σ , where,

for each V , ΣV is defined to be the Gel’fand spectrum of the abelian algebra V . The
sub-objects of Σ can be identified as the topos representations of propositions, just
as the subsets of S represent propositions in classical physics.

In Sects. 13.8 and 13.9, several closely related choices for a quantity-value object
Rφ in SetsV(H)op

were discussed. In order to keep the notation simpler, we concen-
trate here on the presheaf R

� of real-valued, order-reversing functions. All results
hold analogously if the presheaf R

↔ (which we actually prefer for giving a better
physical interpretation) is used.117

116 Care is needed not to confuse morphisms in the topos τ(S) with morphisms in the category
M(Sys) of topoi. An arrow from the object τ(S) to itself in the category M(Sys) is a geometric
morphism in the topos τ(S). However, not every arrow in τ(S) need arise in this way, and an
important role can be expected to be played by arrows of this second type. A good example is
when τ(S) is the category of sets, Sets. Typically, τφ(j) : Sets → Sets is the identity, but there are
many morphisms from an object O in Sets to itself: they are just the functions from O to O .
117 Since the construction of the arrows δ̆(Â) : Σ → R

↔ involves both inner and outer daseinisa-
tion, we would have double work with the notation, which we avoid here.

13 Topos Theory in the Foundations of Physics 895

Hence, physical quantities A : Σ → R, which correspond to self-adjoint oper-
ators Â, are represented by natural transformations/arrows δ̆o(Â) : Σ → R

�. The
mapping Â !→ δ̆o(Â) is injective. For brevity, we write δ̆(Â) := δ̆o(Â).118

13.13.2 The Translation Representation for a Disjoint Sum
of Quantum Systems

Let Sys be a category whose objects are systems that can be treated using quantum
theory. Let L(S) be the local language of a system S in Sys whose quantum Hilbert
space is denoted HS . We assume that to each function symbol, A : Σ → R, in
L(S) there is associated a self-adjoint operator Â ∈ B(HS),

119 and that the map

FL(S)

(
�,R

) → B(H)sa (13.425)

A !→ Â (13.426)

is injective (but not necessarily surjective, as we will see in the case of a disjoint
sum of quantum systems).

We consider first arrows of the form

S1
i1→ S1 - S2

i2← S2 (13.427)

from the components S1, S2 to a disjoint sum S1 - S2; for convenience we write
i := i1. The systems S1, S2 and S1-S2 have the Hilbert spaces H1, H2 and H1⊕H2,
respectively.

As always, the translation L(i) goes in the opposite direction to the arrow i , so

L(i) : FL(S1-S2)

(
�,R

) → FL(S1)

(
�,R

)
. (13.428)

Then our first step is find an “operator translation” from the relevant self-adjoint
operators in H1 ⊕H2 to those in H1,

To do this, let A be a function symbol in FL(S1-S2)

(
�,R

)
. In Sect. 13.11.2, we

argued that FL(S1-S2)

(
�,R

) FL(S1)

(
�,R

)× FL(S2)

(
�,R

)
(as in (13.358)), and

hence we introduce the notation A = 〈A1, A2〉, where A1 ∈ FL(S1)

(
�,R

)
and

A2 ∈ FL(S2)

(
�,R

)
. It is then natural to assume that the quantisation scheme is

such that the operator, Â, on H1 ⊕H2 can be decomposed as Â = Â1 ⊕ Â2, where
the operators Â1 and Â2 are defined on H1 and H2 respectively, and correspond
to the function symbols A1 and A2.120 Then the obvious operator translation is
Â !→ Â1 ∈ B(H1)sa .

118 Note that this is not the same as the convention used earlier, where δ̆(Â) denoted a different
natural transformation!
119 More specifically, one could postulate that the elements of FL(S)

(
�,R

)
are associated with

self-adjoint operators in some unital von Neumann sub-algebra of B(HS).
120 It should be noted that our scheme does not use all the self-adjoint operators on the direct sum
H1 ⊕H2: only the ‘block diagonal’ operators of the form Â = Â1 ⊕ Â2 arise.

896 A. Döring and C. Isham

We now consider the general rules in the Definition 22 and see to what extent
they apply in the example of quantum theory.

1. As we have stated several times, the topos τφ(S) associated with a quantum
system S is

τφ(S) = SetsV(HS)op
. (13.429)

Thus (i) the objects of the category M(Sys) are topoi of the form SetsV(HS)op
,

S ∈ Ob(Sys); and (ii) the arrows between two topoi are defined to be geometric
morphisms. In particular, to each arrow j : S1 → S in Sys there must correspond
a geometric morphism νφ(j) : τφ(S1) → τφ(S) with associated left-exact functor
τφ(j) := νφ(j)∗ : τφ(S) → τφ(S1). Of course, the existence of these functors in
the quantum case has yet to be shown.

2. The realisation ρφ,S : L(S) � τφ(S) of the language L(S) in the topos τφ(S)

is given as follows. First, we define the state object Σφ,S to be the spectral presheaf,
ΣV(HS), over V(HS), the context category of B(HS). To keep the notation brief, we
will denote121 ΣV(HS) as ΣHS .

Furthermore, we define the quantity-value object, Rφ,S , to be the presheaf R
�HS

that was defined in Sect. 13.8 . Finally, we define

Aφ,S := δ̆(Â), (13.430)

for all A ∈ FL(S)

(
�,R

)
. Here δ̆(Â) : ΣHS → R

�HS is constructed using the

Gel’fand transforms of the (outer) daseinisation of Â, for details see later.
3. The truth object T

|ψ〉 corresponding to a pure state |ψ〉 was discussed in
Sect. 13.6.3. Alternatively, we have the pseudo-state w |ψ〉.

4. Let H = |C be the one-dimensional Hilbert space, corresponding to the trivial
quantum system 1. There is exactly one abelian sub-algebra of B(|C) |C, namely |C
itself. This leads to

τφ(1Sys) = Sets{∗} Sets = 1M(Sys). (13.431)

5. Let A ∈ FL(S1-S2)

(
�,R

)
be a function symbol for the system S1-S2. Then, as

discussed above, A is of the form A = 〈A1, A2〉 (compare equation (13.358)), which
corresponds to a self-adjoint operator Â1 ⊕ Â2 ∈ B(H1 ⊕H2)sa. The topos repre-
sentation of A is the natural transformation δ̆(〈A1, A2〉) : ΣH1⊕H2 → R

�H1⊕H2 ,
which is defined at each stage V ∈ Ob(V(H1 ⊕H2)) as

δ̆(〈A1, A2〉)V : ΣH1⊕H2
V → R

�H1⊕H2
V

λ !→ {V ′ !→ 〈λ|V ′, δ(Â1 ⊕ Â2)V ′ 〉 | V ′ ⊆ V } (13.432)

where the right hand side (13.432) denotes an order-reversing function.

121 Presheaves are always denoted by symbols that are underlined.

13 Topos Theory in the Foundations of Physics 897

We will need the following:

Lemma 3 Let Â1⊕ Â2 ∈ B(H1⊕H2)sa, and let V = V1⊕ V2 ∈ Ob(V(H1⊕H2))

such that V1 ∈ Ob(V(H1)) and V2 ∈ Ob(V(H2)). Then

δ(Â1 ⊕ Â2)V = δ(Â1)V1 ⊕ δ(Â2)V2 . (13.433)

Proof Every projection Q̂ ∈ V is of the form Q̂ = Q̂1 ⊕ Q̂2 for unique projections
Q̂1 ∈ P(H1) and Q̂2 ∈ P(H2). Let P̂ ∈ P(H) be of the form P̂ = P̂1 ⊕ P̂2 such
that P̂1 ∈ P(H1) and P̂2 ∈ P(H1). The largest projection in V smaller than or
equal to P̂ , i.e., the inner daseinisation of P̂ to V , is

δi (P̂)V = Q̂1 ⊕ Q̂2, (13.434)

where Q̂1 ∈ P(V1) is the largest projection in V1 smaller than or equal to P̂1, and
Q̂2 ∈ P(V2) is the largest projection in V2 smaller than or equal to P̂2, so

δi (P̂)V = δ(P̂1)V1 ⊕ δ(P̂2)V2 . (13.435)

This implies δ(Â ⊕ B̂)V = δ(Â)V1 ⊕ δ(B̂)V2 , since (outer) daseinisation of a
self-adjoint operator just means inner daseinisation of the projections in its spec-
tral family, and all the projections in the spectral family of Â ⊕ B̂ are of the form
P̂ = P̂1 ⊕ P̂2.

As discussed in Sect. 13.12, in order to mimic the construction that we have in the
classical case, we need to pull back the arrow/natural transformation δ̆(〈A1, A2〉) :
ΣH1⊕H2 → R

�H1⊕H2 to obtain an arrow from ΣH1 to R
�H1 . Since we decided

that the translation on the level of operators sends Â1 ⊕ Â2 to Â1, we expect that
this arrow from ΣH1 to R

�H1 is δ̆(Â1). We will now show how this works.
The presheaves ΣH1⊕H2 and ΣH1 lie in different topoi, and in order to “trans-

form” between them we need we need a (left-exact) functor from the topos
SetsV(H1⊕H2)

op
to the topos SetsV(H1)

op
: this is the functor τφ(j) : τφ(S) → τφ(S1)

in (13.421). One natural place to look for such a functor is as the inverse-image
part of a geometric morphism from SetsV(H1)

op
to SetsV(H1⊕H2)

op
. According to

Theorem 14, one source of such a geometric morphism, μ, is a functor

m : V(H1)→ V(H1 ⊕H2), (13.436)

and the obvious choice for this is

m(V) := V ⊕ |C1̂H2 (13.437)

for all V ∈ Ob(V(H1)). This function from Ob(V(H1)) to Ob(V(H1 ⊕ H2)) is
clearly order preserving, and hence m is a genuine functor.

Let μ : SetsV(H1)
op → SetsV(H1⊕H2)

op
denote the geometric morphism induced

by m. The inverse-image functor of μ is given by

898 A. Döring and C. Isham

μ∗ : SetsV(H1⊕H2)
op → SetsV(H1)

op
(13.438)

F !→ F ◦ mop. (13.439)

This means that, for all V ∈ Ob(V(H1)), we have

(μ∗FH1⊕H2)V = FH1⊕H2
m(V) = FH1⊕H2

V⊕|C1̂H2

. (13.440)

For example, for the spectral presheaf we get

(μ∗ΣH1⊕H2)V = Σ
H1⊕H2
m(V)

= Σ
H1⊕H2

V⊕|C1̂H2

. (13.441)

This is the functor that is denoted τφ(j) : τφ(S1) → τφ(S) in (13.421).
We next need to find an arrow φ(i) : ΣH1 → μ∗ΣH1⊕H2 that is the analogue

of the arrow φ(j) : Σφ,S1 → τφ(j)(3Σφ,S) in (13.421).

For each V , the set (μ∗ΣH1⊕H2)V = Σ
H1⊕H2

V⊕|C1̂H2

contains two types of spectral

elements λ: the first type are those λ such that 〈λ, 0̂H1 ⊕ 1̂H2〉 = 0. Then, clearly,

there is some λ̃ ∈ Σ
H1
V such that 〈λ̃, Â〉 = 〈λ, Â ⊕ 0̂H2〉 = 〈λ, Â ⊕ 1̂H2〉 for

all Â ∈ Vsa. The second type of spectral elements λ ∈ Σ
H1⊕H2

V⊕|C1̂H2

are such that

〈λ, 0̂H1 ⊕ 1̂H2〉 = 1. In fact, there is exactly one such λ, and we denote it by λ0.

This shows that ΣH1⊕H2

V⊕|C1̂H2

 Σ
H1
V ∪{λ0}. Accordingly, at each stage V , the mapping

φ(i) sends each λ̃ ∈ Σ
H1
V to the corresponding λ ∈ Σ

H1⊕H2

V⊕|C1̂H2

.

The presheaf R
�H1⊕H2 is given at each stage W ∈ Ob(V(H1 ⊕ H2)) as the

order-reversing functions ν :↓W → R, where ↓W denotes the set of unital, abelian
von Neumann sub-algebras of W . Let W = V ⊕ |C1̂H2 . Clearly, there is a bijection
between the sets ↓W ⊂ Ob(V(H1 ⊕ H2)) and ↓V ⊂ Ob(V(H)). We can thus
identify

(μ∗R�H1⊕H2)V = R
�H1⊕H2

V⊕|C1̂H2

 R
�H1

V (13.442)

for all V ∈ Ob(V(H)). This gives an isomorphism βφ(i) : μ∗R�H1⊕H2 → R
�H1 ,

which corresponds to the arrow βφ(j) : τφ(j)(Rφ,S)→ Rφ,S1 in (13.421).
Now consider the arrow δ̆(〈A1, A2〉) : ΣH1⊕H2 → R

�H1⊕H2 . This is the
analogue of the arrow Aφ,S : Σφ,S → Rφ,S in (13.421). At each stage W ∈
Ob(V(H1 ⊕ H2)), this arrow is given by the (outer) daseinisation δ(Â1 ⊕ Â2)W ′
for all W ′ ∈↓W . According to Lemma 3, we have

δ(Â1 ⊕ Â2)V⊕|C1̂H2
= δ(Â1)V ⊕ δ(A2)|C1̂H2

= δ(Â1)V ⊕max(sp(Â2))1̂H2

(13.443)

13 Topos Theory in the Foundations of Physics 899

for all V ⊕ |C1̂H2 ∈ Ob(V(H1 ⊕H2)). This makes clear how the arrow

μ∗(δ̆(〈A1, A2〉)) : μ∗ΣH1⊕H2 → μ∗R�H1⊕H2 (13.444)

is defined. Our conjectured pull-back/translation representation is

φ(L(i))
(
δ̆(〈A1, A2〉)

) := βφ(i) ◦ μ∗(δ̆(〈A1, A2〉)) ◦ φ(i) : ΣH1 → R
�H1 .

(13.445)

Using the definitions of φ(i) and βφ(i), it becomes clear that

βφ(i) ◦ μ∗(δ̆(〈A1, A2〉)) ◦ φ(i) = δ̆(Â1). (13.446)

Hence, the commutativity condition in (13.422) is satisfied for arrows in Sys of the
form i1,2 : S1,2 → S1 - S2.

13.13.3 The Translation Representation for Composite
Quantum Systems

We now consider arrows in Sys of the form

S1
p1← S1 , S2

p2→ S1, (13.447)

where the quantum systems S1, S2 and S1 , S2 have the Hilbert spaces H1, H2 and
H1 ⊗ H2, respectively.122

The canonical translation123 L(p1) between the languages L(S1) and L(S1 , S2)

(see Sect. 13.11.2) is such that if A1 is a function symbol in FL(S1)

(
�,R

)
, then

the corresponding operator Â1 ∈ B(H1)sa will be ‘translated’ to the operator Â1 ⊗
1̂H2 ∈ B(H1 ⊗ H2). By assumption, this corresponds to the function symbol A1,1
in FL(S1,S2)

(
�,R

)
.

13.13.3.1 Operator Entanglement and Translations

We should be cautious about what to expect from this translation when we represent
a physical quantity A : Σ → R in FL(S1)

(
�,R

)
by an arrow between presheaves,

since there are no canonical projections

H1 ← H1 ⊗ H2 → H2, (13.448)

122 As usual, the composite system S1 , S2 has as its Hilbert space the tensor product of the Hilbert
spaces of the components.
123 As discussed in Sect. 13.11.2, this translation, L(p1), transforms a physical quantity A1 of
system S1 into a physical quantity A1 , 1, which is the “same” physical quantity but now seen as a
part of the composite system S1 , S2. The symbol 1 is the trivial physical quantity: it is represented
by the operator 1̂H2 .

900 A. Döring and C. Isham

and hence no canonical projections

ΣH1 ← ΣH1⊗H2 → ΣH2 (13.449)

from the spectral presheaf of the composite system to the spectral presheaves of the
components.124

This is the point where a form of entanglement enters the picture. The spectral
presheaf ΣH1⊗H2 is a presheaf over the context category V(H1 ⊗H2) of H1 ⊗H2.
Clearly, the context category V(H1) can be embedded into V(H1 ⊗ H2) by the
mapping V1 !→ V1 ⊗ |C1̂H2 , and likewise V(H2) can be embedded into V(H1 ⊗
H2). But not every W ∈ Ob(V(H1 ⊗ H2)) is of the form V1 ⊗ V2.

This comes from the fact that not all vectors in H1 ⊗H2 are of the form ψ1 ⊗ψ2,
hence not all projections in P(H1 ⊗ H2) are of the form P̂ψ1 ⊗ P̂ψ2 , which in turn
implies that not all W ∈ V(H1 ⊗ H2) are of the form V1 ⊗ V2. There are more
contexts, or world-views, available in V(H1 ⊗ H2) than those coming from V(H1)

and V(H2). We call this “operator entanglement”.
The topos representative of Â1 is δ̆(Â1) : ΣH1 → R

�H1 , and the representa-
tive of Â1 ⊗ 1̂H2 is δ̆(A1 , 1) : ΣH1⊗H2 → R

�H1⊗H2 . At sub-algebras W ∈
Ob(V(H1 ⊗H2)) which are not of the form W = V1 ⊗ V2 for any V1 ∈ Ob(V(H1))

and V2 ∈ Ob(V(H2)), the daseinised operator δ(Â1 ⊗ 1̂H2)W ∈ Wsa will not be of
the form δ(Â1)V ⊗ 1̂H2 for any V in Ob(V(H1).

125 On the other hand, it is easy to
see that δ(Â1 ⊗ 1̂H2)W = δ(Â1)V1 ⊗ 1̂H2 if W = V1 ⊗ |C1̂H2 .

Given a physical quantity A1, represented by the arrow δ̆(Â1) : ΣH1 → R
�H1 ,

we can (at best) expect that the translation of this arrow into an arrow from
ΣH1⊗H2 to R

�H1⊗H2 coincides with the arrow δ̆(ˆA1 , 1) on the ‘image’ of ΣH1

in ΣH1⊗H2 . This image will be constructed below using a certain geometric mor-
phism. As one might expect, the image of ΣH1 is a presheaf P on V(H1 ⊗H2) such
that P V1⊗ |C1̂H2

 Σ
H1
V1

for all V1 ∈ V(H1), i.e., the presheaf P can be identified

with ΣH1 exactly on the image of V(H1) in V(H1 ⊗ H2) under the embedding
V1 !→ V1 ⊗ |C1̂H2 . At these stages, the translation of δ̆(Â1) will coincide with
δ̆(ˆA1 , 1). At other stages W ∈ V(H1 ⊗ H2), the translation cannot be expected to
be the same natural transformation as δ̆(ˆA , 1) in general.

13.13.3.2 A Geometrical Morphism and a Possible Translation

The most natural approach to a translation is the following. Let W ∈ Ob(V(H1 ⊗
H2)), and define VW ∈ Ob(V(H1)) to be the largest sub-algebra of B(H1) such that

124 On the other hand, in the classical case, there are canonical projections

Σσ,S1 ← Σσ,S1,S2 → Σσ,S2 (13.450)

because the symplectic manifold Σσ,S1,S2 that represents the composite system is the cartesian
product Σσ,S1,S2 = Σσ,S1 × Σσ,S2 , which is a product in the categorial sense and hence comes
with canonical projections.
125 Currently, it is even an open question if δ(Â1 ⊗ 1̂H2)W = δ(Â1)V1 ⊗ 1̂H2 if W = V1 ⊗ V2
for a non-trivial algebra V2.

13 Topos Theory in the Foundations of Physics 901

VW ⊗ |C1̂H2 is a sub-algebra of W . Depending on W , VW may, or may not, be the
trivial sub-algebra |C1̂H1 . We note that if W ′ ⊆ W , then

VW ′ ⊆ VW , (13.451)

but W
′ ⊂ W only implies VW ′ ⊆ VW .

The trivial algebra |C1̂H1 is not an object in the category V(H1). This is why we
introduce the “augmented context category” V(H1)∗, whose objects are those of
V(H1) united with |C1̂H1 , and with the obvious morphisms (|C1̂H1 is a sub-algebra
of all V ∈ V(H1)).

Then there is a functor n : V(H1 ⊗ H2) → V(H1)∗, defined as follows. On
objects,

n : Ob(V(H1 ⊗ H2)) → Ob(V(H1)∗)
W !→ VW , (13.452)

and if iW ′W : W ′ → W is an arrow in V(H1 ⊗ H2), we define n(iW ′W) := iVW ′VW

(an arrow in V(H1)∗); if VW ′ = VW , then iVW ′VW is the identity arrow idVW .
Now let

ν : SetsV(H1⊗H2)
op → Sets(V(H1)∗)op

(13.453)

denote the geometric morphism induced by π . Then the (left-exact) inverse-image
functor

ν∗ : Sets(V(H1)∗)op → SetsV(H1⊗H2)
op

(13.454)

acts on a presheaf F ∈ Sets(V(H1)∗)op
in the following way. For all W ∈ Ob(V(H1 ⊗

H2)), we have

(ν∗F)W = Fnop(W) = F VW
(13.455)

and

(ν∗F)(iW ′W) = F(iVW ′VW) (13.456)

for all arrows iW ′W in the category V(H1 ⊗ H2).126

126 We remark, although will not prove it here, that the inverse-image presheaf ν∗F coincides with
the direct image presheaf φ∗F of F constructed from the geometric morphism φ induced by the
functor

κ : V(H1) → V(H1 ⊗ H2)

V !→ V ⊗ |C1̂H2 . (13.457)

Of course, the inverse image presheaf β∗F is much easier to construct.

902 A. Döring and C. Isham

In particular, for all W ∈ V(H1 ⊗ H2), we have

(ν∗ΣH1)W = Σ
H1
VW

, (13.458)

(ν∗R�H1)W = R
�H1

VW
. (13.459)

Since VW can be |C1̂H1 , we have to extend the definition of the spectral presheaf

ΣH1 and the quantity-value presheaf R
�H1 such that they become presheaves over

V(H1)∗ (and not just V(H1)). This can be done in a straightforward way: the
Gel’fand spectrum Σ |C1̂H1

of |C1̂H1 consists of the single spectral element λ1 such

that 〈λ1, 1̂H1〉 = 1. Moreover, |C1̂H1 has no sub-algebras, so the order-reversing
functions on this algebra correspond bijectively to the real numbers R.

Using these equations, we see that the arrow δ̆(Â1) : ΣH1 → R
�H1 that corre-

sponds to the self-adjoint operator Â1 ∈ B(H1)sa gives rise to the arrow

ν∗(δ̆(Â1)) : ν∗ΣH1 → ν∗R�H1 . (13.460)

In terms of our earlier notation, the functor τφ(p1) : SetsV(H1)
op →

SetsV(H1⊗H2)
op

is ν∗, and the arrow in (13.460) is the arrow τφ(j)(Aφ,S) :
τφ(j)(Σφ,S) → τφ(j)(Rφ,S) in (13.421) with j : S1 → S being replaced by
p : S1 , S2 → S1, which is the arrow in Sys whose translation representation we
are trying to construct.

The next arrow we need is the one denoted βφ(j) : τφ(j)(Rφ,S) → Rφ,S1 in
(13.421). In the present case, we define βφ(p) : ν∗R�H1 → R

�H1⊗H2 as follows.

Let α ∈ (ν∗R�H1)W R
�H1

VW
be an order-reversing real-valued function on ↓VW .

Then we define an order-reversing function βφ(p)(α) ∈ R
�H1⊗H2

W as follows. For
all W ′ ⊆ W , let

[βφ(p)(α)](W ′) := α(VW ′) (13.461)

which, by virtue of (13.451), is an order-reversing function and hence a member of
R
�H1⊗H2

W .
We also need an arrow in SetsV(H1⊗H2)

op
from ΣH1⊗H2 to ν∗ΣH1 , where

ν∗ΣH1 is defined in (13.458). This is the arrow denoted φ(j) : Σφ,S1 →
τφ(j)(Σφ,S) in (13.421).

The obvious choice is to restrict λ ∈ Σ
H1⊗H2
W to the sub-algebra VW ⊗ |C1̂H2 ⊆

W , and to identify VW ⊗ |C1̂H1 VW ⊗ 1̂H1 VW as von Neumann algebras,

which gives Σ
H1⊗H2

VW ⊗ |C1̂H2

 Σ
H1
VW

. Let

φ(p)W : ΣH1⊗H2
W → Σ

H1
VW

λ !→ λ|VW (13.462)

13 Topos Theory in the Foundations of Physics 903

denote this arrow at stage W . Then

βφ(p) ◦ ν∗(δ̆(Â1)) ◦ φ(p) : ΣH1⊗H2 → R
�H1⊗H2 (13.463)

is a natural transformation which is defined for all W ∈ Ob(V(H1 ⊗ H2)) and all
λ ∈ W by

(
βφ(p) ◦ ν∗(δ̆(Â1)) ◦ φ(p)

)

W
(λ) = ν∗(δ̆(Â))(λ|VW) (13.464)

= {V ′ !→ 〈λ|V ′, δ(Â)V ′ 〉 | V ′ ⊆ VW }(13.465)

This is clearly an order-reversing real-valued function on the set ↓W of sub-algebras
of W , i.e., it is an element of R

�H1⊗H2
W . We define βφ(p) ◦ ν∗(δ̆(Â1)) ◦φ(p) to be

the translation representation, φ(L(p))(δ̆(Â1)) of δ̆(Â1) for the composite system.
Note that, by construction, for each W , the arrow (βφ(p) ◦ ν∗(δ̆(Â1)) ◦ φ(p))W

corresponds to the self-adjoint operator δ(Â1)VW ⊗ 1̂H2 ∈ Wsa, since

〈λ|VW , δ(Â1)VW 〉 = 〈λ, δ(Â1)VW ⊗ 1̂H2〉 (13.466)

for all λ ∈ Σ
H1⊗H2
W .

Comments on These Results

This is about as far as we can get with the arrows associated with the composite of
two quantum systems. The results above can be summarised in the equation

φ(L(p))(δ̆(Â1))W = δ̆(A1)VW ⊗ 1̂H2 (13.467)

for all contexts W ∈ Ob(V(H1 ⊗ H2)). If W ∈ Ob(V(H1 ⊗ H2)) is of the
form W = V1 ⊗ |C1̂H2 , i.e., if W is in the image of the embedding of V(H1)

into V(H1 ⊗ H2), then VW = V1 and the translation formula gives just what one
expects: the arrow δ̆(Â1) is translated into the arrow δ̆(ˆA1 , 1) at these stages, since
δ(Â1 ⊗ 1̂H2)V1⊗ |C1̂H2

= δ(Â1)V1 ⊗ 1̂H2 .127

If W ∈ Ob(V(H1 ⊗H2)) is not of the form W = V1 ⊗ |C1̂H2 , then it is relatively
easy to show that

δ(Â1 ⊗ 1̂H2)W �= δ(Â1)VW ⊗ 1̂H2 (13.468)

127 To be precise, both the translation φ(L(p))(δ̆(Â1))W , given by (13.467), and δ̆(ˆA , 1)W are
mappings from Σ

H1 ⊗H2
W to R

�H1 ⊗H2
W . Each λ ∈ Σ

H1 ⊗H2
W is mapped to an order-reversing

function on ↓W . The mappings φ(L(p))(δ̆(Â1))W and δ̆(ˆA , 1)W coincide at all W ′ ∈↓W that are
of the form W ′ = V ′ ⊗ |C1̂H2 .

904 A. Döring and C. Isham

in general. Hence

φ(L(p))(δ̆(Â1)) �= δ̆(A1 , 1), (13.469)

whereas, intuitively, one might have expected equality. Thus the “commutativity”
condition (13.409) is not satisfied.

In fact, there appears to be no operator B̂ ∈ B(H1 ⊗ H2) such that
φ(L(p))(δ̆(Â1)) = δ̆(B̂). Thus the quantity, βφ(p) ◦ ν∗(δ̆(Â1)) ◦ φ(p), that is our
conjectured pull-back, is an arrow in HomSetsV(H1 ⊗H2)

op

(
ΣH1⊗H2 , R

�H1⊗H2
)

that is not of the form Aφ,S1,S2 for any physical quantity A ∈ FL(S1,S2)

(
�,R

)
.

Our current understanding is that this translation is ‘as good as possible’: the
arrow δ̆(Â1) : ΣH1 → R

�H1 is translated into an arrow from ΣH1⊗H2 to
R
�H1⊗H2 that coincides with δ̆(Â1) on those part of ΣH1⊗H2 that can be iden-

tified with ΣH1 . But ΣH1⊗H2 is much larger, and it is not simply a product of
ΣH1 and ΣH2 . The context category V(H1 ⊗ H2) underlying ΣH1⊗H2 is much
richer than a simple product of V(H1) and V(H2). This is due to a kind of operator
entanglement. A translation can at best give a faithful picture of an arrow, but it can-
not possibly “know” about the more complicated contextual structure of the larger
category.

Clearly, both technical and interpretational work remain to be done.

13.14 Characteristic Properties of Σφ , Rφ and T,w

13.14.1 The State Object Σφ

A major motivation for our work is the desire to find mathematical structures with
whose aid genuinely new types of theory can be constructed. Consequently, however
fascinating the “toposification” of quantum theory may be, this particular theory
should not be allowed to divert us too much from the main goal. However, it is also
important to see what general lessons can be learnt from what has been done so far.
This is likely to be crucial in the construction of new theories.

In developing the topos version of quantum theory we have constructed concrete
objects in the topos to function as the state object and quantity-value object. We have
also seen how each quantum vector state gives a precise truth object, or “pseudo-
state”.

The challenging question now is what, if anything, can be said in general about
these key ingredients in our scheme. Thus, ideally, we would be able to specify
characteristic properties for Σφ , Rφ , and the truth objects/pseudo-states. A related
problem is to understand if there is an object, Wφ , of all truth objects/pseudo-
states, and, if so, what are its defining properties. Any such characteristic prop-
erties could be coded into the structure of the language, L(S), of the system,
hence ensuing that they are present in all topos representations of S. In particular,

13 Topos Theory in the Foundations of Physics 905

should a symbol W be added to L(S) as the linguistic precursor of an object of
pseudo-states?

So far, we know only two explicit examples of physically-relevant topos repre-
sentations of a system language, L(S): (i) the representation of classical physics in
Sets; and (ii) the representation of quantum physics in topoi of the form SetsV(H)op

.
This does provide much guidance when it comes to speculating on characteristic
properties of the key objects Σφ and Rφ . From this perspective, it would be helpful
if there is an alternative way of finding the quantum objects Σ and R

↔ in addition
to the one provided by the approach that we have adopted. Fortunately, this has
been done recently by Heunen et al. [42]; as we shall see in Sect. 13.14.1, this does
provide more insight into a possible generic structure for Σφ .

13.14.1.1 An Analogue of a Symplectic Structure or Cotangent Bundle?

Let us start with the state object Σφ . In classical physics, this is a symplectic man-
ifold; in quantum theory it is the spectral presheaf Σ in the topos SetsV(H)op

. Does
this suggest any properties for Σφ in general?

One possibility is that the state object, Σφ , has some sort of “symplectic struc-
ture”. If taken literally, this phrase suggests synthetic differential geometry (SDG): a
theory that is based on the existence in certain topoi (not Sets) of genuine “infinitesi-
mals”. However, this seems unlikely for the quantum topoi SetsV(H)op

and we would
probably need to extend these topoi considerably in order to incorporate SDG. Thus
when we say “. . . some sort of symplectic structure”, the phrase “some sort” has to
be construed rather broadly.

We suspect that, with this caveat, the state object Σ may have such a structure,
particularly for those quantum systems that come from quantising a given classical
system. However, at the moment this is still a conjecture. We are currently studying
systems whose classical state space is the cotangent bundle, T ∗Q, of a configuration
space Q. We think that the quantum analogue of this space is a certain presheaf, MQ ,
that is associated with the maximal commutative sub-algebra, MQ ∈ Ob(V(H)),
generated by the smooth, real-valued functions on Q. This is currently work in
progress.

But even if the quantum state object does have a remnant “symplectic structure”,
it is debatable if this should be axiomatised in general. Symplectic structures arise
in classical physics because the underlying equations of motion are second-order in
the “configuration” variables q, and hence first-order in the pair (q, p), where p are
the “momentum variables”.

However if, say, Newton’s equations of gravity had been third-order in q, this
would lead to triples (q, p, a) (a are ‘acceleration’ variables) and symplectic struc-
ture would not be appropriate.

13.14.1.2 Σφ as a Spectral Object: The Work of Heunen et al.

Another way of understanding the state object Σφ is suggested by the recent
work of Heunen et al. [42]. They start with a non-commutative C∗-algebra, A,

906 A. Döring and C. Isham

of observables in some “ambient topos”, S—in our case, this is Sets—and then
proceed with the following steps:

1. They construct the poset category128 V(A) of commutative C∗-subalgebras of A
that contain the identity operator 1̂.

2. One then constructs the topos, SV(A) of covariant functors (i.e., co-presheaves)
on the category/poset V(A).129

3. As a special object in the topos SV(A), one constructs the “tautological” co-
presheaf, i.e., covariant functor A in which A(V) := V for each commutative
C∗-subalgebra, V , of A. Then if iV1V2 : V1 ⊆ V2, the associated arrow A(iV1V2) :
A(V1) → A(V2) is just the inclusion map of A(V1) in A(V2).

4. Heunen et al. then show that A is an internal commutative C∗-algebra in the
topos SV(A).

5. Using the recently published, very important, results of Banacheswski and Mul-
vey on constructive Gel’fand duality,130 Heunen et al. show that the spectrum,
Σ , of the commutative algebra A can be computed internally, and that it has the
structure of an internal locale in SV(A).

Thus Heunen et al. differ from us in that (i) they work in a general ambient
topos S, whereas we use Sets; (ii) they use C∗-algebras rather than von Neumann
algebras131; and (iii) they use covariant rather than contravariant functors.

It can be shown that their internal spectrum, the locale Σ , is closely related to
our spectral presheaf Σ , which is a presheaf of topological spaces: namely, the
Gel’fand spectra of the commutative subalgebras of the non-commutative algebra
of physical quantities. We just want to mention briefly the natural way of relating
the contravariant and the covariant situations.

The spectral presheaf can also be defined for C∗-algebras, and we assume for the
moment that this has been done. For the spectral presheaf Σ , we have the (continu-
ous) restriction mappings Σ(iV ′V) : ΣV → ΣV ′ (where V ′ ⊂ V) and these induce
inverse-image mappings Σ(iV ′V)−1 : OΣV ′ → OΣV between the frames OΣV ′ ,
and OΣV of open subsets (i.e.,the topologies) of ΣV ′ and ΣV , respectively. The
mapping Σ(iV ′V) preserves finite meets and arbitrary joins and hence is a (local)
frame morphism. Clearly, the frames OΣV , V ∈ V(H), together with the frame
morphisms Σ(iV ′V)−1, form a covariant functor F . The sub-objects of this functor

128 This notation has been chosen to suggest more clearly the analogues with our topos construc-
tions that use the base category V(H). It is not that used by Heunen et al.
129 They affirm that the operation A !→ SV(A) defines a functor from the category of C∗-algebras
in S to the category of elementary topoi and geometric morphisms.
130 See [7–10]; the results partially go back to the early 1980s.
131 One problem with C∗-algebras is that they very often do not contain enough projectors; and,
of course, these are the entities that represent propositions. One might use AW∗-algebras, which
are abstract von Neumann algebras, as mentioned in the first version of [42].

13 Topos Theory in the Foundations of Physics 907

are the elements of an internal frame in SV(A), and this internal frame is the internal
Gel’fand spectrum.132

The concrete form of the opens in Σ as sub-objects of the functor F gives the
external description of the Gel’fand spectrum, Σ , of the internal commutative alge-
bra as used by Heunen et al. This and further relations between the covariant and the
contravariant approach to algebraic quantum theory in a topos are treated in detail
in a forthcoming paper [26].

The fact that Heunen et al. arrive at essentially the same object as our spectral
presheaf is striking. Amongst other things, it suggests a possible axiomatisation of
the state object, Σφ . Namely, we could require that in any topos representation, φ,
the state object is (i) the spectrum of some internal, commutative (pre-) C∗-algebra
(or, perhaps, AW ∗-algebra); and (ii) the spectrum has the structure of an internal
locale in the topos τφ .

It is not currently clear whether or not it makes physical sense to always require
Σφ to be the spectrum of an internal algebra. However, even in the contrary case
it still meaningful to explore the possibility that Σφ has the ‘topological’ property
of being an internal locale. This opens up many possibilities, including that of con-
structing the (internal) topos, Sh(Σφ), of sheaves over Σφ .

13.14.1.3 Using Boolean Algebras as the Base Category

As remarked earlier, there are several possible choices for the base category over
which the set-valued functors are defined. Most of our work has been based on the
category, V(H), of commutative von Neumann sub-algebras of B(H). As indicated
above, the Heunen et al. constructions use the category of commutative C∗-algebras.

However, as discussed briefly in Sect. 13.5.5, another possible choice is the cat-
egory, Bl(H), of all Boolean sub-algebras of the lattice of projection operators on
H. The ensuing topos, SetsBl(H)op

, or SetsBl(H), is interesting in its own right, but
particularly so when combined with the ideas of Heunen et al. As applied to the
category Bl(H), their work suggests that we first construct the tautological functor
Bl(H) which associates to each B ∈ Ob(Bl(H)), the Boolean algebra B. Viewed
internally in the topos SetsBl(H), this functor is a Boolean-algebra object. We con-
jecture that the spectrum of Bl(H) can be obtained in a constructive way using the
internal logic of SetsBl(H). If so, it seems clear that, after using the locale trick of
[42], this spectrum will essentially be the same as our dual presheaf D.

Thus, in this approach, the state object is the spectrum of an internal Boolean
algebra, and daseinisation maps the projection operators in H into elements of this
algebra. This reinforces still further our claim that quantum theory looks like clas-
sical physics in an appropriate topos. This raises some fascinating possibilities. For
example, we make the following:

132 A frame is the same thing as a locale, and the elements of the internal frame are the opens in
the locale Σ .

908 A. Döring and C. Isham

Conjecture: The subject of quantum computation is equivalent to the
study of ‘classical’ computation in the quantum topos SetsBl(H)op

.

13.14.1.4 Application to Other Branches of Algebra

It is clear that the scheme discussed above could fruitfully be extended to various
branches of algebra. Thus, if A is any algebraic structure,133 we can consider the
category V(A) whose objects are the commutative sub-algebras of A, and whose
arrows are algebra embeddings (or, slightly more generally, monomorphisms). One
can then consider the topos, SetsV(A)op

, of all set-valued, contravariant functors on
V(A); alternatively, one might look at the topos, SetsV(A), of covariant functors.

For this structure to be mathematically interesting it is necessary that the abelian
sub-objects of A have a well-defined spectral structure. For example, let A be any
locally-compact topological group. Then the spectrum of any commutative (locally-
compact) subgroup A is just the Pontryagin dual of A, which is itself a locally-
compact, commutative group. The spectral presheaf of A can then be defined as the
object, ΣA, in SetsV(A)op

that is constructed in the obvious way (i.e., analogous to
the way in which Σ was constructed) from this collection of Pontryagin duals.

We conjecture that a careful analysis would show that, for at least some structures
of this type:

1. There is a ‘tautological’ object, A, in the topos SetsV(A) that is associated with
the category V(A).

2. Viewed internally, this tautological object is a commutative algebra.
3. This object has a spectrum that can be constructed internally, and is essentially

the spectral presheaf, ΣA, of A.

It seems clear that, in general, the spectral presheaf, ΣA, is a potential candidate
for the basis of non-commutative spectral theory.

13.14.1.5 The Partial Existence of Points of Σφ

One of the many intriguing features of topos theory is that it makes sense to talk
about entities that only “partially exist”. One can only speculate on what would have
been Heidegger’s reaction had he been told that the answer to “What is a thing?” is
“Something that partially exists”. However, in the realm of topos theory the notion
of “partial existence” lies easily with the concept of propositions that are only ‘partly
true’.

A particularly interesting example is the existence, or otherwise, of “points” (i.e.,
global elements) of the state object Σφ . If Σφ has no global elements (as is the case
for the quantum spectral presheaf, Σ) it may still have “partial elements”. A partial
element is defined to be an arrow ξ : U → Σφ where the object U in the topos

133 We are assuming that the ambient topos is Sets, but other choices could be considered.

13 Topos Theory in the Foundations of Physics 909

τφ is a sub-object of the terminal object 1τφ
. Thus there is a monic U ↪→ 1τφ

with the property that the arrow ξ : U → Σφ cannot be extended to an arrow
1τφ

→ Σφ . Studying the obstruction to such extensions could be another route to
finding a cohomological expression of the Kochen-Specker theorem.

Pedagogically, it is attractive to say that the non-existence of a global element
of Σ is analogous to the non-existence of a cross-section of the familiar “double-
circle”, helical covering of a single circle, S1. This principal Z2-bundle over S1 is
non-trivial, and hence has no cross-sections.

However, local cross-sections do exist, these being defined as sections of the bun-
dle restricted to any open subset of the base space S1. In fact, this bundle is locally
trivial; i.e., each point s ∈ S1 has a neighbourhood Us such that the restriction of
the bundle to Us is trivial, and hence sections of the bundle restricted to Us exist.

There is an analogue of local triviality in the topos quantum theory where τφ =
SetsV(H)op

. Thus, let V be any object in V(H) and define ↓V := {V1 ∈ Ob(V(H)) |
V1 ⊆ V }. Then ↓V is like a “neighbourhood” of V ; indeed, that is precisely what
it is if the poset Ob(V(H)) is equipped with the topology generated by the lower
sets. Furthermore, given any presheaf F in τφ , the restriction, F↓V , to V , can be
defined as in Sect. 13.6.5. It is easy to see that, for all stages V , the presheaf F ↓V
does have global elements. In this sense, every presheaf in SetsV(H)op

is “locally
trivial”. Furthermore, to each V there is associated a sub-object U V of 1 such that
each global element of F ↓V corresponds to a partial element of F .

Thus, for the topos SetsV(H)op
, there is a precise sense in which the spectral

presheaf has “local elements”, or “points that partially exist”. However, it is not
clear to what extent such an assertion can, or should, be made for a general topos
τφ . Certainly, for any presheaf topos, SetsCop

, one can talk about “localising” with
respect to the objects in the base category C , but the situation for a more general
topos is less clear.

13.14.2 The Quantity-Value Object Rφ

Let us turn now to the quantity-value object Rφ . This plays a key role in the rep-
resentation of any physical quantity, A, by an arrow Aφ : Σφ → Rφ . In so far
as a “thing” is a bundle of properties, these properties refer to values of physical
quantities, and so the nature of these “values” is of central importance.

We anticipate that Rφ has many global elements 1τφ → Rφ , and these can be
interpreted as the possible “values” for physical quantities. If Σφ also has global
elements/microstates s : 1τφ

→ Σφ , then these combine with any arrow Aφ : Σφ →
Rφ to give global elements of Rφ . It seems reasonable to refer to the element,
Aφ ◦ s : 1τφ

→ Rφ as the “value” of A when the microstate is s. However, our
expectation is that, in general, Σφ may well have no global elements, in which case
the interpretation of Aφ : Σφ → Rφ in terms of values is somewhat subtler. This
has to be done internally using the language L(τφ) associated with the topos τφ : the
overall logical structure is a nice example of a “coherence” theory of truth [35].

910 A. Döring and C. Isham

As far as axiomatic properties of Rφ are concerned, the minimal requirement
is presumably that it should have some ordering property that arises in all topos
representations of the system S. This universal property could be coded into the
internal language, L(S), of S. This implements our intuitive feeling that, in so far as
the concept of “value” has any meaning, it must be possible to say that the value of
one quantity is “larger” (or “smaller”) than that of another. It seems reasonable to
expect this relation to be transitive, but that is about all. In particular, we see no rea-
son to suppose that this relation will always correspond to a total ordering: perhaps
there are pairs of physical quantities whose “values” simply cannot be compared at
all. Thus, tentatively, we can augment L(S) with the axioms for a poset structure
on R.

Beyond this simple ordering property, it becomes less clear what to assume about
the quantity-value object. The example of quantum theory shows that it is wrong to
automatically equate Rφ with the real-number object Rφ in the topos τφ . Indeed,
we believe that this will typically be the case.

However, this makes it harder to know what to assume of Rφ . The quantum
case shows that Rφ may have considerably fewer algebraic properties than the real-
number object Rφ . On a more “topological” front it is attractive to assume that Rφ

is an internal locale in the topos τφ . However, one should be cautious when conjec-
turing about Rφ since our discussion of various possible quantity-value objects in
quantum theory depended closely on the specific details of the spectral structure in
this topos.

Heunen et al. brought up the idea of using the interval domain [42] (though, in
their case, one obtains a constant functor, which is not capturing approximation
processes). In general, the interval domain allows the systematic approximation of
real numbers without assuming the continuum as given. Clearly, it is an interesting
question if the quantity-value object Rφ can be related to the interval domain. It
remains to be seen if this has any generic use in practice.

In future applications, the quantity-value object Rφ may well have a much
weaker relation to the real numbers than in the topos form of quantum theory.

13.14.3 The Truth Objects T, or Pseudo-State Object Wφ

The truth objects in a topos representation are certain sub-objects of PΣφ. Their
construction will be very theory-dependent, as are the pseudo-states, and the
pseudo-state object, Wφ , if there is one. Each proposition about the physical sys-
tem is represented by a sub-object J ⊆ Σφ , and given a truth object T ⊆ PΣφ ,
the generalised truth value of the proposition is [[J ∈ T]] ∈ Γ Ωφ ; in terms of
pseudo-states, w, the generalised truth values are of the form [[w ⊆ J]] ∈ Γ Ωφ .

The key properties of the quantum truth objects, T
|ψ〉, (or pseudo-states w |ψ〉)

can easily be emulated if one is dealing with a more general base category, C, so
that the topos concerned is SetsCop

. However, it is not clear what, if anything, can
be said about the structure of truth objects/pseudo-states in a more generic topos
representation.

13 Topos Theory in the Foundations of Physics 911

An attractive possibility is that there is a general analogue of (13.148) in the form

1τφ PΣφ

Σφ

πφ

(13.470)

and that obstructions to the existence of global elements of the state object Σφ can
be studied with the aid of this diagram. If there is a pseudo-state object Wφ then this
could be a natural replacement for PΣφ in this diagram.

13.15 Conclusion

In this long article we have developed the idea that, for any given theory-type (clas-
sical physics, quantum physics, DI-physics,. . .) the theory of a particular physical
system, S, is to be constructed in the framework of a certain, system-dependent,
topos. The central idea is that a local language, L(S), is attached to each system
S, and that the application of a given theory-type to S is equivalent to finding a
representation, φ, of L(S) in a topos τφ(S); this is equivalent to finding a translation
of L(S) into the internal language associated with τφ(S); or a functor to τφ(S) from
the topos associated with L(S).

Physical quantities are represented by arrows in the topos from the state object
Σφ,S to the quantity-value object Rφ,S , and propositions are represented by sub-
objects of the state object. The idea of a “truth sub-object” of PΣφ,S (or a “pseudo-
state” sub-object of Σφ,S) then leads to a neo-realist interpretation of propositions
in which each proposition is assigned a truth value, given as a global element
of the sub-object classifier Ωτφ(S). In general, neo-realist statements about the
world/system S are to be expressed in the internal language of the topos τφ(S).
Underlying this is the intuitionistic, deductive logic provided by the local language
L(S).

These axioms are based on ideas from the topos representation of quantum the-
ory, which we have discussed in depth. Here, the topos involved is SetsV(H)op

: the
topos of presheaves over the base category V(H) of commutative, von Neumann
sub-algebras of the algebra, B(H), of all bounded operators on the quantum Hilbert
space H. Each such sub-algebra can be viewed as a context in which the theory
can be viewed from a classical perspective. Thus a context can be described as
a “classical snapshot”, or “window on reality”, or “world-view”/Weltanschauung.
Mathematically, a context is a “stage of truth”: a concept that goes back to Kripke’s
use of a presheaf topos to implement his intuitionistic view of time and process.
However, for quantum theory, the contexts and their relations do not incorporate
the idea of a process: there is no temporal aspect to them. Rather, what is encoded

912 A. Döring and C. Isham

in the structure of the context category V(H) are the potential classical views on a
quantum system and their relations (for a fixed time).

We have shown how the process of “daseinisation” maps projection operators
(and hence equivalence classes of propositions) into sub-objects of the state object
Σ . We have also shown how this can be extended to an arbitrary, bounded self-
adjoint operator, Â. This produces an arrow Ă : Σ → R where the minimal choice
for the quantity-value object, R, is the object R

�. We have also argued that, from
a physical perspective, it is more attractive to choose R

↔ as the quantity-value
presheaf. The significance of these results is enhanced considerably by the alter-
native, Heunen et al. derivation of Σ as the spectrum of an internal, commutative
algebra.

These, and related, results all encourage the idea that quantum theory can be
viewed as classical theory but in a topos other than the topos of sets, Sets.

Every classical system uses the same topos, Sets. However, in general, the topos
will be system dependent as, for example, is the case with the quantum topoi of
the form SetsV(H)op

, where H is the Hilbert space of the system. This leads to
the problem of understanding how the topoi for a class of systems behave under
the action of taking a sub-system, or combining a pair of systems to give a sin-
gle composite system. We have presented a set of axioms that capture the gen-
eral ideas we are trying to develop. Of course, these axioms are not cast in stone,
and are still partly ‘experimental’ in nature. However, we have shown that classi-
cal physics exactly fits our suggested scheme, and that quantum physics “almost”
does: “almost” because of the issues concerning the translation representation
of the arrows associated with compositions of systems that were discussed in
Sect. 13.13.3.

An important challenge for future work is to show that our general topos scheme
can be used to develop genuinely new theories of physics, not just to rewrite old
ones in a new way. Of particular interest is the problem with which we motivated
the scheme in the first place: namely, to find tools for constructing theories that go
beyond quantum theory and which do not use Hilbert spaces, path integrals, or any
of the other familiar entities in which the continuum real and/or complex numbers
play a fundamental role.

As we have discussed, the topoi for quantum systems are of the form SetsV(H)op
,

and hence embody contextual logic in a fundamental way. One way of going
“beyond” quantum theory, while escaping the a priori imposition of continuum
concepts, is to use presheaves over a more general “category of contexts”, C, i.e.,
develop the theory in the topos SetsC

op
. Such a structure embodies contextual, multi-

valued logic in an intrinsic way, and in that sense might be said to encapsulate one
of the fundamental insights of quantum theory. However, and unlike in quantum
theory, there is no obligation to use the real or complex numbers in the construction
of the category C.

Indeed, early on in this work we noted that real numbers arise in theories of
physics in three different (but related) ways: (i) as the values of physical quantities;
(ii) as the values of probabilities; and (iii) as a fundamental ingredient in models of

13 Topos Theory in the Foundations of Physics 913

space and time. The first of these is now subsumed into the quantity-value object
Rφ , and which now has no a priori relation to the real number object in τφ . The
second source of real numbers has gone completely since we no longer have proba-
bilities of propositions but rather generalised truth values whose values lie in Γ Ωτφ .
The third source is also no longer binding since models of space and time in a topos
could depend on many things: for example, infinitesimals.

Of course, although true, these remarks do not of themselves give a concrete
example of a theory that is “beyond quantum theory”. On the other hand, these
ideas certainly point in a novel direction, and one at which, we almost certainly
would not have arrived if the challenge to “go beyond quantum theory” had been
construed only in terms of trying to generalise Hilbert spaces, path integrals, and the
like.

From a more general perspective, other types of topoi are possible realms for
the construction of physical theories. One simple, but mathematically rich example
arises from the theory of M-sets. Here, M is a monoid and, like all monoids, can be
viewed as a category with a single object, and whose arrows are the elements of M .
Thought of as a category, a monoid is “complementary” to a partially-ordered set.
In a monoid, there is only one object, but plenty of arrows from that object to itself;
whereas in a partially-ordered set there are plenty of objects, but at most one arrow
between any pair of objects. Thus a partially-ordered set is the most economical
category with which to capture the concept of “contextual logic”. On the other hand,
the logic associated with a monoid is non-contextual as there is only one object in
the category.

It is easy to see that a functor from M to Sets is just an “M-set”: i.e., a set
on which M acts as a monoid of transformations. An arrow between two such
M-sets is an equivariant map between them. In physicists’ language, one would
say that the topos SetsM —usually denoted B M— is the category of the “non-linear
realisations” of M .

The sub-object classifier, ΩB M , in B M is the collection of left ideals in M ; hence,
many of the important constructions in the topos can be handled using the language
of algebra. The topos B M is one of the simplest to define and work with and, for
that reason, it is a popular source of examples in texts on topos theory. It would be
intriguing to experiment with constructing model theories of physics using one of
these simple topoi. One possible use of M-sets is discussed in [47] in the context of
reduction of the state vector, but there will surely be others.

Is there “un gros topos”?

It is clear that there are many other topics for future research. A question of particu-
lar interest is if there is a single topos within which all systems of a given theory-type
can be discussed. For example, in the case of quantum theory the relevant topoi are
of the form SetsV(H)op

, where H is a Hilbert space, and the question is whether
all such topoi can be gathered together to form a single topos (what Grothendieck
termed “un gros topos”) within which all quantum systems can be discussed.

914 A. Döring and C. Isham

There are well-known examples of such constructions in the mathematical liter-
ature. For example, the category, Sh(X), of sheaves on a topological space X is a
topos, and there are collections T of topological spaces which form a Grothendieck
site, so that the topos Sh(T) can be constructed. A particular object in Sh(T) will
then be a sheaf over T whose stalk over any object X in T will be the topos
Sh(X).

For our purposes, the ideal situation would be if the various categories of systems,
Sys, can be chosen in such a way that M(Sys) is a site. Then the topos of sheaves,
Sh(M(Sys)), over this site would provide a common topos in which all systems of
this theory type—i.e., the objects of Sys—can be discussed. We do not know if this
is possible, and it is a natural subject for future study.

Some more speculative lines of future research

At a conceptual level, one motivating desire for the entire research programme is
to find a formalism that will always give some sort of “realist” interpretation, even
in the case of quantum theory which is normally presented in an instrumentalist
way. But this particular example raises an interesting point because the neo-realist
interpretation takes place in the topos SetsV(H)op

, whereas the instrumentalist inter-
pretation works in the familiar topos, Sets, of sets, and one might wonder if the use
of a pair of topoi in this way is a general feature of “topos-physics”.

A related issue concerns the representation of the PL(S)-propositions of the
form “A ε Δ” discussed in Sect. 13.5. This serves as a bridge between the “external”
world of a background spatial structure, and the internal world of the topos. This
link is not present with the L(S) language whose propositions are purely inter-
nal terms of type Ω of the form “A(s̃) ∈ Δ̃”. In a topos representation, φ, of
L(S), these become propositions of the form “A ∈ Ξ”, where Ξ is a sub-object
of Rφ .

In general, if we have an example of our axioms working neo-realistically in
a topos τ , one might wonder if there is an “instrumentalist” interpretation of the
same theory in a different topos, τi , say? Of course, the word “instrumentalism” is
used metaphorically here, and any serious consideration of such a pair (τ, τi) would
require a lot of careful thought.

However, if a pair (τ, τi) does exist, the question then arises of whether there is
a categorial way of linking the neo-realist and instrumentalist interpretations: for
example, via a functor I : τ → τi . If so, is this related to some analogue of the
daseinisation operation that produced the representation of the PL(S)-propositions,
“A ε Δ” in quantum theory? Care is needed in discussing such issues since informal
set theory is used as a meta-language in constructing a topos, and one has to be
careful not to confuse this with the existence, or otherwise, of an “instrumentalist”
interpretation of any given representation.

If such a functor, I : τ → τi , did exist then one could speculate on the possibility
of finding an “interpolating chain” of functors

τ → τ 1 → τ 2 → · · · → τ n → τi (13.471)

13 Topos Theory in the Foundations of Physics 915

which could be interpreted conceptually as corresponding to an interpolation
between the philosophical views of realism and instrumentalism!

Even more speculatively one might wonder if “one person’s realism is another
person’s instrumentalism”. More precisely, given a pair (τ, τi) in the sense above,
could there be cases in which the topos τ carries a neo-realist interpretation of a the-
ory with respect to an instrumentalist interpretation in τi , whilst being the carrier of
an instrumentalist interpretation with respect to the neo-realism of a “higher” topos;
and so on? For example, is there some theory whose ‘instrumentalist manifestation‘
takes place in the topos SetsV(H)op

?
On the other hand, one might want to say that “instrumentalist” interpretations

always take place in the world of classical set theory, so that τi should always be
chosen to be Sets. In any event, it would be interesting to study the quantum case
more closely to see if there are any categorial relations between the formulation in
SetsV(H)op

and the instrumentalism interpretation in Sets. It can be anticipated that
the action of daseinisation will play an important role here.

All this is, perhaps,134 rather speculative, but there is a more obvious situa-
tion in which a double-topos structure will be necessary, irrespective of philo-
sophical musings on instrumentalism. This is if one wants to discuss the “clas-
sical limit” of some topos theory. In this case this limit will exist in the topos,
Sets, and this must be used in addition to the topos of the basic theory. A good
example of this, of course, is the topos of quantum theory discussed in this
article.

Implications for quantum gravity

A serious claim stemming from our work is that a successful theory of quantum
gravity should be constructed in some topos U—the “topos of the universe”—that
is not the topos of sets. All entities of physical interest will be represented in this
topos, including models for space-time (if there are any at a fundamental level in
quantum gravity) and, if relevant, loops, membranes etc. as well as incorporating
the anticipated generalisation of quantum theory.

Such a theory of quantum gravity will have a neo-realist interpretation in the
topos U , and hence would be particularly useful in the context of quantum cos-
mology. However, in practice, physicists divide the world up into smaller, more
easily handled, chunks, and each of them would correspond to what earlier we have
called a “system” and, correspondingly, would have its own topos. Thus U is some-
thing like the “gros topos” of the theory, and would glue together the individual
“sub-systems” in a categorial way. Of course, it is most unlikely that there is any
preferred way of dividing the universe up into bite-sized chunks, but this is not
problematic as the ensuing relativism is naturally incorporated into the idea of a
Grothendieck site.

134 To be honest, the “perhaps” should really be replaced by “highly”.

916 A. Döring and C. Isham

Appendix 1: Some Theorems and Constructions Used
in the Main Text

Results on Clopen Sub-Objects of Σ

Theorem 15 The collection, Subcl(Σ), of all clopen sub-objects of Σ is a Heyting
algebra.

Proof First recall how a Heyting algebra structure is placed on the set, Sub(Σ), of
all sub-objects of Σ .

The “∨”- and “∧”-operations.

Let S, T be two sub-objects of Σ . Then the “∨” and “∧” operations are defined by

(S ∨ T)V := SV ∪ T V (13.472)

(S ∧ T)V := SV ∩ T V (13.473)

for all contexts V . It is easy to see that if S and T are clopen sub-objects of Σ , then
so are S ∨ T and S ∧ T .

The Zero and Unit Elements

The zero element in the Heyting algebra Sub(Σ) is the empty sub-object 0 := {∅V |
V ∈ Ob(V(H))}, where ∅V is the empty subset of ΣV . The unit element in Sub(Σ)

is Σ . It is clear that both 0 and Σ are clopen sub-objects of Σ .

The “⇒”-operation.

The most interesting part is the definition of the implication S ⇒ T . For all V ∈
Ob(V(H)), it is given by

(S ⇒ T)V := {λ ∈ ΣV | ∀ V ′ ⊆ V, if

Σ(iV ′V)(λ) ∈ SV ′ then Σ(iV ′V)(λ) ∈ T V ′ } (13.474)

= {λ ∈ ΣV | ∀V ′ ⊆ V, if

λ|V ′ ∈ SV ′ then λ|V ′ ∈ T V ′ }. (13.475)

Since ¬S := S ⇒ 0, the expression for negation follows from the above as

(¬S)V = {λ ∈ ΣV | ∀ V ′ ⊆ V, Σ(iV ′V)(λ) /∈ SV ′ } (13.476)

= {λ ∈ ΣV | ∀ V ′ ⊆ V, λ|V ′ /∈ SV ′ }. (13.477)

We rewrite the formula for negation as

13 Topos Theory in the Foundations of Physics 917

(¬S)V =
⋂

V ′⊆V

{
λ ∈ ΣV | λ|V ′ ∈ Sc

V ′
}

(13.478)

where SV ′
c denotes the complement of SV ′ in ΣV ′ . Clearly, SV ′

c is clopen in ΣV ′
since SV ′ is clopen. Since the restriction Σ(iV ′V) : ΣV → ΣV ′ is continuous and
surjective,135 it is easy to see that the inverse image Σ(iV ′V)−1(SV ′

c) is clopen in
ΣV . Clearly,

Σ(iV ′V)−1(SV ′
c) = {

λ ∈ ΣV | λ|V ′ ∈ SV ′
c} (13.479)

and so, from (13.478) we have

(¬S)V =
⋂

V ′⊆V

Σ(iV ′V)−1(SV ′
c) (13.480)

The problem is that we want (¬S)V to be a clopen subset of ΣV . Now the right
hand side of (13.480) is the intersection of a family, parameterised by {V ′ | V ′ ⊆
V }, of clopen sets. Such an intersection is always closed, but it is only guaranteed
to be open if {V ′ | V ′ ⊆ V } is a finite set, which of course may not be the case.

If V ′′ ⊆ V ′ and λ|V ′′ ∈ SV ′′
c, then λ|V ′ ∈ SV ′

c. Indeed, if we had λ|V ′ ∈ SV ′ ,
then (λ|V ′)|V ′′ = λ|V ′′ ∈ SV ′′ by the definition of a sub-object, so we would have
a contradiction. This implies Σ(iV ′′V)−1(SV ′′

c) ⊆ Σ(iV ′V)−1(SV ′c), and hence
the right hand side of (13.480) is a decreasing net of clopen subsets of ΣV which
converges to something, which we take as the subset of ΣV that is to be (¬S)V .

Here we have used the fact that the set of clopen subsets of ΣV is a complete
lattice, where the minimum of a family (Ui)i∈I of clopen subsets is defined as the
interior of

⋂
i∈I Ui . This leads us to define

(¬S)V := int
⋂

V ′⊆V

Σ(iV ′V)−1(SV ′
c) (13.481)

= int
⋂

V ′⊆V

{
λ ∈ ΣV | λ|V ′ ∈ (SV ′

c)
}

(13.482)

as the negation in Subcl(Σ). This modified definition guarantees that ¬S is a clopen
sub-object. A straightforward extension of this method gives a consistent definition
of S ⇒ T .
This concludes the proof of the theorem.

The following theorem shows the relation between the restriction mappings of
the outer presheaf O and those of the spectral presheaf Σ . We basically follow de
Groote’s proof of Proposition 3.22 in [38] and show that this result, which uses quite
a different terminology, actually gives the desired relation.

135 See proof of Theorem 16 below.

918 A. Döring and C. Isham

Theorem 16 Let V, V ′ ∈ Ob(V(H)) such that V ′ ⊂ V . Then

SO(iV ′V)(δo(P̂)V)
= Σ(iV ′V)(S

δo(P̂)V
). (13.483)

Proof First of all, to simplify notation, we can replace δo(P̂)V by P̂ (which
amounts to the assumption that P̂ ∈ P(V). This does not play a role for the cur-
rent argument). By definition, O(iV ′V)

(
P̂

) = δo(P̂)V ′ , so we have to show that
S
δo(P̂)V ′

= Σ(iV ′V)(SP̂) holds.

If λ ∈ SP̂ , then λ(P̂) = 1, which implies λ(Q̂) = 1 for all Q̂ ≥ P̂ . In particular,

λ(δo(P̂)V ′) = 1, so Σ(iV ′V)(λ) = λ|V ′ ∈ S
δo(P̂)V ′

. This shows that Σ(iV ′V)(SP̂) ⊆
S
δo(P̂)V ′

.

To show the converse inclusion, let λ′ ∈ S
δo(P̂)V ′

, which means that

λ′(δo(P̂)V ′) = 1. We have P̂ ∈ O(iV ′V)−1(δo(P̂)V ′). Let

Fλ′ := {Q̂ ∈ P(V ′) | λ′(Q̂) = 1} = λ′−1(1) ∩ P(V ′). (13.484)

As shown in Sect. 13.8.3, Fλ′ is an ultrafilter in the projection lattice P(V ′).136 The
idea is to show that Fλ′ ∪ P̂ is a filter base in P(V) that can be extended to an
ultrafilter, which corresponds to an element of the Gel’fand spectrum of V .

Let us assume that Fλ′ ∪ P̂ is not a filter base in P(V). Then there exists some
Q̂ ∈ Fλ′ such that

Q̂ ∧ P̂ = Q̂ P̂ = 0̂, (13.485)

which implies P̂ ≤ 1̂− Q̂, so

O(iV ′V)(P̂) = δo(P̂)V ′ ≤ O(iV ′V)(1̂− Q̂) = 1̂− Q̂ (13.486)

and hence we get the contradiction

1 = λ′(δo(P̂)V ′) ≤ λ′(1̂− Q̂) = 0. (13.487)

By Zorn’s lemma, the filter base Fλ′ ∪ P̂ is contained in some (not necessarily
unique) maximal filter base in P(V). Such a maximal filter base is an ultrafilter
and thus corresponds to an element λ of the Gel’fand spectrum ΣV of V . Since
P̂ is contained in the ultrafilter, we have λ(P̂) = 1, so λ ∈ SP̂ . By construction,
Σ(iV ′V)(λ) = λ|V ′ = λ′ ∈ S

δo(P̂)V ′
, the element of ΣV ′ we started from. This

shows that S
δo(P̂)V ′

⊆ Σ(iV ′V)(SP̂), and we obtain

136 In general, each ultrafilter F in the projection lattice of an abelian von Neumann algebra V
corresponds to a unique element λF of the Gel’fand spectrum of V . The ultrafilter is the collection
of all those projections that are mapped to 1 by λ, i.e., F = λ−1

F (1) ∩ P(V).

13 Topos Theory in the Foundations of Physics 919

S
δo(P̂)V ′

= Σ(iV ′V)(SP̂). (13.488)

It is well-known that every state λ′ ∈ ΣV ′ is of the form λ′ = Σ(iV ′V)(λ) = λ|V ′
for some λ ∈ ΣV . This implies

Σ(iV ′V)−1(S
δo(P̂)V ′

) = S
δo(P̂)V ′

⊆ ΣV . (13.489)

Note that on the right hand side, S
δo(P̂)V ′

(and not SP̂ , which is a smaller set in
general) shows up.

De Groote has shown in [38] that for any unital abelian von Neumann algebra
V , the clopen sets SQ̂ , Q̂ ∈ P(V), form a base of the Gel’fand topology on ΣV .
Formulas (13.488) and (13.489) hence show that the restriction mappings

Σ(iV ′V) : ΣV → ΣV ′

λ !→ λ|V ′

of the spectral presheaf are open and continuous. Using continuity, it is easy to see
that Σ(iV ′V) is also closed: let C ⊆ ΣV be a closed subset. Since ΣV is compact,
C is compact, and since Σ(iV ′V) is continuous, Σ(iV ′V)(C) ⊆ ΣV ′ is compact,
too. However, ΣV ′ is Hausdorff, and so Σ(iV ′V)(C) is closed in ΣV ′ .

The Grothendieck k-Construction for an Abelian Monoid

Let us briefly review the Grothendieck construction for an abelian monoid M .

Definition 23 A group completion of M is an abelian group k(M) together with a
monoid map θ : M → k(M) that is universal. Namely, given any monoid morphism
φ : M → G, where G is an abelian group, there exists a unique group morphism
φ′ : k(M) → G such that φ factors through φ′; i.e., we have the commutative
diagram

M G
φ

k(M)

θ φ ′

with φ = φ′ ◦ θ .

It is easy to see that any such k(M) is unique up to isomorphism.
To prove existence, first take the set of all pairs (a, b) ∈ M × M , each of which

is to be thought of heuristically as a − b. Then, note that if inverses existed in M ,
we would have a − b = c − d if and only if a + d = c + b. This suggests defining
an equivalence relation on M × M in the following way:

(a, b) ≡ (c, d) iff ∃g ∈ M such that a + d + g = b + c + g. (13.490)

920 A. Döring and C. Isham

Definition 24 The Grothendieck completion of an abelian monoid M is the pair
(k(M), θ) defined as follows:

(i) k(M) is the set of equivalence classes [a, b], where the equivalence relation is
defined in (13.490). A group law on k(M) is defined by

(i) [a, b] + [c, d] := [a + c, b + d], (13.491)

(ii) 0k(M) := [0M , 0M], (13.492)

(iii) − [a, b] := [b, a], (13.493)

where 0M is the unit in the abelian monoid M .
(ii) The map θ : M → k(M) is defined by

θ(a) := [a, 0] (13.494)

for all a ∈ M .

It is straightforward to show that (i) these definitions are independent of the
representative elements in the equivalence classes; (ii) the axioms for a group are
satisfied; and (iii) the map θ is universal in the sense mentioned above.

It is also clear that k is a functor from the category of abelian monoids to the
category of abelian groups. For, if f : M1 → M2 is a morphism between abelian
monoids, define k(f) : k(M1) → k(M2) by k(f)[a, b] := [f (a), f (b)] for all
a, b ∈ M1.

Functions of Bounded Variation and Γ R
�

These techniques will now be applied to the set, Γ R
�, of global elements of R

�.
We could equally well consider Γ R

↔ and its k-extension, but this would just make
the notation more complex, so in this and the following Subsections, we will mainly
concentrate on Γ R

� (resp. R
�). The results can easily be extended to Γ R

↔ (resp.
R
↔).
It was discussed in Sect. 13.8.2 how global elements of R

↔ are in one-to-one
correspondence with pairs (μ, ν) consisting of an order-preserving and an order-
reversing function on the category V(H); i.e., with functions μ : Ob(V(H)) →
R such that, for all V1, V2 ∈ Ob(V(H)), if V2 ⊆ V1 then μ(V2) ≤ μ(V1) and
ν : Ob(V(H)) → R such that, for all V1, V2 ∈ Ob(V(H)), if V2 ⊆ V1 then
ν(V2) ≥ ν(V1); see (13.291). The monoid law on Γ R

↔ is given by (13.295).
Clearly, global elements of R

� are given by order-reversing functions ν :
V(H) → R, and Γ R

� is an abelian monoid in the obvious way. Hence the
Grothendieck construction can be applied to give an abelian group k(Γ R

�). This
is defined to be the set of equivalence classes [ν, κ] where ν, κ ∈ Γ R

�, and where
(ν1, κ1) ≡ (ν2, κ2) if, and only if, there exists α ∈ Γ R

�, such that

13 Topos Theory in the Foundations of Physics 921

ν1 + κ2 + α = κ1 + ν2 + α (13.495)

Since Γ R
� has a cancellation law, we have (ν1, κ1) ≡ (ν2, κ2) if, and only if,

ν1 + κ2 = κ1 + ν2. (13.496)

Intuitively, we can think of [ν, κ] as being “ν − κ”, and embed Γ R
� in k(Γ R

�)

by ν !→ [ν, 0]. However, ν, κ are R-valued functions on Ob(V(H)) and hence, in
this case, the expression “ν − κ” also has a literal meaning: i.e., as the function
(ν − κ)(V) := ν(V)− κ(V) for all V ∈ Ob(V(H)).

This is not just a coincidence of notation. Indeed, let F
(
Ob(V(H)), R

)
denote

the set of all real-valued functions on Ob(V(H)). Then we can construct the map,

j : k(Γ R
�) → F

(
Ob(V(H)), R

)
(13.497)

[ν, κ] !→ ν − κ

which is well-defined on equivalence classes.
It is easy to see that the map in (13.497) is injective. This raises the question of

the image in F
(
Ob(V(H)), R

)
of the map j : i.e., what types of real-valued func-

tion on Ob(V(H)) can be written as the difference between two order-reversing
functions?

For functions f : R → R, it is a standard result that a function can be written
as the difference between two monotonic functions if, and only if, it has bounded
variation. The natural conjecture is that a similar result applies here. To show this,
we proceed as follows.

Let f : Ob(V(H)) → R be a real-valued function on the set of objects in the
category V(H). At each V ∈ Ob(V(H)), consider a finite chain

C := {V0, V1, V2, . . . , Vn−1, V | V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ V } (13.498)

of proper subsets, and define the variation of f on this chain to be

V f (C) :=
n∑

j=1

| f (Vj)− f (Vj−1)| (13.499)

where we set Vn := V . Now take the supremum of V f (C) for all such chains C . If
this is finite, we say that f has a bounded variation and define

I f (V) := sup
C

V f (C) (13.500)

Then it is clear that (i) V !→ I f (V) is an order-preserving function on
Ob(V(H)); (ii) f − I f is an order-reversing function on Ob(V(H)); and (iii) −I f

922 A. Döring and C. Isham

is an order-reversing function on Ob(V(H)). Thus, any function, f , of bounded
variation can be written as

f ≡ (f − I f)− (−I f) (13.501)

which is the difference of two order-reversing functions; i.e., f can be expressed as
the difference of two elements of Γ R

�.
Conversely, it is a straightforward modification of the proof for functions

f : R → R, to show that if f : Ob(V(H)) → R is the difference of two order-
reversing functions, then f is of bounded variation. The conclusion is that k(Γ R

�)

is in bijective correspondence with the set, BV(Ob(V(H)), R), of functions f :
Ob(V(H))→ R of bounded variation.

Taking Squares in k(Γ R
�)

We can now think of k(Γ R
�) in two ways: (i) as the set of equivalence classes [ν, κ],

of elements ν, κ ∈ Γ R
�; and (ii) as the set, BV(Ob(V(H)), R), of differences ν−κ

of such elements.
As expected, BV(Ob(V(H)), R) is an abelian group. Indeed: suppose α = ν1 −

κ1 and β = ν2 − κ2 with ν1, ν2, κ1, κ2 ∈ Γ R
�, then

α + β = (ν1 + ν2)− (κ1 + κ2) (13.502)

Hence α + β belongs to BV(Ob(V(H)), R) since ν1 + ν2 and κ1 + κ2 belong to
Γ R

�.

The definition of [ν, 0]2.

We will now show how to take the square of elements of k(Γ R
�) that are of the

form [ν, 0]. Clearly, ν2 is well-defined as a function on Ob(V(H)), but it may not
belong to Γ R

�. Indeed, if ν(V) < 0 for any V , then the function V !→ ν2(V) can
get smaller as V gets smaller, so it is order-preserving instead of order-reversing.

This suggests the following strategy. First, define functions ν+ and ν− by

ν+(V) :=
{

ν(V) if ν(V) ≥ 0

0 if ν(V) < 0
(13.503)

and

ν−(V) :=
{

0 if ν(V) ≥ 0

ν(V) if ν(V) < 0.
(13.504)

Clearly, ν(V) = ν+(V) + ν−(V) for all V ∈ Ob(V(H)). Also, for all V ,
ν+(V)ν−(V) = 0, and hence

13 Topos Theory in the Foundations of Physics 923

ν(V)2 = ν+(V)2 + ν−(V)2 (13.505)

However, (i) the function V !→ ν+(V)2 is order-reversing; and (ii) the function
V !→ ν−(V)2 is order-preserving. But then V !→ −ν−(V)2 is order-reversing.
Hence, by rewriting (13.505) as

ν(V)2 = ν+(V)2 − (−ν−(V)2) (13.506)

we see that the function V !→ ν2(V) := ν(V)2 is an element of BV(Ob(V(H)), R).
In terms of k(Γ R

�), we can define

[ν, 0]2 := [ν2+,−ν2−] (13.507)

which belongs to k(Γ R
�). Hence, although there exist ν ∈ Γ R

� that have no
square in Γ R

�, such global elements of R
� do have squares in the k-completion,

k(Γ R
�). On the level of functions of bounded variation, we have shown that the

square of a monotonic (order-reversing) function is a function of bounded variation.
On the other hand, we cannot take the square of an arbitrary element [ν, κ] ∈

Γ R
�, since the square of a function of bounded variation need not be a function of

bounded variation.137

The Object k(R�) in the Topos SetsV(H)op

The Definition of k(R�)

The next step is to translate these results about the set k(Γ R
�) into the construction

of an object k(R�) in the topos SetsV(H)op
. We anticipate that, if this can be done,

then k(Γ R
�) Γ k(R�).

As was discussed in Sect. (13.8.2), the presheaf R
� is defined at each stage V by

R
�

V := {ν :↓V → R | ν ∈ OR(↓V, R)}. (13.508)

If iV ′V : V ′ ⊆ V , then the presheaf map from R
�

V to R
�

V ′ is just the restriction of
the order-reversing functions from ↓V to ↓V ′.

The first step in constructing k(R�) is to define an equivalence relation on pairs
of functions, ν, κ ∈ R

�
V , for each stage V , by saying that (ν1, κ1) ≡ (ν2, κ2) if,

and only, there exists α ∈ R
�

V such that

ν1(V ′)+ κ2(V ′)+ α(V ′) = κ1(V ′)+ ν2(V ′)+ α(V ′) (13.509)

for all V ′ ⊆ V .

137 We have to consider functions like (ν+ + ν− − (κ+ + κ−))2, which contains terms of the form
ν+κ− and ν−κ+: in general, these are neither order-preserving nor order-reversing.

924 A. Döring and C. Isham

Definition 25 The presheaf k(R�) is defined over the category V(H) in the follow-
ing way.

(i) On objects V ∈ Ob(V(H)):

k(R�)V := {[ν, κ] | ν, κ ∈ OR(↓V, R)}, (13.510)

where [ν, κ] denotes the k-equivalence class of (ν, κ).
(ii) On morphisms iV ′V : V ′ ⊆ V : The arrow k(R�)(iV ′V) : k(R�)V → k(R�)V ′

is given by
(
k(R�)(iV ′V)

)
([ν, κ]) := [ν|V ′, κ|V ′] for all [ν, κ] ∈ k(R�)V .

It is straightforward to show that k(R�) is an abelian group-object in the topos
SetsV(H)op

. In particular, an arrow + : k(R�)× k(R�) → k(R�) is defined at each
stage V by

+V
([ν1, κ1], [ν2, κ2]

) := [ν1 + ν2, κ1 + κ2] (13.511)

for all
([ν1, κ1], [ν2, κ2]

) ∈ k(R�)V × k(R�)V . It is easy to see that (i) Γ k(R�)
k(Γ R

�); and (ii) R
� is a sub-object of k(R�) in the topos SetsV(H)op

.

The Presheaf k(R�) as the Quantity-Value Object

We can now identify k(R�) as a possible quantity-value object in SetsV(H)op
. To

each bounded, self-adjoint operator Â, there is an arrow [δ̆o(Â)] : Σ → k(R�),
given by first sending Â ∈ B(H)sa to δ̆o(Â) and then taking k-equivalence classes.
More precisely, one takes the monic ι : R� ↪→ k(R�) and then constructs ι◦ δ̆o(Â) :
Σ → k(R�).

Since, for each stage V , the elements in the image of [δ̆o(Â)]V = (ι ◦ δ̆o(Â))V

are of the form [ν, 0], ν ∈ R
�

V , their square is well-defined. From a physical per-
spective, the use of k(R�) rather than R

� renders possible the definition of things

like the ‘intrinsic dispersion’, ∇(Â) := δ̆o(Â2)− δ̆o(Â)2; see (13.306).

The Square of an Arrow [δ̆o(Â)]
An arrow [δ̆o(Â)] : Σ → k(R�) is constructed by first forming the outer daseini-
sation δ̆o(Â) of Â, which is an arrow from Σ to R

�, and then composing with the
monic arrow from R

� to k(R�). Since only outer daseinisation is used, for each
V ∈ V(H) and each λ ∈ ΣV one obtains an element of k(R�)V of the form
[δo(Â)V (λ), 0]. We saw how to take the square of these functions, and applying this
to all λ ∈ ΣV and all V ∈ V(H), we get the square [δ̆o(Â)]2 of the arrow [δ̆o(Â)].

If we consider an arrow of the form δ̆(Â) : Σ → R
↔, then the construction

involves both inner and outer daseinisation, see Theorem 7. For each V and each
λ ∈ ΣV , we obtain a pair of functions (δi (Â)V (λ), δo(Â)V (λ)), which are both not
constantly 0 in general. There is no canonical way to take the square of these in

13 Topos Theory in the Foundations of Physics 925

R
↔

V . Going to the k-extension k(R↔) of R
↔ does not improve the situation, so

we cannot define the square of an arrow δ̆(Â) (or [δ̆(Â)] in general.

Appendix 2: A Short Introduction to the Relevant Parts
of Topos Theory

What is a Topos?

It is impossible to give here more than the briefest of introductions to topos theory.
At the danger of being highly imprecise, we restrict ourselves to mentioning some
aspects of this well-developed mathematical theory and give a number of pointers
to the literature. The aim merely is to give a very rough idea of the structure and
internal logic of a topos.

There are a number of excellent textbooks on topos theory, and the reader should
consult at least one of them. We found the following books useful: [64, 34, 66, 55,
11, 59].

Topos theory is a remarkably rich branch of mathematics which can be
approached from a variety of different viewpoints. The basic area of mathematics is
category theory; where, we recall, a category consists of a collection of objects and
a collection of morphisms (or arrows).

In the special case of the category of sets, the objects are sets, and a morphism
is a function between a pair of sets. In general, each morphism f in a category is
associated with a pair of objects.138 known as its “domain” and “codomain”, and is
written as f : B → A where B and A are the domain and codomain respectively.
Note that this arrow notation is used even if f is not a function in the normal set-
theoretic sense. A key ingredient in the definition of a category is that if f : B → A
and g : C → B (i.e., the codomain of g is equal to the domain of f) then f and g
can be ‘composed’ to give an arrow f ◦ g : C → A; in the case of the category of
sets, this is just the usual composition of functions.

A simple example of a category is given by any partially-ordered set (“poset”) C:
(i) the objects are defined to be the elements of C; and (ii) if p, q ∈ C, a morphism
from p to q is defined to exist if, and only if, p 	 q in the poset structure. Thus,
in a poset regarded as a category, there is at most one morphism between any pair
of objects p, q ∈ C; if it exists, we shall write this morphism as i pq : p → q.
This example is important for us in form of the “category of contexts”, V(H), in
quantum theory. The objects in V(H) are the commutative, unital139 von Neumann
sub-algebras of the algebra, B(H), of all bounded operators on the Hilbert space H.

138 The collection of all objects in category, C, is denoted Ob(C). The collection of arrows from B
to A is denoted HomC(B, A). We will only be interested in ‘small’ categories in which both these
collections are sets (rather than the, more general, classes.)
139 “Unital” means that all these algebras contain the identity operator 1̂ ∈ B(H).

926 A. Döring and C. Isham

Topoi as Mathematical Universes

Every (elementary) topos τ can be seen as a mathematical universe. As a category,
a topos τ possesses a number of structures that generalise constructions that are
possible in the category, Sets, of sets and functions.140 Namely, in Sets, we can
construct new sets from given ones in several ways. Specifically, let S, T be two
sets, then we can form the cartesian product S× T , the disjoint union S4 T and the
exponential ST —the set of all functions from T to S.

These constructions turn out to be fundamental, and they can all be phrased in
an abstract, categorical manner, where they are called the “product”, “co-product”
and “exponential”, respectively. By definition, in a topos τ , these operations always
exist. The first and second of these properties are called “finite completeness” and
“finite co-completeness”, respectively.

One consequence of the existence of finite limits is that each topos, τ , has a
terminal object, denoted by 1τ . This is characterised by the property that for any
object A in the topos τ , there exists exactly one arrow from A to 1τ . In Sets, any
one-element set 1 = {∗} is terminal.141

Of course, Sets is a topos, too, and it is precisely the topos which usually plays
the role of our mathematical universe, since we construct our mathematical objects
starting from sets and functions between them. As a slogan, we have: a topos τ is
a category with “certain crucial” properties that are similar to those in Sets. A very
nice and gentle introduction to these aspects of topos theory is the book [64]. Other
good sources are [34, 65].

In order to “do mathematics”, one must also have a logic, including a deductive
system. Each topos comes equipped with an internal logic, which is of intuitionistic
type. We will now very briefly sketch the main characteristics of intuitionistic logic
and the mathematical structures in a topos that realise this logic.

The Sub-object Classifier

Let X be a set, and let P(X) be the power set of X ; i.e., the set of subsets of X .
Given a subset K ∈ P(X), one can ask for each point x ∈ X whether or not it lies
in K . Thus there is the characteristic function χK : X → {0, 1} of K , which is
defined as

χK (x) :=
{

1 if x ∈ K
0 if x /∈ K

(13.512)

for all x ∈ X ; cf. (13.95). The two-element set {0, 1} plays the role of a set of truth
values for propositions (of the form “x ∈ K ”). Clearly, 1 corresponds to “true”,

140 More precisely, small sets and functions between them. Small means that we do not have proper
classes. One must take care in these foundational issues to avoid problems like Russell’s paradox.
141 Like many categorical constructions, the terminal object is fixed only up to isomorphism: all
one-element sets are isomorphic to each other, and any of them can serve as a terminal object.
Nonetheless, one speaks of the terminal object.

13 Topos Theory in the Foundations of Physics 927

0 corresponds to “false”, and there are no other possibilities. This is an argument
about sets, so it takes place in, and uses the logic of, the topos Sets of sets and
functions. Sets is a Boolean topos, in which the familiar two-valued logic and the
axiom (∗) hold. (This does not contradict the fact that the internal logic of topoi is
intuitionistic, since Boolean logic is a special case of intuitionistic logic.)

In an arbitrary topos, τ , there is a special object Ωτ , called the sub-object classi-
fier, that takes the role of the set {0, 1} {false, true} of truth values. Let B be an
object in the topos, and let A be a sub-object of B. This means that there is a monic
A → B,142 (this is the categorical generalisation of the inclusion of a subset K into
a larger set X). As in the case of Sets, we can also characterise A as a sub-object
of B by an arrow from B to the sub-object classifier Ωτ ; in Sets, this arrow is the
characteristic function χK : X → {0, 1} of (13.512). Intuitively, this ‘characteristic
arrow’ from B to Ωτ describes how A ‘lies in’ B. The textbook definition is:

Definition 26 In a category τ with finite limits, a sub-object classifier is an object
Ωτ , together with a monic true : 1τ → Ωτ , such that to every monic m : A → B
in τ there is a unique arrow χA : B → Ωτ which, with the given monic, forms a
pullback square

B Ω τχ Α

A 1τ

m true

In Sets, the arrow true : 1 → {0, 1} is given by true(∗) = 1. In general, the
sub-object classifier, Ωτ , need not be a set, since it is an object in the topos τ , and
the objects of τ need not be sets. Nonetheless, there is an abstract notion of elements
(or points) in category theory that we can use. Then the elements of Ωτ are the truth
values available in the internal logic of our topos τ , just like “false” and “true”, the
elements of {false, true}, are the truth values available in the topos Sets.

To understand the abstract notion of elements, let us consider sets for a moment.
Let 1 = {∗} be a one-element set, the terminal object in Sets. Let S be a set and
consider an arrow e from 1 to S. Clearly, (i) e(∗) ∈ S is an element of S; and (ii) the
set of all functions from 1 to S corresponds exactly to the set of all elements of S.

This idea can be generalised to any category that has a terminal object 1. More
precisely, an element of an object A is defined to be an arrow from 1 to A in the
category. For example, in the definition of the sub-object classifier the arrow “true :
1τ → Ωτ ” is an element of Ωτ . It may happen that an object A has no elements,
i.e., there are no arrows 1τ → A. It is common to consider arrows from sub-objects
U of A to A as generalised elements.

142 A monic is the categorical version of an injective function. In the topos Sets, monics exactly
are injective functions.

928 A. Döring and C. Isham

As mentioned above, the elements of the sub-object classifier, understood as the
arrows 1τ → Ωτ , are the truth values. Moreover, the set of these arrows forms
a Heyting algebra (see, for example, Sect. 8.3 in [34]). This is how (the algebraic
representation of) intuitionistic logic manifests itself in a topos. Another, closely
related fact is that the set, Sub(A), of sub-objects of any object A in a topos forms a
Heyting algebra.

The Definition of a Topos

Let us pull together these various remarks and list the most important properties of
a topos, τ , for our purposes:

1. There is a terminal object 1τ in τ . Thus, given any object A in the topos, there is
a unique arrow A → 1τ .
For any object A in the topos, an arrow 1τ → A is called a global element of A.
The set of all global elements of A is denoted Γ A.
Given A, B ∈ Ob(τ), there is a product A × B in τ . In fact, a topos always has
pull-backs, and the product is just a special case of this.143

2. There is an initial object 0τ in τ . This means that given any object A in the topos,
there is a unique arrow 0τ → A.
Given A, B ∈ Ob(τ), there is a co-product A - B in τ . In fact, a topos always
has push-outs, and the co-product is just a special case of this.144

3. There is exponentiation: i.e., given objects A, B in τ we can form an object AB ,
which is the topos analogue of the set of functions from B to A in set theory.
The definitive property of exponentiation is that, given any object C , there is an
isomorphism

Homτ

(
C, AB) Homτ

(
C × B, A

)
(13.513)

that is natural in A and C ; i.e., it is ‘well-behaved’ under morphisms of the
objects involved.

4. There is a sub-object classifier Ωτ .

Presheaves on a Poset

To illustrate the main ideas, we will first give a few definitions from the theory
of presheaves on a partially ordered set (or “poset”); in the case of quantum theory,
this poset is the space of “contexts” in which propositions are asserted. We shall then
use these ideas to motivate the definition of a presheaf on a general category. Only
the briefest of treatments is given here, and the reader is referred to the standard
literature for more information [34, 66].

143 The conditions in 1. above are equivalent to saying that τ is finitely complete.
144 The conditions in 2. above are equivalent to saying that τ is finitely co-complete.

13 Topos Theory in the Foundations of Physics 929

A presheaf (also known as a varying set) X on a poset C is a function that assigns
to each p ∈ C, a set X p; and to each pair p 	 q (i.e., i pq : p → q), a map
Xqp : Xq → X p such that (i) X pp : X p → X p is the identity map idX p

on X p,

and (ii) whenever p 	 q 	 r , the composite map Xr

Xrq−→ Xq

Xqp−→ X p is equal to

Xr

Xrp−→ X p, i.e.,

Xr p = Xqp ◦ Xrq . (13.514)

The notation Xqp is shorthand for the more cumbersome X(i pq); see below in the
definition of a functor.

An arrow, or natural transformation η : X → Y between two presheaves X, Y
on C is a family of maps ηp : X p → Y p, p ∈ C, that satisfy the intertwining
conditions

ηp ◦ Xqp = Y qp ◦ ηq (13.515)

whenever p 	 q. This is equivalent to the commutative diagram

Yq Y pY qp

X q Xp

X qp

ηq ηp

(13.516)

It follows from these basic definitions, that a sub-object of a presheaf X is a
presheaf K , with an arrow i : K → X such that (i) K p ⊆ X p for all p ∈ C; and (ii)
for all p 	 q, the map Kqp : K q → K p is the restriction of Xqp : Xq → X p to the
subset K q ⊆ Xq . This is shown in the commutative diagram

X q X pX qp

K q K p

K qp

(13.517)

where the vertical arrows are subset inclusions.
The collection of all presheaves on a poset C forms a category, denoted SetsC

op
.

The arrows/morphisms between presheaves in this category the arrows (natural
transformations) defined above.

930 A. Döring and C. Isham

Presheaves on a General Category

The ideas sketched above admit an immediate generalization to the theory of
presheaves on an arbitrary “small” category C (the qualification “small” means that
the collection of objects is a genuine set, as is the collection of all arrows/morphisms
between any pair of objects). To make the necessary definition we first need the idea
of a “functor”:

The Idea of a Functor

A central concept is that of a “functor” between a pair of categories C and D.
Broadly speaking, this is an arrow-preserving function from one category to the
other. The precise definition is as follows.

Definition 27 1. A covariant functor F from a category C to a category D is a
function that assigns

(a)to each C-object A, a D-object FA;
(b)to each C-morphism f : B → A, a D-morphism F(f) : FB → FA such that

F(idA) = idFA ; and, if g : C → B, and f : B → A then

F(f ◦ g) = F(f) ◦ F(g). (13.518)

2. A contravariant functor X from a category C to a category D is a function that
assigns

(a)to each C-object A, a D-object X A;
(b)to each C-morphism f : B → A, a D-morphism X (f) : X A → X B such that

X (idA) = idX A ; and, if g : C → B, and f : B → A then

X (f ◦ g) = X (g) ◦ X (f). (13.519)

The connection with the idea of a presheaf on a poset is straightforward. As
mentioned above, a poset C can be regarded as a category in its own right, and it is
clear that a presheaf on the poset C is the same thing as a contravariant functor X
from the category C to the category Sets of normal sets. Equivalently, it is a covariant
functor from the “opposite” category145 Cop to Sets. Clearly, (13.514) corresponds
to the contravariant condition (13.519). Note that mathematicians usually call the
objects in C “stages of truth”, or just “stages”. For us they are “contexts”, “classical
snap-shops”, or “world views”.

145 The ‘opposite’ of a category C is a category, denoted Cop, whose objects are the same as those of
C, and whose morphisms are defined to be the opposite of those of C; i.e., a morphism f : A → B
in Cop is said to exist if, and only if, there is a morphism f : B → A in C.

13 Topos Theory in the Foundations of Physics 931

Presheaves on an Arbitrary Category C
These remarks motivate the definition of a presheaf on an arbitrary small category
C: namely, a presheaf on C is a covariant functor146 X : Cop → Sets from Cop to
the category of sets. Equivalently, a presheaf is a contravariant functor from C to the
category of sets.

We want to make the collection of presheaves on C into a category, and therefore
we need to define what is meant by a “morphism” between two presheaves X and
Y . The intuitive idea is that such a morphism from X to Y must give a “picture” of
X within Y . Formally, such a morphism is defined to be a natural transformation
N : X → Y , by which is meant a family of maps (called the components of N)
NA : X A → Y A, A ∈ Ob()C , such that if f : B → A is a morphism in C, then

the composite map X A
NA−→ Y A

Y (f)−→ Y B is equal to X A
X(f)−→ X B

NB−→ Y A. In other
words, we have the commutative diagram

Y A Y BY (f)

X A XB
X(f)

NA NB

(13.520)

of which (13.516) is clearly a special case. The category of presheaves on C
equipped with these morphisms is denoted SetsC

op
.

The idea of a sub-object generalizes in an obvious way. Thus we say that K is a
sub-object of X if there is a morphism in the category of presheaves (i.e., a natural
transformation) ι : K → X with the property that, for each A, the component map
ιA : K A → X A is a subset embedding, i.e., K A ⊆ X A. Thus, if f : B → A is any
morphism in C, we get the analogue of the commutative diagram (13.517):

XA XBX(f)

KA KB
K(f)

(13.521)

where, once again, the vertical arrows are subset inclusions.
The category of presheaves on C, SetsC

op
, forms a topos. We do not need the full

definition of a topos; but we do need the idea, mentioned in Sect. 13.17.2, that a
topos has a sub-object classifier Ω , to which we now turn.

146 Throughout this article, a presheaf is indicated by a letter that is underlined.

932 A. Döring and C. Isham

Sieves and The Sub-object Classifier Ω

Among the key concepts in presheaf theory is that of a “sieve”, which plays a central
role in the construction of the sub-object classifier in the topos of presheaves on a
category C.

A sieve on an object A in C is defined to be a collection S of morphisms f : B →
A in C with the property that if f : B → A belongs to S, and if g : C → B is any
morphism with co-domain B, then f ◦ g : C → A also belongs to S. In the simple
case where C is a poset, a sieve on p ∈ C is any subset S of C such that if r ∈ S then
(i) r 	 p, and (ii) r ′ ∈ S for all r ′ 	 r ; in other words, a sieve is nothing but a lower
set in the poset.

The presheaf Ω : C → Sets is now defined as follows. If A is an object in
C, then Ω A is defined to be the set of all sieves on A; and if f : B → A, then
Ω(f) : Ω A → Ω B is defined as

Ω(f)(S) := {h : C → B | f ◦ h ∈ S} (13.522)

for all S ∈ Ω A; the sieve Ω(f)(S) is often written as f ∗(S), and is known as the
pull-back to B of the sieve S on A by the morphism f : B → A.

It should be noted that if S is a sieve on A, and if f : B → A belongs to S, then
from the defining property of a sieve we have

f ∗(S) := {h : C → B | f ◦ h ∈ S} = {h : C → B} =: ↓B (13.523)

where ↓B denotes the principal sieve on B, defined to be the set of all morphisms
in C whose codomain is B.

If C is a poset, the pull-back operation corresponds to a family of maps Ωqp :
Ωq → Ω p (where Ω p denotes the set of all sieves/lower sets on p in the poset)
defined by Ωqp = Ω(i pq) if i pq : p → q (i.e., p 	 q). It is straightforward to
check that if S ∈ Ωq , then

Ωqp(S) :=↓ p ∩ S (13.524)

where ↓ p := {r ∈ C | r 	 p}.
A crucial property of sieves is that the set Ω A of sieves on A has the structure

of a Heyting algebra. Specifically, the unit element 1Ω A
in Ω A is the principal sieve

↓A, and the null element 0Ω A
is the empty sieve ∅. The partial ordering in Ω A is

defined by S1 	 S2 if, and only if, S1 ⊆ S2; and the logical connectives are defined
as:

S1 ∧ S2 := S1 ∩ S2 (13.525)

S1 ∨ S2 := S1 ∪ S2 (13.526)

S1 ⇒ S2 := { f : B → A | ∀g : C → B if f ◦ g ∈ S1 then f ◦ g ∈ S2} (13.527)

As in any Heyting algebra, the negation of an element S (called the pseudo-
complement of S) is defined as ¬S := S ⇒ 0; so that

13 Topos Theory in the Foundations of Physics 933

¬S := { f : B → A | for all g : C → B, f ◦ g �∈ S}. (13.528)

It can be shown that the presheaf Ω is a sub-object classifier for the topos SetsC
op

.
That is to say, sub-objects of any object X in this topos (i.e., any presheaf on C) are
in one-to-one correspondence with morphisms χ : X → Ω . This works as follows.
First, let K be a sub-object of X with an associated characteristic arrow χK : X →
Ω . Then, at any stage A in C, the ‘components’ of this arrow, χK A : X A → Ω A,
are defined as

χK A(x) := { f : B → A | X(f)(x) ∈ K B} (13.529)

for all x ∈ X A. That the right hand side of (13.529) actually is a sieve on A follows
from the defining properties of a sub-object.

Thus, in each “branch” of the category C going “down” from the stage A, χK A(x)

picks out the first member B in that branch for which X(f)(x) lies in the subset K B ,
and the commutative diagram (13.521) then guarantees that X(h ◦ f)(x) will lie in
K C for all h : C → B. Thus each stage A in C serves as a possible context for an
assignment to each x ∈ X A of a generalised truth value—a sieve belonging to the
Heyting algebra Ω A. This is the sense in which contextual, generalised truth values
arise naturally in a topos of presheaves.

There is a converse to (13.529): namely, each morphism χ : X → Ω (i.e., a
natural transformation between the presheaves X and Ω) defines a sub-object K χ

of X via

K χ
A := χ−1

A {1Ω A
}. (13.530)

at each stage A.

Global Elements of a Presheaf

For the category of presheaves on C, a terminal object 1 : C → Sets can be defined
by 1A := {∗} at all stages A in C; if f : B → A is a morphism in C then 1(f) :
{∗} → {∗} is defined to be the map ∗ !→ ∗. This is indeed a terminal object since,
for any presheaf X , we can define a unique natural transformation N : X → 1
whose components NA : X(A) → 1A = {∗} are the constant maps x !→ ∗ for all
x ∈ X A.

As a morphism γ : 1 → X in the topos SetsC
op

, a global element corresponds to
a choice of an element γA ∈ X A for each stage A in C, such that, if f : B → A, the
‘matching condition’

X(f)(γA) = γB (13.531)

is satisfied.

Acknowledgments This research was supported by grant RFP1-06-04 from The Foundational
Questions Institute (fqxi.org). AD gratefully acknowledges financial support from the DAAD.

934 A. Döring and C. Isham

This work is also supported in part by the EC Marie Curie Research and Training Network
“ENRAGE” (European Network on Random GEometry) MRTN-CT-2004-005616.

We are both very grateful to the late Professor Hans de Groote for his detailed and insightful
comments on our work. We also profited from discussions with Bas Spitter, Chris Heunen and
Klaas Landsman, as well as with Samson Abramsky and Bob Coecke, and with Chris Mulvey and
Steve Vickers. We thank Rick Kostecki and Bertfried Fauser for pointing out a number of typos in
the first version of this paper.

CJI expresses his gratitude to Jeremy Butterfield for the lengthy, and most enjoyable, collabo-
ration in which were formulated the early ideas about using topoi to study quantum theory.

References

1. Abramsky, S.: Domain Theory and the Logic of Observable Properties. PhD thesis, Queen
Mary College, London University (1987) 774

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, 415–425, IEEE Computer
Science Press (2004). arXiv:quant-ph/0402130v5 761

3. Adelman, M., Corbett, J.V.: A sheaf model for intuitionistic quantum mechanics. Appl. Categ.
Struct. 3, 79–104 (1995) 761

4. Baez, J.C.: An Introduction to Spin Foam Models of Quantum Gravity and BF Theory. Lect.
Notes Phys. 543, 25–94 (2000) 765

5. Baez, J.: Quantum quandaries: A category-theoretic perspective. In: French, S., Rickles, D.,
Sahatsi, J. (eds.) The Structural Foundations of Quantum Gravity. Oxford University Press,
Oxford (2006) 761

6. Baez, J., Schreiber, U.: Higher Gauge Theory. arXiv:math/0511.710v2 (2005) 761
7. Banaschewski, B., Mulvey, C.J.: A constructive proof of the Stone-Weierstrass theorem. J.

Pure Appl. Algebra 116, 25–40 (1997) 906
8. Banaschewski, B., Mulvey, C.J.: The spectral theory of commutative C_-algebras: the con-

structive spectrum. Quaest. Math. 23, 425–464 (2000) 906
9. Banaschewski, B., Mulvey, C.J.: The spectral theory of commutative C_-algebras: the con-

structive Gelfand-Mazur theorem. Quaest. Math. 23, 465–488 (2000) 906
10. Banaschewski, B., Mulvey, C.J.: A globalisation of the Gelfand duality theorem. Ann. Pure

Appl. Logic 137, 62–103 (2006) 906
11. Bell, J.L.: Toposes and Local Set Theories. Clarendon Press, Oxford (1988) 761, 769, 779, 780, 781, 783, 812
12. Bell, J.S.: On the problem of hidden variables in quantum mechanics. In: Speakable and

Unspeakable in Quantum Mechanics, pp.1–13. Cambridge University Press, Cambridge
(1987) 790

13. Beltrametti, E., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Mas-
sachusetts (1981)

14. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843
(1936)

15. Coecke, B.: Quantum Logic in Intuitionistic Perspective. Studia Logica 70, 411–440 (2002) 760
16. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994). Download from

http://www.alainconnes.org/en/ 766
17. Connes, A., Moscovici, H.: Background independent geometry and Hopf cyclic cohomology.

arXiv:math.QA/0505475 (2005) 765
18. Corbett, J.V., Durt, T.: Collimation processes in quantum mechanics interpreted in quantum

real numbers. Preprint (2007) 761
19. Crane, L.: What is the Mathematical Structure of Quantum Spacetime? arXiv:0706.4452

(2007) 761
20. Dalla Chiara, M.L., Giuntini, R.: Quantum logics. In: Gabbay, G., Guenthner, F. (eds.) Hand-

book of Philosophical Logic, vol. VI, pp. 129–228. Kluwer, Dordrecht (2002) 778

13 Topos Theory in the Foundations of Physics 935

21. Döring, A.: Kochen-Specker theorem for von Neumann algebras. Int. J. Theor. Phys. 44, 139–
160 (2005)

22. Döring, A.: Observables as functions: Antonymous functions. arXiv:quant-ph/0510.102
(2005) 843, 847, 848, 849

23. Döring, A.: Topos theory and ‘neo-realist’ quantum theory. In: Fauser, B., Tolksdorf, J., Zei-
dler, E. (eds.) Quantum Field Theory, Competitive Models. Birkhäuser, Basel, Boston, Berlin
(2009). arXiv:0712.4003 851

24. A. Döring. Quantum States and Measures on the Spectral Presheaf. To appear in Special Issue
of Adv. Sci. Lett. on Quantum Gravity, Cosmology and Black Holes, ed. Bojowald, M. (2009).
arXiv:0809.4847 818

25. Döring, A.: The physical interpretation of daseinisation. In preparation (2009) 843
26. Döring, A.: Algebraic quantum theory in a topos: A comparison. In preparation (2009) 907
27. Döoring, A., Isham, C.J.: A topos foundation for theories of physics: I. Formal languages for

physics. J. Math. Phys. 49(5), 053515 (2008). arXiv:quant-ph/0703060 760, 812
28. Döring, A., Isham, C.J.: A topos foundation for theories of physics: II. Daseinisation and the

liberation of quantum theory. J. Math. Phys. 49(5), 053516 (2008). arXiv:quantph/0703062 760, 794
29. Döring, A., Isham, C.J.: A topos foundation for theories of physics: III. Quantum theory and

the representation of physical quantities with arrows δ̆(A) : � → R �. J. Math. Phys. 49(5),
053517 (2008). arXiv:quant-ph/0703064 760, 782, 794

30. Döring, A., Isham, C.J.: A topos foundation for theories of physics: IV. Categories of systems.
J. Math. Phys. 49(5), 053518 (2008). arXiv:quant-ph/0703066 760

31. Döring, A., Lal, R.: Daseinisation and Galois connections. In preparation (2009) 835
32. Dowker, F.: Causal sets and the deep structure of space-time. In: Abhay A. (ed.)100 Years of

Relativity—Space-time Structure: Einstein and Beyond. World Scientific, Singapore (2005) 788
33. Escard o, M.H.: PCF extended with real numbers: A domain-theoretic approach

to higher-order exact real number computation. PhD thesis. Download from
http://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97–374/index.html (2007) 850

34. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. North-Holland, London (1984) 761, 772, 773, 822, 92
35. Grayling, A.C.: An Introduction to Philosophical Logic. Duckworth Press, London (1990) 856, 909
36. de Groote, H.F.: On a canonical lattice structure on the effect algebra of a von Neumann

algebra. arXiv:math-ph/0410.018v2 (2004) 830
37. de Groote, H.F.: Observables. arXiv:math-ph/0507.019 (2005) 796, 806, 829, 833, 834, 843, 845
38. de Groote, H.F.: Observables I: Stone spectra. arXiv:math-ph/0509.020 (2005) 819, 822, 917, 919
39. de Groote, H.F.: Observables II: Quantum observables. arXiv:math-ph/0509.075 (2005) 829, 843, 845, 847
40. Heidegger, M.: What is a Thing? Regenery/Gateway, Indiana (1967) 753, 756, 757
41. Heisenberg, W.: Philosophic Problems of Nuclear Science. Pantheon, New York (1952) 764
42. Heunen, C., Landsmann, K., Spitters, B.: A topos for algebraic quantum theory.

arXiv:0709.4364v2 (second version 6. April 2008) 760, 794, 818, 850, 905, 906, 907, 910
43. Isham, C.J.: Quantum logic and the histories approach to quantum theory. J. Math. Phys. 35,

2157–2185 (1994) 776
44. Isham, C.J.: Topos theory and consistent histories: The internal logic of the set of all consistent

sets. Int. J. Theor. Phys. 36, 785–814 (1997)
45. Isham, C.J.: Some reflections on the status of conventional quantum theory when applied to

quantum gravity. In: Gibbons, G. (ed.) Proceedings of the Conference in Honour of Stephen
Hawking’s 60’th Birthday. Cambridge University Press, Cambridge (2003) 763

46. Isham, C.J.: Is it true; or is it false; or somewhere in between? The logic of quantum theory.
Contempory Phys. 46, 207–219 (2005)

47. Isham, C.J.: A Topos Perspective on State-Vector Reduction. Int. J. Theor. Phys. 45, 994–1020
(2006) 913

48. Isham, C.J., Butterfield, J.: A topos perspective on the Kochen-Specker theorem: I. Quantum
states as generalised valuations. Int. J. Theor. Phys. 37, 2669–2733 (1998) 760, 770, 788, 791, 793, 794, 795, 7

49. Isham, C.J., Butterfield, J.: A topos perspective on the Kochen-Specker theorem: II. Concep-
tual aspects, and classical analogues. Int. J. Theor. Phys. 38, 827–859 (1999) 760, 770, 793, 794, 795, 800, 817

936 A. Döring and C. Isham

50. Isham, C.J., Hamilton, J., Butterfield, J.: A topos perspective on the Kochen-Specker theorem:
III. Von Neumann algebras as the base category. Int. J. Theor. Phys. 39, 1413–1436 (2000) 760, 770, 793, 794

51. Isham, C.J., Butterfield, J.: A topos perspective on the Kochen-Specker theorem: IV. Interval
valuations. Int. J. Theor. Phys 41, 613–639 (2002) 760, 770, 793, 794, 795, 800, 817

52. Isham, C.J., Butterfield, J.: Space-time and the philosophical challenge of quantum gravity.
In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale, pp. 33–89.
Cambridge University Press, Cambridge (2001) 765

53. Isham, C.J., Butterfield, J.: Some possible roles for topos theory in quantum theory and quan-
tum gravity. Found. Phys. 30, 1707–1735 (2000) 794

54. Jackson, M.: A sheaf theoretic approach to measure theory. PhD thesis, University of Pitts-
burgh (2006) 839

55. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium I, II. Oxford Science
Publications, Oxford (2002/03) 761, 861, 925

56. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. 1:
Elementary Theory. Academic Press, New York (1983) 800

57. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math.
Mech. 17, 59–87 (1967) 757, 788, 789, 800

58. Kock, A.: Synthetic Differential Geometry (LMS lecture note series: 51). Cambridge Univer-
sity Press, Cambridge (1981) 788

59. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge University
Press, Cambridge (1986) 761, 769, 780, 781, 783, 925

60. Landsman, K.: The principle of general tovariance. philsciarchive. pitt.edu/archive/00003931/
(2008) 786

61. Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia Univer-
sity, Columbia (1963). Available from www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html 760

62. Lawvere, F.W.: Toward the Description in a Smooth Topos of the Dynamically Possible
Motions and Deformations of a Continuous Body. Cahiers de Topologie et Geométrie Dif-
férentielle Catégorique XXI, 337–392 (1980) 760

63. Lawvere, F.W. (ed.): Introduction to Categories in Continuum Physics. Springer Lecture Notes
in Mathematics No. 1174. Springer, New York (1986) 760

64. Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press, Cambridge
(2003) 925, 926

65. MacLane, S.: Categories for the Working Mathematician. Springer, New York, Berlin, Heidel-
berg (1971) 761, 926

66. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos
Theory. Springer, New York, Berlin, Heidelberg (1992) 761, 811, 838, 889, 890, 925, 928

67. Margenau, H.: Reality in quantum mechanics. Phil. Sci. 16, 287–302 (1949) 764
68. Markopoulou, F.: The internal description of a causal set: What the universe looks like from

the inside. Comm. Math. Phys. 211, 559–583 (2002) 760
69. Mallios, A.: Modern Differential Geometry in Gauge Theories, vol 1: Maxwell Fields.

Birkhäuser, Boston (2006) 760
70. Mallios, A.: Modern Differential Geometry in Gauge Theories, vol 2: Yang-Mills Fields.

Birkhäuser, Boston (2006) 760
71. Mallios, A., Zafiris, E.: Topos-theoretic relativization of physical representability and quantum

gravity. arXiv:gr-qc/0610.113 (2007) 760
72. Nakayama, K.: Topos-theoretic extension of a modal interpretation of quantum mechanics.

arXiv:0711.2200 (2007) 793
73. Olson, M.P.: The Selfadjoint Operators of a von Neumann Algebra form a Conditionally Com-

plete Lattice. Proc. AMS 28, 537–544 (1971) 830
74. Ozawa, M.: Transfer principle in quantum set theory. J. Symbolic Logic 72, 625–648 (2007).

arXiv:math/0604349v2 761
75. Popper, K.: Quantum Theory and the Schism in Physics. Hutchinson, London (1982) 764
76. Raptis, I.: Categorical quantum gravity. Int. J. Theor. Phys. 45, 1495–1523 (2006) 760

13 Topos Theory in the Foundations of Physics 937

77. Smolin, L.: The case for background independence. In: French, S., Rickles, D., Sahatsi,
J. (eds.) The Structural Foundations of Quantum Gravity. Oxford University Press, Oxford
(2006) 765

78. Smolin, L.: Generic predictions of quantum theories of gravity. In: Oriti, D. (ed.) Approaches
to Quantum Gravity—Toward a New Understanding of Space, Time, and Matter. Cambridge
University Press, Cambridge (2006). arXiv:hep-th/0605.052 765

79. Smyth, M.: Powerdomains and predicate transformers: A topological view. In: Diaz, J. (ed.)
Automata, Languages and Programming, Lecture Notes in Computer Science 154. Springer,
Berlin (1983) 774

80. Sorkin, R.D.: Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School). In:
Gomberoff, A., Marolf, D. (eds.) Lectures on Quantum Gravity. Plenum, New York (2005)

81. Stone, M.H.: The Theory of Representations for Boolean algebras. Trans. Am. Math. Soc. 40,
37–111 (1936) 768

82. Stubbe, I.: The Canonical Topology on a Meet-Semilattice. Int. J. Theor. Phys. 44(12), 2283–
2293 (2005) 761

83. Takeuti, G.: Quantum set theory. In: Beltrametti, E.G., van Fraasen, B.C. (eds.) Current Issues
in Quantum Logic, pp. 303–322. Plenum, New York (1981) 761, 766

84. Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge (1989) 774, 775
85. Vickers, S.: Issues of logic, algebra and topology in ontology. In: Theory and Applications of

Ontology. In preparation (2008) 775
86. Vicary, J.: The quantum harmonic oscillator as an adjunction. Int. J. Theor. Phys. (2007).

arXiv:0706.0711 761

Part VI Geometry and
Topology in
Computation

Chapter 14
Can a Quantum Computer Run
the von Neumann Architecture?

P. Hines

Abstract At the core of nearly every modern computer is a central processing unit
running the von Neumann architecture. This computer architecture gives computa-
tionally universal machines, and non-trivial control structures arise naturally, lead-
ing to high-level programming constructs.

At the core of the von Neumann architecture is the notion that program code may
be stored and manipulated in the same way as data. A datum describing an operation
may be stored and processed in the same way as any other form of data, but may
also be ‘promoted’ to an operation, and applied.

Classically, this is well-studied—particularly from a categorical point of view.
We consider such operations in the quantum setting, including Nielsen and Chuang’s
orthonormal encoding, Abramsky and Coecke’s categorical foundations, the BBC
protocol, and the Choi-Jamiołkowsky correspondence.

Obstacles to a quantum analogue of the von Neumann architecture are also con-
sidered, including the no-cloning and no-deleting theorems, the “no-programming
principle”, and the Gottesman-Knill theorem.

14.1 Introduction

For impatient readers, the answer to the question posed in the title is, No. Readers
familiar with quantum information and computation, may well think that the answer
should be, Of course not !—although our intention is to prove that the question is
more subtle than that. A more accurate, although less concise, title for this paper
would therefore be, “Why is the von Neumann architecture so significant for clas-
sical computation, what are the differences between quantum and classical infor-
mation that mean classical computers can implement the von Neumann architecture
but quantum computers cannot, and what are the implications of this for models of
quantum computation and information?”

P. Hines (B)
Department of Computer Science, University of York, York, UK
e-mail: peter.hines@cs.york.ac.uk

Hines, P.: Can a Quantum Computer Run the von Neumann Architecture?. Lect. Notes Phys. 813,
941–982 (2011)
DOI 10.1007/978-3-642-12821-9_14 c© Springer-Verlag Berlin Heidelberg 2011

942 P. Hines

In order to answer these questions, we analyse the von Neumann architecture
from a classical point of view, in order to decide what features give it both practical
utility and computational power, and then consider whether or not these essential
features are shared by quantum systems.

In the classical world, the von Neumann architecture is ubiquitous. This is partly
for practical reasons; binary values, logic gates, and a global clock are readily
implementable via electronic circuits. However, it also bridges the gap between
theoretical notions of computer science, and the underlying physical structures.
Universality, programmability, compilation and higher-level control structures all
arise in a natural way from the underlying architecture. All these are key concepts
of computing—and are much less well-established in the quantum case.

Our claim is that the practical core of the von Neumann architecture is the inter-
changability of code and data. This is a fundamental concept of theoretical computer
science, with close connections to formal logic and λ-calculus. From the categor-
ical point of view, the code/data correspondence is exactly Cartesian closure—a
special form of categorical closure. Quantum information also admits code / data
correspondences—we consider similarities and differences, and their implications
for machine architectures.

We emphasise that this paper is expository in the sense that results presented are
generally well-known, or at least consequences of well-known theory. The aim is
to view this categorical picture through the frame of the von Neumann architecture,
and to consider implications from this very practical point of view.

14.2 The von Neumann Architecture

14.2.1 The Origins of the vN Architecture

In 1945, whilst on an extended stay at Los Alamos, J. von Neumann laid out in
formal logical terms the basic operating principles of the EDVAC computer [77].
This was an (incomplete) draft report on the work of a team1 on a project by
the University of Philadelphia for the U.S. Army Ballistics Research Laboratory.
Famously, this incomplete draft was widely distributed by H. Goldstine, an army
mathematician who had originally introduced von Neumann to the project [19].

This distribution of an incomplete draft, listing von Neumann as sole author, later
caused considerable bad feeling within the EDVAC team (see [10, 92, 71]), and it
has been claimed [10] that von Neumann himself intended for a final completed
version to be jointly co-authored by the entire team.

The EDVAC computer itself did not become fully operational until 1951, partly
due to a dispute with the University of Philadelphia over intellectual property
and patent rights resulting from this prior publication [70]. However, when finally

1 The team was lead by J. Mauchley and J. P. Eckert, with J. von Neumann acting as a consultant.
See [10] for details of the team members.

14 The Quantum Code-Data Distinction 943

operational, the EDVAC computer was highly successful [10], and the the general
principles outlined in [77] have become an almost universally accepted standard for
processor design, known as the von Neuman, or vN, architecture.

14.2.2 The Fetch-Execute Cycle

Although technical details have changed beyond recognition (e.g. a significant
advance of the EDVAC machine was the use of acoustic waves in mercury-filled
tubes as a form of random-access memory [38]), the underlying principles of the
von Neumann architecture were spectacularly successful, and remain in use today,
in the form of the core operation of the Central Processing Unit of a computer. This
fetch-execute cycle is a simple iterative step, performed on every clock cycle, that
leads to the full range of behaviour of modern computers.

The fetch-execute step is as follows:

At the beginning of each cycle the program counter contains the value of a memory
location.

1. The CPU copies the contents of the memory location referenced by program
counter into the instruction register.

2. The data in the instruction register is decoded and the control unit performs the
action described. This may be:

a) Copy a value from memory into the accumulator.
b) Apply an instruction (logic gate) to the accumulator.
c) Copy the contents of the accumulator into a memory location.
d) Overwrite the contents of the program counter with a new value.

3. The program counter is then incremented (in order to address the next instruc-
tion).

14.2.3 The Utility of the von Neumann Architecture

Practically, the vN architecture is significant for a number of reasons:

1. A computationally universal machine can be constructed. Up to memory con-
straints, any computation that may be performed by a Turing machine or the
untyped lambda calculus may be performed on a von Neumann computer.

2. Computers may be programmed—the program executed is dependent of the con-
tents of the computer memory, and no hardware reconfiguration is required in
order to run a different computer program.

3. Manipulation of program code in a similar manner to data allows for branching,
conditional execution, and subroutines. This opens the way to meaningful control
structures.

944 P. Hines

4. Meaningful control structures allow high-level languages to be built on top of
the basic machine code, and the equal treatment of code and data allows a von
Neumann machine to run compilers, interpreters and assemblers.

Our interest in the vN architecture from a quantum-mechanical perspective is in
order to seek analogues of 1.–4. above.

In terms of quantum computation, 1. has been intensively studied—we consider
this further in Sect. 14.13.1. Also, despite the current paucity of quantum algorithms,
2. may become important at a later stage—we refer to [95] for some interesting ideas
regarding stored-code quantum computers.

In terms of languages and control structures, several high-level languages for
quantum computers have been proposed (see [34] for a survey). These are generally
based on a “classical control, quantum data” paradigm, although purely quantum
(i.e. superposition-preserving—see Sect. 14.3.3) conditionals have been proposed
in [8, 40], and [52] considers control structures for conditional iteration based on
purely quantum control. However, a comparison of [34] with any standard QM com-
putation text (such as [41, 74, 79]) demonstrates that there are many more quantum
programming languages than quantum algorithms.2

This brings us to 4. In the classical world, this feature has become so deeply
ingrained into modern computing as to be almost invisible. The control structures
and, to some extent, high-level languages, used in modern computation arise natu-
rally from the underlying structure of the vN architecture. It is this feature that is
of particular interest—that intuitive and useful structure arises from the underlying
architecture of computer processors.

Finally, our interest in higher-level languages and control structures is in stark
contrast to von Neumann’s attitude [71]. With regard to his FORTRAN language,
J. Backus recalls von Neumann as begin unimpressed, asking, “Why would you
want more than machine code?”. (See the title of [11] for a contrary view!) D. Gillies
also recalls von Neumann’s anger at his programming of the first assembler, on the
grounds that this was, “using a sophisticated scientific tool to perform clerical tasks
that could easily be carried out by graduate students” [71].

14.3 Relevant Quantum Information Theory

14.3.1 Basic Quantum Information

We briefly reprise some fundamentals of quantum information and computation.
No attempt is made to give a full or consistent exposition—we concentrate on the

2 This comment is deliberately unfair, in that languages presented in [34] have been designed for
many purposes—including quantum communication protocols (of which there are many), proving
correctness of both protocols and algorithms, formal proofs of security for quantum encryption
and communication, &c.—and none of them have the creation of new algorithms as a stated objec-
tive. However, the point remains that going from quantum programming languages to quantum
programs is a highly non-trivial exercise.

14 The Quantum Code-Data Distinction 945

basic building blocks and properties relevant to this paper. For a full introduction, we
refer to either [40, 64, 79], and [18] for comprehensive mathematical background on
complex Hilbert spaces. We also use a pure state description, rather than considering
mixed states, density matrices and completely positive maps—any of the previous
references will also give a good exposition of this approach.

The atomic building-blocks of quantum information are quantum bits, or qubits,
norm-1 vectors in a 2-dimensional complex Hilbert space Qu. Concatenation of
qubits is given by the tensor product of Hilbert spaces, so n qubits are modelled by
the 2n-dimensional space ⊗n

i=1 Qu. Spaces of this form are called quantum registers
of n qubits.

We will sometimes work in arbitrary finite-dimensional spaces, not just tensor
product spaces of qubits. Norm-1 vectors in such spaces are sometimes known as
qudits.

Operations on quantum registers are either unitary maps, or measurements. A
unitary map, describing the evolution of an isolated quantum system, is simply
an inner-product preserving linear isomorphism, and it is standard to talk about
applying a unitary map to a quantum register. When given as matrices, unitaries are
exactly those invertible matrices whose inverse is given by the complex conjugate.

A measurement is determined by a self-adjoint operator, or Hermitian matrix.
By the spectral decomposition theorem, every finite Hermitian matrix has a unique
decomposition as the sum of a complete set of projection operators, and the corre-
sponding subspaces are taken to be the experimental outcomes of a measurement—
we refer to [31] for details.

In quantum computation, as opposed to quantum mechanics generally, Hilbert
spaces are equipped with a fixed orthnormal basis, known as the computational
basis. Information-theoretically, this is a non-trivial step—the specification of a
computational basis may be considered as classical knowledge about a quantum
system.

A significant difference between quantum and classical information is the phe-
nomenon of entanglement. Given Hilbert spaces H, K , a vector ζ ∈ H ⊗K is called
separable when it may be written as φ⊗ψ , for some φ ∈ H , ψ ∈ K , and entangled
otherwise. Entanglement gives rise to many of the counter-intuitive and non-local
effects of quantum mechanics, and is heavily studied. It is this phenomenon that is
widely believed to provide a computational advantage in using quantum-mechanical
rather than classical computing devices (We refer to [61] for analyses of the origins
of speedup in quantum algorithms).

14.3.2 Dirac Notation, and Measurement Probabilities

An exceedingly useful formalism for manipulating quantum information is Dirac
notation. This is based on the (very categorical—see [5]) notion we may work with
linear maps only—instead of referring to a state vector ψ ∈ H we consider the linear
map |ψ〉 : C → H, defined in the natural way as |ψ〉(z) = z.ψ . These linear maps
are known as Ket vectors, and have duals, the Bra vectors, which are linear maps

946 P. Hines

(functionals) 〈φ| : H → C defined by the condition that the composite 〈φ| ◦ |ψ〉, as
a linear endomap of C, is the inner product of φ and ψ .

The physical interpretation of this composite is one of the key points of the
Hilbert space formalism for quantum mechanics. Consider a state vector ψ , and
a measurement specified by the Hermitian operator ζ , and a vector ψ which is an
eigenstate of ζ . The probability of observing the state φ by the measurement ζ is
exactly the norm square of the above inner product, so

prob. of observing φ = |〈φ|ψ〉|2

Strictly, 〈φ|ψ〉 is a linear map from C to itself, given by multiplication with the
inner product of φ and ψ . However, it is standard to abuse notation and refer to the
complex number 〈φ|ψ〉 ∈ C. Similarly, we refer to the state vector |ψ〉 ∈ H, with
the understanding that it is in fact a linear map.

14.3.3 Superpositions and Coherent Operations

State vectors are norm-1 vectors in some Hilbert space H . Hence, given state vec-
tors |φ〉 and |ψ〉, the norm-1 vector |ζ 〉 = α|φ〉 + β|ψ〉 is also a state vector, for
all ‖α‖2 + ‖β‖2 = 1—we say that |ζ 〉 is a superposition of |φ〉 and |ψ〉. The phe-
nomenon of superposition is not uniquely quantum-mechanical (e.g. it is a feature of
classical wave-mechanics and linear optics, although interpretations differ—see [27]
for an early, but very readable account of superposition). However, superposition-
preserving processes form an important part of quantum computation. From [72],

Any quantum algorithm relies on the fact that if an arbitrary input state |Φi 〉 evolves
to the final state |Ψi 〉 then the superposition

∑
i∈I αi |Φi〉 evolves as

∑
i∈I αi |Φi〉
→∑

i∈I αi |Ψi 〉.
This is also taken as the definition of fully quantum in both the original specification
of a quantum Turing machine [28], and subsequent criticisms of this definition [76].
We refer to superposition-preserving processes as coherent. Note that unitary pro-
cesses are by definition coherent. However, these are not the only coherent quantum
processes; see [15, 16] for coherent processes involving unitaries, measurements,
and classically-conditioned operations.

14.3.4 No-cloning, No-deleting, and Fan-Out

Two important constraints on quantum information are the no-cloning and no-
deleting theorems.

The no-cloning theorem is due to [97]:

Theorem 1 Let |φ〉 be an arbitrary state vector in some Hilbert space H, and let
|e〉 be a fixed state in the same space. There does not exist a quantum process that
acts as |φ〉|e〉
→ |φ〉|φ〉. �

14 The Quantum Code-Data Distinction 947

The no-deleting theorem is not simply the dual of the no-cloning theorem—
rather, it states that an unknown quantum state cannot be deleted, even in the pres-
ence of a copy.3 The significantly simpler statement that an unknown state cannot
be deleted is known as no-erasure, and is a simple consequence of linearity.

The no-deleting theorem is due to [80]:

Theorem 2 Let ψ〉 be an arbitrary state vector in some Hilbert space H, let |e〉 be a
fixed state vector, and let |A〉 be some ancilla. Then any quantum process that acts as
|ψ〉|ψ〉|A〉
→ |ψ〉|e〉|Aψ 〉, is simply (up to local unitary operations) a swap map
on the second and third subspaces. �

The presence of either copying or deleting operations in quantum systems would
allow for superluminal (i.e. faster-than light) signalling [81]. Thus, these funda-
mental theorems of quantum information play an important rôle in ensuring the
consistency of quantum physics with classical relativity.

The-no-cloning and no-deleting theorems above state that arbitrary quantum
states cannot be copied or deleted. However, computational basis states may be
copied using the fan-out operation. Consider an n-dimensional space H with com-
putational basis {|0〉, . . . , |n − 1〉}. The (general) fan-out operation F : H ⊗ H →
H ⊗ H is defined by its action on the computational basis states as:

F(|i〉| j〉) = |i〉|i + j (Mod n)〉

In particular, F(|k〉|0〉) = |k〉|k〉. However, this is not a general copying operation;
given the superposition of two basis states, |φ〉 = α| j〉 + β|k〉, then

F(|φ〉|0〉) = α| j〉| j〉 + β|k〉|k〉 �= |φ〉|φ〉

14.3.5 Resource-Sensitivity and the von Neumann Architecture

Resource-sensitivity will prove a key point in understanding why a quantum com-
puter cannot implement the von Neumann architecture. On a very simple level, there
are several explicit copying or deleting steps listed in Sect. 14.2.2, and these violate
the no-cloning and no-deleting principles. A simple fix would be to replace the
irreversible step

• Copy a value from memory location x into the accumulator.

by the reversible step

• Swap the value in memory location x with the contents of the accumulator.

3 The no-deleting property is what logicians would refer to as the failure of the contraction rule
(see [83] for an in-depth discussion of this), whereas the no-cloning property is a (special case of)
failure of the weakening rule. These may be treated separately (i.e. we may consider logics with
weakening, but not contraction, or vice versa), as in the field of substructural logics [84].

948 P. Hines

and a similar change may be made to the

• Overwrite the contents of the program counter with a new value.

Replacing “copy” and “overwrite” by “swap” is not the focus of this paper;
embeddings of irreversible computation into reversible computation have been well-
studied [14], including from a physical point of view [65]. Explicit reversible
architectures based on the von Neumann architecture have also been studied
in [94].

The objection is more fundamental, and has to do with the way that pro-
gram code may be stored and manipulated in the same way as data—and in par-
ticular, the decode the data in the instruction register, and perform the action
described step.

14.4 Data/Code Interchangeability, and Evaluation

Our claim is that the computational core of the von Neumann architecture is the
“interpret a byte as an operation” step—and this is exactly the step that is problem-
atic for quantum computation.

In the vN architecture, the datum in the arithmetic logic unit is interpreted as
an instruction which may be applied to the contents of the data register. This is
a physical implementation of the notion that an object may be “promoted” to a
function, and functions may be stored and manipulated in the same way as any
other data object (In Sect. 14.7.1 we show how this arises from Currying, and, in
general, the related property of monoidal closure).

In simple terms, the von Neumann architecture implements an Evaluation oper-
ation: Consider a datum P of type Byte that specifies some operation Θ : Byte →
Byte. We call P the name of Θ , and write P = �Θ�. An evaluation operation
then takes the byte P , and another byte Q, and returns Θ(Q). At the core of the
von Neumann architecture is a physical process that implements such an evalua-
tion operation. Our aim is to consider how, or whether, such an operation may be
physically implemented in a quantum setting—with all the implications this has for
primitive machine architectures.

We will need to consider two variants of an evaluation operation:

1. Resource-sensitive evaluation (P, Q)
→ Θ(Q).
2. Non- resource-sensitive evaluation (P, Q)
→ (P,Θ(Q)).

The most familiar form of evaulation is 2. above; in 1., the program code is “con-
sumed” as the program is executed, which is certainly not a feature of classical
computation. From either a logical or category-theoretic point of view, 1. is con-
sidered fundamental, and 2. arises from 1. in the presence of a primitive copying
operation—we say that a map (P, Q)
→ (P,Θ(Q)) contains an implicit copying

14 The Quantum Code-Data Distinction 949

step.4 We thus need to bear in mind the essential resource-sensitivity of quantum
information (as in Sect. 14.3.4), and its implications for evaluation operations.

14.4.1 Indirect Addressing, and Evaluation Operations

We have claimed that the core of the von Neumann architecture is the “Evaluation”
operation that promotes data to code. An alternative point of view is that the power
of the vN architecture arises from indirect addressing—i.e. operations such as the,
copy the contents of the memory location referenced by the program counter into the
instruction register step in the fetch-execute cycle. We now show that the existence
of a suitable evaluation operation naturally allows for indirect addressing.

Consider a quantum computer with a suitable evaluation operation (which may,
or may not exist !) Relative addressing may easily be implemented. Let us assume
the hypothetical quantum computer has

• n memory registers, M1, . . . ,Mn ,
• a program counter register P ,
• an instruction register I.

The complete “configuration space” of this computer is thus the space

C = P ⊗ I ⊗ M1 ⊗ . . . ⊗ Mn

The first question is, given the value | j〉 in the program counter register, P , can
we “copy the contents of the memory register M j into the instruction register I”?
Of course, (as per Sect. 14.3.5), we cannot copy the contents of M j – nor can we
irreversibly erase the contents of I. However, we can swap the contents of M j and
I using a unitary operation.5 Let us call this unitary Load j : C → C.

Let us now assume the existence of a suitable evaluation operation, and assume
without loss of generality, that the name of the operation Load j is exactly the state
| j〉 = �Load j�. Applying the evaluation operation to the contents of the program
counter register then provides exactly the relative addressing required.

4 This statement is, of course, more general than formal. However, it may be formalised in a wide
range of settings. In a logical setting, the observation that in his semantic models implication is
not primitive but contains an implicit copying operation, famously motivated J.-Y. Girard’s Linear
Logic [36, 37]. The connection between evaluation and logical rules is beyond the scope of this
paper—we refer to [29, 6] for logical interpretations of the particular structures presented, in terms
of linear logic operations.
5 The existence this swap is exactly the symmetry of the tensor product. For Hilbert spaces H and
K , there is a natural isomorphism σH,K : H ⊗ K → K ⊗ H . We shall also see in Section 14.9.1
that the existence of such a symmetry is required for a categorical treatment of evaluation—at least,
in the quantum-mechanical setting.

950 P. Hines

The above discussion makes no mention of what would, or should, happen when
a superposition of values is held in the program counter register, or when two reg-
isters of the quantum computer are entangled. These are questions that need to be
answered in a discussion of the general properties of a quantum-mechanical evalu-
ation operation.

We now consider, as a “toy example”, the simplest possible classical case, and
use this to motivate discussion of a quantum-mechanical form of evaluation due to
[78].

14.5 Evaluation in the One-Bit Computer

As a starting point we consider evaluation in the simplest possible case: the one-bit
classical computer. The data types are single bits, {0, 1}, and there are exactly two
program instructions:

The identity map : I d(b) = b
Negation : Not(b) = b + 1 (Mod 2)

We let 0 be the name of the identity map, and 1 be the name of the negation map,
so the (non- resource-sensitive) evaluation map is an isomorphism that takes pairs
of bits to pairs of bits (Program, Data) → (Program, newData) as shown in
Fig. 14.1.

Fig. 14.1 Evaluation in the
one-bit computer

Before After

Prog. Data Prog. Data

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Thus the Eval operation for the one-bit computer is simply the (classical)
controlled-not logic gate. The quantum version of this logic gate is one of the basic
building blocks of the quantum circuit model. It is therefore natural to consider
whether a general such evaluation operation may be implemented by unitary maps.

14.6 Implementing Evaluation by Unitary Operations?

We now consider whether an “evaluation” operation may be implemented using
unitary maps. However, as we are working in the finite-dimensional case, we are
forced to consider non- resource-sensitive evaluation: Consider quantum registers
C, D (the code and data registers). A resource-sensitive evaluation operation would

14 The Quantum Code-Data Distinction 951

have type Evalrs : C ⊗ D → D – but as C ⊗ D and D have different dimensions,
no such unitary map can exist.

At this point, we should be suspicious. From a logical or category-theoretic point
of view, a non- resource-sensitive evaluation operation involves an implicit copying
step, and arbitrary quantum states cannot be copied.

This intuition is confirmed by the technique of “encoding unitary maps on an
orthonormal basis”, and the “no-programming theorem”, presented in [78]. We will
see that unitary evaluation may exist, but the names of maps must be computational
basis vectors—recall that we cannot copy arbitrary quantum states, but a form of
copying (i.e. the fan-out operation of Sect. 14.3.4) exists for computational basis
vectors.

Definition 1 Unitary evaluation
Consider a family of unitary maps, U1, . . . , Uk : S → S that we wish to encode
as members of the (sufficiently large) quantum register R. We may encode these as
orthogonal vectors {ψ1, . . . , ψk}, and assume (without loss of generality) that this
set of vectors is a subset of the computational basis of R.

The corresponding unitary evaluation operator EvalU is given by

EvalU =
k∑

i=0

|ψi 〉〈ψi | ⊗ Ui

and this satisfies the condition

EvalU (ψi ⊗ s) = ψi ⊗ U (s) ∀s ∈ S , ψi ∈ {ψ1, ψ2, . . . , ψk}

When we take the quantum analogue of the 1-bit computer described above, both the
identity and qubit negation (defined on the computational basis as Not(|0〉) = |1〉,
Not(|1〉) = |0〉), may be implemented as unitary maps, so the above prescription
gives the quantum CNOT gate.

EvalU = CNOT =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠

14.6.1 A Limit to Unitary Evaluation Operations

It may be shown that at most n unitary maps may be encoded (with respect to a
unitary evaluation map), as orthonormal vectors, on an n-dimensional space. The
following theorem is based on that of [78]:

Theorem 3 The Nielsen-Chuang “no-programming” theorem

952 P. Hines

Consider n distinct unitary maps U1, . . . Un : D → D. Let C be an n-dimensional
space, and let Eval : C ⊗ D → C ⊗ D be a unitary map that satisfies

Eval(|ci 〉 ⊗ |d〉) = |ci 〉 ⊗ Ui (|d〉) , {|ci 〉}n
i=1 ⊆ C

Then

1. no non-trivial superposition α|ci 〉 + β|c j 〉 encodes a unitary map.
2. the vectors {ci }n

i=1 are all orthogonal.

Taken together, these imply that at most n unitary maps may be encoded in this way.

Proof Assume that, for some complex α, β satisfying |α|2 + |β|2 = 1, the sum
α|ci 〉 + β|c j 〉 encodes a unitary map V , so for arbitrary |s〉 ∈ S,

Eval((α|ci 〉 + β|c j 〉) ⊗ |s〉 = (α|ci 〉 + β|c j 〉)V (|s〉)

However, by linearity,

Eval((α|ci 〉 + β|c j 〉) ⊗ |s〉) = αEval(|ci 〉 ⊗ |s〉) + βEval(|c j 〉 ⊗ |s〉)
= α|ci 〉 ⊗ Ui (|s〉) + β|c j 〉 ⊗ U j (|s〉)

This may be factorised as (α|ci 〉 + β|c j 〉) ⊗ V (|s〉) under any of the following
conditions:

• α = 0, in which case V = U j

• β = 0, in which case V = Ui
• U j (|s〉) = V (|s〉) = Ui (|s〉), for all |s〉 ∈ S.

Either the superposition is trivial, or Ui , U j , and V are all the same unitary opera-
tion. Using similar techniques, it may be shown that ci is orthogonal to c j , for all
i �= j . �

The above negative result states that (in an entirely unitary, finite-dimensional
setting), operations may only be encoded on a fixed orthonormal basis—taken, for
convenience, to be the computational basis.

This is sometimes interpreted as stating that quantum computers cannot operate
on a “stored-code” principle, since an n-dimensional Hilbert space H can encode at
most n unitary operations, whereas there are an infinite number of distinct unitaries
from H to itself. In reality, practical proposals for quantum computation work with
a small number of gates, up to a well-defined notion of approximation [85].

A stronger critique is that there is nothing particularly “quantum” about the
way operations are encoded—computational basis vectors may be freely copied
and deleted (via analogues of fan-out, Sect. 14.3.4), and are undisturbed by mea-
surements in the computational basis. This is used to make the much stronger case
that there is no advantage to storing program code as quantum rather than classical
information.

14 The Quantum Code-Data Distinction 953

There are, of course, two loopholes in the above interpretation, if not in the
theorem itself. The first is that it only applies to finite-dimensional spaces. This
feature will be the joker in the pack throughout this paper: many results presented
(for both quantum and classical information) do not hold in the infinite-dimensional
case—this becomes particularly relevant in Sect. 14.13.2. The second loophole is
more practical: Theorem 3 above only applies to unitary evaluation operations.

As well as the orthonormal basis encoding technique, [78] considers using
teleportation-like protocols to implement evaluation probabilistically, with refer-
ence to the Choi-Jamiołkowski correspondence [20, 55]. In [16] it is shown how,
in certain cases, the probability of success may be increased to 1 by using unitary
operations conditioned on the result of the measurement.

A post-selected form of teleportation, related to the Choi-Jamiołkowski corre-
spondence, is at the core of the “categorical foundations” of quantum mechanics of
[4]. We now take a categorical approach, and consider how evaluation arises from
general principles, in both the classical and quantum worlds.

To illustrate the general category theory, and to make a link with the von Neu-
mann architecture, we first present the theory of sets and functions. We then use
this to motivate the general theory of categorical closure, and consider the particular
form of categorical closure exhibited in the quantum world.

14.7 Evaluation as Currying

From a theoretical computer science perspective, evaluation operations arise from an
abstract notion of Currying called categorical closure, and the theory of (monoidal)
closed categories. We first present the classical motivation based on the theory of
sets and functions (including logic gates and binary words as a special case).

14.7.1 Evaluation with Sets and Functions

The informal setting for an Eval operation is where we can find a representation of
a function between two sets as a single element of another set, and can “promote”
this to an operation to be applied. From either a category-theoretic or theoretical
computer science point of view, this notion is not primitive but arises naturally
as a consequence of the structure of sets and functions—notably the existence of
Currying.

Definition 2 Cartesian products, Currying
Given sets A and B, their Cartesian product is the set defined by

A × B = {(a, b) : A ∈ A , b ∈ B}

Given a function f : X × Y → Z , Currying is simply the process of, for each
element x ∈ X , defining a function fx : Y → Z by fx (y) = f (x, y).

954 P. Hines

Let us use categorical notation (formal definitions follow in Sect. 14.8). The cat-
egory of sets, Set has the (proper class of) all sets as its objects, denoted Ob(Set).
Between any two objects A, B ∈ Ob(Set) is the collection of arrows, Set(A, B).
These are simply the functions from A to B.

For any sets A, B ∈ Ob(Set),

1. the collection of all functions from A to B is itself a set, that we denote [A →
B] ∈ Ob(Set).

2. the Cartesian product of A and B is itself a set A × B ∈ Ob(Set).

The existence of Currying can then be expressed succinctly, as

Set(A × B, C) ∼= Set(A, [B → C])

Now consider the one-object set I = {∗}. It is immediate that for all sets X ,

I × X ∼= X ∼= X × I

since there is an obvious bijection between {(x, ∗) : x ∈ X} and X itself.
Hence,

Set(A, B) ∼= Set(I × A, B)

and by Currying,

Set(A, B) ∼= Set(I, [A → B])

Finally, for all sets X ,

[I → X] ∼= X

since for all x ∈ X , we have the function ιx : {∗} → X defined by ι(∗) = x .
Hence, Currying and the properties of the one-object set give the bijection

Set(A, B) ∼= Set(I, [A → B]) — that is, the existence of representations of
functions from A to B as elements of some set. This formalises the intuitive notion
of the “name” of an operation (from Sect. 14.4), at least in the category of sets and
functions.

Definition 3 Given a function g : A → B we refer to the arrow �g� : {∗} → [A →
B] (or equivalently, the corresponding element of [A → B], considered as a set) as
the name of the function g.

14 The Quantum Code-Data Distinction 955

14.7.2 Is Any of this Non-trivial?

It may be objected that the above manipulations are trivialities—this is to some
extent correct.6 Of more interest is the strong similarity, between I × X ∼= X ∼=
X × I and the Hilbert space identity C ⊗ H ∼= H ∼= H ⊗ C. In particular (as
formalised in [5]) the identity [I → X] ∼= X is strongly reminiscent of Dirac
notation, so ιx : {∗} → X is the direct analogue of a Ket |ψ〉 : C → H .

In order to consider similarities and differences more closely, we now to
take the category-theoretic approach seriously, rather than simply as a form of
notation.

14.8 Basic Category Theory

As with the section on basic quantum information (Sect. 14.3.1), we make no
attempt to given anything approaching a comprehensive account of category
theory—rather we pick and choose (and to some extent, simplify7) topics relevant
to our discussion. A comprehensive account may be found in [73], with a physics-
oriented approach given by [35]. We also refer to [66] for connections between
category theory, logic and lambda calculus, and [13] for a computer science per-
spective.

Definition 4 Categories
A category C has a class of objects, denoted Ob(C), and between any two objects
X, Y ∈ Ob(C) is a set of arrows, denoted C(X, Y). We often write f : X → Y for
f ∈ C(X, Y), when the category C is clear from the context.

Arrows f ∈ C(X, Y) and g ∈ C(Y, Z) may be composed, giving g f ∈
C(X, Z), and composition is associative, so h(g f) = (hg) f . For each object
Y ∈ Ob(C) there is also an identity arrow 1Y ∈ C(Y, Y) satisfying 1Y f = f and
g1Y = g.

As a category C may have a proper class of objects, we cannot use set-theoretic
operations on its objects. However, we may define—for example—the category of
Sets to have all sets as objects, where the arrows Set(X, Y) are exactly the set-
theoretic functions f : X → Y .

6 We refer to [57] for P. Freyd’s perhaps controversial suggestion that the real function of category
theory is to demonstrate that the trivial parts of mathematics are trivial for trivial reasons. Another
point of view is that it allows us to formalise similarities and differences between the behaviour of
mathematical structures—and we have a special interest in comparing the behaviour of Sets and
Hilbert spaces.
7 In particular, we will refer to indexed families of arrows in a category as “natural”, without giving
a formal definition. We refer to [73] for natural families as components of natural transformations,
and [21] for an exposition without explicit reference to natural transformations.

956 P. Hines

14.8.1 New Categories from Old

The following operations on categories will be useful:

Definition 5 Opposite categories, product categories
Given a category C, its opposite category Cop has the same objects, and the set of
arrows Cop(X, Y) is exactly the set of arrows C(Y, X). Given f ∈ Cop(Y, X) and
g ∈ Cop(Z , Y), the arrow f g ∈ Cop(Z , X) is exactly the composite g f ∈ C(X, Z).

Given categories C, D, the product category is defined to have, as objects, all
pairs (X, A), where X ∈ Ob(C) and A ∈ Ob(D). Similarly, an arrow f : (X, A) →
(Y, B) is just a pair f = (f1, f2), where f1 : X → Y and f2 : A → B.

Intuitively, the opposite category Cop may be thought of as “taking the category
C, and reversing all the arrows”—although a simple step, this gives many interesting
dualities of mathematics (such as Stone dualities between topological spaces and
lattices [56], and Pontryagin duality [86]). Also, for every definition or theorem
in category theory, we derive a dual definition or theorem by moving to the dual
category.

14.8.2 Structure-Preserving Maps Between Categories

As well as categories themselves, it is natural to define structure-preserving maps
between categories.

Definition 6 Functors, adjoint pairs
A functor between categories Γ : C → D is a map that assigns

• to each object X ∈ Ob(C), an object Γ (X) ∈ Ob(D),
• to each arrow f ∈ C(X, Y), an arrow Γ (f) ∈ D(Γ (X), Γ (Y)).

Functors are required to “preserve the categorical structure” in that for all f ∈
C(X, Y) and g ∈ C(Y, Z),

Γ (g)Γ (f) = Γ (g f) ∈ D(Γ (X), Γ (Z)) and Γ (1Y) = 1Γ (Y)

Much of category theory is built on the notion of adjointness. Two functors Γ :
C → D and Δ : D → C are said to form an adjoint pair when, for all X ∈ Ob(C)

and Y ∈ Ob(D), there exists a natural bijection

C(X,Δ(Y)) ∼= D(Γ (X), Y)

We say that Γ is left adjoint to Δ, or equivalently, that Δ is right adjoint to Γ .

Adjointness is a generalisation of the order-theoretic notion of Galois connections—
indeed, partially ordered sets are themselves categories, and Galois connections are
a special case of adjoint functors. The terminology “adjoint” comes from the notion

14 The Quantum Code-Data Distinction 957

of the adjoint of a continuous linear map of Hilbert spaces, defined by 〈L(φ)|ψ〉 =
〈φ|L∗(ψ)〉.

A very practical tool in this field is Freyd’s adjoint functor theorem that char-
acterises when a given functor has a left (or, by working in the opposite category,
a right) adjoint, e.g. in [73] it is demonstrated how the tensor product of Abelian
groups may be derived.

For our purposes, adjoint functors will play a key rôle in defining categorical
closure, giving the general category-theoretic approach to evaluation.

14.8.3 Monoidal Categories

A monoidal tensor for a category is a general notion covering operations such as the
Cartesian product of sets and functions, the tensor product or direct sum of Hilbert
spaces, disjoint union of Relations, &c. We follow the treatment given in in [73].

Definition 7 Symmetric monoidal categories
A monoidal category is defined to be a category C, together with a functor ⊗ :
C × C → C that satisfies, for all A, B, C ∈ Ob(C):

• Unit objects There exists I ∈ Ob(C) satisfying I ⊗ A ∼= A ∼= A ⊗ I .
• Associativity A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C .

If a monoidal category satisfies the additional condition

• symmetry A ⊗ B ∼= B ⊗ A.

it is called a symmetric monoidal category.

The isomorphisms above are required to be natural, and to satisfy various coher-
ence conditions. However, MacLane’s coherence theorems [73] mean that these
conditions can generally be ignored with no harmful side-effects. In particular, we
treat the associativity isomorphism A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C 2. as though it
were a strict identity.

From a strongly category-theoretic point of view, monoidal tensors may often
be characterised by universal properties that they satisfy, without explicit reference
to their behaviour on (for example) elements of some set of objects. For example,
The Cartesian product of sets and functions may be characterised as a categorical
product, as follows:

Definition 8 Products
Let (C,⊗) be a monoidal category. The monoidal tensor ⊗ is a product when, for
all objects X1, X2 ∈ Ob(C) there exist arrows

X1 X1 ⊗ X2
π1 π2

X2

958 P. Hines

such that, for all arrows f1 ∈ C(Y, X1) and f2 ∈ C(Y, X2) there exists a unique
arrow 〈 f1, f2〉 ∈ C(Y, X1 ⊗ X2) making the following diagram commute:

Y
f1 f2〈 f1, f2〉

X1 X1 ⊗ X2π1 π2
X2

Recall that by considering the dual category, we may derive a dual definition.
Reversing all the arrows in the diagram above gives the following:

Definition 9 Coproducts
Let C,⊗ be a monoidal category. The monoidal tensor ⊗ is a coproduct when, for
all objects X1, X2 ∈ Ob(C) there exist arrows

X1
ι1

X1 ⊗ X2 X2
ι2

such that, for all arrows f1 ∈ C(X1, Y) and f2 ∈ C(X2, Y) there exists a unique
arrow [f1, f2] ∈ C(X1 ⊗ X2, Y) that makes the following diagram commute:

Y

X1 ι1

f1

X1 ⊗ X2

[f1, f2]

X2ι2

f2

Examples

The Cartesian product of sets and functions is, as noted above, a categorical product.
Dually, the disjoint union of sets and functions is a categorical coproduct. The direct
sum of Hilbert spaces is both a product, and a coproduct (and hence a biproduct).
The tensor product of Hilbert spaces is neither a product nor a coproduct—however,
it may also be defined in terms of a universal property, as we now show.

14.8.4 (Monoidal) Closed Categories

The most general setting for a correspondence between objects and arrows in a
category, and evaluation operations, is the field of closed categories [30, 67, 68].
We do not attempt an exposition of this, but work with the special case of monoidal
closed categories—partly for simplicity, and partly because the specific examples
we wish to consider are monoidal closed rather than simply closed.

Definition 10 Monoidal closed categories
Let (C,⊗) be a monoidal category. We say that it is monoidal closed when there
exists a functor

14 The Quantum Code-Data Distinction 959

[,] : Cop × C → C

called the internal hom functor, such that for fixed B ∈ Ob(C), the functors given
by

[B,] : C → C and ⊗ B : C → C

form an adjoint pair.

This definition, although concise, is relatively abstract (and is only strictly accurate
in the symmetric monoidal case). The following characterisations make a link to
both an abstract form of Currying, and evaluation maps.

Theorem 4 The following are equivalent to the definition of a monoidal closed cat-
egory, in Definition 10 above:

1. There exists an internal hom. functor

[,] : Cop × C → C

satisfying

C(A ⊗ B, C) ∼= C(B, [A → C])

2. For every pair of objects A, B ∈ Ob(C), there exists

• an object [A → B],
• an arrow evA,B ∈ C(A ⊗ [A → B], B)

where, for all f : A ⊗ X → B, there exists unique g ∈ C(X, [A → B]) such
that the following diagram commutes:

A ⊗ X
f

1A⊗g

B

A ⊗ [A → B]
evA,B

Proof Proofs may be found in any text on category theory or categorical logic (e.g.
[73, 66]). �

Part 1. of Theorem 4 above provides the link with an abstract notion of Currying,
and part 2. of the same theorem demonstrates that this is equivalent to the existence
of an evaluation map satisfying the expected properties.

960 P. Hines

14.9 Categorical Closure and Hilbert Spaces

We now describe the particular form of compact closure exhibited by the cate-
gory of (finite-dimensional) Hilbert spaces and linear maps, and its interpretation
as quantum-mechancial protocols.

It has long been known that the collection of all linear maps between (finite-
dimensional) Hilbert spaces H, K is itself a Hilbert space. This is a reflection of the
categorical closure of the category of finite-dimensional Hilbert spaces—however,
the categorical closure is of a particularly simple form. We first give an abstract
exposition of this form of closure, including Hilbert spaces as a concrete example,
and then give an overview of the ‘categorical foundations’ approach to quantum
mechanics of [4].

14.9.1 Compact Closed Categories

Definition 11 Compact closure
A symmetric monoidal category (C,⊗) is called compact closed when, for all A ∈
Ob(C), there exists a dual object A∗ ∈ Ob(C) such that the functor A⊗ : C → C
is left adjoint to the functor A∗ ⊗ .

Although this definition is category-theoretically elegant—particularly when
viewed as 2-category theory [62]—for our purposes it will be easier to work with
the following characterisation, also given given in [62]:

Theorem 5 A symmetric monoidal category (C,⊗) is compact closed when, for
every object A ∈ Ob(C), there exists a dual object A∗ ∈ Ob(C) together with
distinguished arrows

• The unit arrow εA : A ⊗ A∗ → I
• The counit arrow ηA : I → A∗ ⊗ A

that satisfy

λ(εA ⊗ 1A)(1A ⊗ ηA)ρ−1 = 1A and dually, ρA∗(1A∗ ⊗ εA)(ηA ⊗ 1A∗)λ−1
A∗ = 1A∗

Using the diagrammatic notation of [58–60], this may be drawn as shown in
Fig. 14.2.

The dual operation on objects ()∗, together with the unit and counit arrows may
be used to define the dual on arrows. Given f ∈ C(A, B), then F∗ ∈ C(B∗, A∗) is
defined by

f ∗ = (1A∗ ⊗ εB)(1A∗ ⊗ f ⊗ 1B∗)(ηA ⊗ 1B∗) : B∗ → A∗

Diagrammatically, this is as shown in Fig. 14.3.
Note that in a compact closed category, the arrows ηA and μA are dual, so η∗

A =
εA.

14 The Quantum Code-Data Distinction 961

A A

·−→I

A∗

I−→·

= A
idA

A

A A

and dually,

A∗

I−→·

A∗

A

·−→I

= A∗ idA∗
A∗

A∗ A∗

Fig. 14.2 Axioms for compact closure
Note that (following the usual convention) the above diagrams omit the unit object isomorphisms
A ∼= A ⊗ I , &c.

Fig. 14.3 The dual operation
on arrows

A∗

I−→·

1A∗
A∗

A
f

B

·−→I

B∗
1B∗ B∗

14.9.2 The Internal Hom and Names in Compact
Closed Categories

Compact closed categories have a particularly simple description of both the internal
hom object, and names of arrows.

Theorem 6 Let (C,⊗, ε, η) be a compact closed category, with A, B ∈ Ob(C).
Then

• The internal hom is given by [A → B] = B ⊗ A∗.
• Given an arrow f ∈ C(A, B), its name � f � : I → B ⊗ A∗ is given, up to a

symmetry map, by

962 P. Hines

� f � = (1∗
A ⊗ f)ηA

Using the same diagrammatic notation as previously, the name of an arrow f is
given by

A∗

I−→·

1A∗
A∗

A
f

B

Note that both the ability to name arrows, and the adjunction giving monoidal clo-
sure, rely on the existence of symmetry isomorphisms σX,Y : X ⊗ Y → Y ⊗ X . We
refer to [90] for categories satisfying similar axioms, but with a weaker symmetry
condition.

Definition 12 conames—the dual notion to names
In compact closed categories—by contrast to monoidal closed categories
generally—there is a dual notion to naming; that of the coname of an arrow. Given
an arrow f ∈ C(A, B), the coname is an arrow � f � ∈ C([X, Y], I) given (dually
to Theorem 6) by � f � = εB(f ⊗ 1B∗).

To see that conames do not exist in all monoidal closed categories, consider the
category of sets and functions—here, for any set X , there exists exactly one func-
tion in Set(X, {∗}). This is a strong, and indeed significant, difference between the
behaviour of evaluation for Sets and functions, and Hilbert spaces and linear maps.
This difference accounts for the different behaviour of classical and quantum sys-
tems8 given in Sect. 14.12.

14.9.3 Compact Closure and Hilbert Spaces

It has long been known that finite-dimensional Hilbert spaces are a canonical exam-
ple of compact closed categories—and equally, Hilbert spaces in the general setting
(i.e. allowing for infinite-dimensional spaces) are not compact closed [2].

Let us denote the category of finite-dimensional Hilbert spaces by Hilbfd. Arrows
are linear maps (and hence, as we are working in the finite-dimensional case,
both bounded and continuous), and we use the tensor product as the monoidal
tensor.

Compact closure is easily exhibited. Consider a space H , with orthonormal basis
{e j }N

j=1. Objects are self-dual, so H∗ = H , and the unit and counit arrows ε :
H ⊗ H → C and ηH : C → H ⊗ H are given (using Dirac notation) by

8 We emphasise that, although the category Set does not admit conames, they are by no means
an exclusively quantum phenomenon—rather, they are simply a property associated with compact
closure. For example, [46] uses compact closure in modelling classical Turing machines.

14 The Quantum Code-Data Distinction 963

εH =
N∑

j=1

〈e j e j | : H ⊗ H → C and ηH =
N∑

j=1

|e j e j 〉 : C → H ⊗ H

It is straightforward to check that the axioms of Definition 11 are satisfied.
The compact closure of Hilbert space, and its physical interpretation in terms

of teleportation protocols, is at the core of Abramsky and Coecke’s “categorical
foundations” program for quantum mechanics [4]. We consider this in from Sec-
tion 14.10 onwards, but first characterise states that are the names of unitary maps.

14.9.4 Naming Unitary Maps

Our ultimate aim is to describe what the state-map correspondence given by the cat-
egorical foundations program and the compact closure of finite-dimensional Hilbert
space can tell us about the existence, or otherwise, of quantum-mechanical versions
of evaluation. From the motivation given in Sects. 14.3.1 and 14.3.3, we are partic-
ularly interested in coherent quantum operations.

We now consider the state/map correspondence provided by the compact closure.
We emphasise that this is not original to this paper. It is given explicitly in [4], and
is implicit in the Choi-Jamiołkowsi correspondence between density matrices and
completely positive maps [20, 55, 89].

Unwinding the definition of the name in a compact closed category gives a 1:1
correspondence between arrows Hilbfd(C, H ⊗ H), and arrows Hilbfd(H, H). Let
us chose an orthonormal basis {ei }N

i=1 for H , and consider a linear map described
as a matrix M = (mi j)

N
i, j=1 on this basis. For any such matrix M we may define

�M� ∈ Hilbfd(C, H ⊗ H) by

�M� = 1√
N

N∑

α,β=1

mαβ(|eα〉 ⊗ |eβ〉)

This naming operation is invertible; consider a vector ψ ∈ H ⊗ H . Then ψ = �L�,
where

L =
⎛

⎝
l11 . . . l1N
.

lN1 . . . lN N

⎞

⎠

satisfies

li j = √
N 〈ei ⊗ e j |ψ〉

Given this explicit description, it is clear that arbitrary linear maps on H may be
named. We now characterise those states that name unitary maps:

964 P. Hines

Theorem 7 The pure states that name unitary maps U : H → H are exactly the
maximally entangled states of H ⊗ H.

Proof In order not to disrupt the expository flow of this paper, the proof of this result
is given in Appendix.

14.9.5 The Choi-Jamiołkowski Correspondence

The correspondence between states and linear maps is a special case of the Choi -
Jamiołkowski correspondence between completely positive maps and density matri-
ces, discovered independently by M. Choi [20] and A. Jamiołkowsky [55]. As our
exposition is in terms of pure states and unitary maps, rather than the more general
density matrices and completely positive maps, so have given the correspondence in
this restricted case, following [4].

It is demonstrated in [89] that the category of density matrices and completely
positive maps is compact closed, and the state corresponding to a completely posi-
tive map under the Choi-Jamiołkowski correspondence is exactly the name of that
map.

Finally, the connection between teleportation and the Choi-Jamiołkowski corre-
spondence had been commented on (although not explored in detail) in [78]. The
interpretation of teleportation as compact closure was developed in the categorical
foundations program of [4].

14.10 Abramsky and Coecke’s Categorical Foundations
for Quantum Mechanics

As with the introductory sections on both quantum information and category the-
ory, we make no attempt to give a coherent account or consistent history of the
categorical foundations program—rather, we concentrate on those topics relevant to
our interest in evaluation operations and the von Neumann architecture. We refer to
[4, 5, 22, 23] for details, and other articles in this volumn for the current state of
research.

14.10.1 Teleportation, Traditionally

The traditional description of teleportation is as follows: Alice has a quantum bit
|ψ〉 = α|0〉 + β|1〉 that she wishes to send to Bob. Alice is spatially separated
from Bob, but they had previously shared a maximally entangled pair of particles
|Bell〉 = 1√

2
(|00〉+|11〉). This gives the overall state of the system as |ψ〉⊗|Bell〉 =

1√
2
(α|0〉 + β|1〉) ⊗ (|00〉 + |11〉) = α√

2
(|000〉 + |011〉) + β√

2
(|100〉 + |111〉)

14 The Quantum Code-Data Distinction 965

Alice then performs a measurement of her subsystem (i.e. the qubit |ψ , together
with her half of the maximally entangled pair |Bell〉) against a maximally entangled
basis that contains the Bell state.

Let us assume that Alice observes the state Bell. Bashing through the appropriate
Hilbert space calculations will demonstrate that the system is now in the overall
state α√

2
(|000〉+ |110〉)+ β√

2
(|001〉+ |111〉. Of course, this factorises as 1√

2
(|00〉+

|11〉)(α|〉 + β|1〉)—that is, Bob now has the quantum bit |ψ〉 = α|0〉 + β|1〉.
This is not the whole story—The probability of Alice observing the correct mea-

surement result is 1
4 . If Alice observes a different state, she must inform Bob, via a

classical communication channel, of the state she observed. Bob may then apply a
1-qubit unitary map to the state he holds, in order to recover |ψ〉.

We consider unitary corrections in Sect. 14.11.2. For the moment, we are satisfied
with a post-selected version of the above protocol—that is, if Alice observe the
“incorrect” outcome, the experiment is abandoned.9

14.10.2 Teleportation, Categorically

In the categorical foundations approach [4], the preparation of the Bell-state is mod-
elled by the unit of a compact closed category, so the Bell state is simply the name
of the identity map. Its dual, the counit, is a measurement where the Bell state is
observed. The postselected teleportation protocol is then simply the defining axiom
for a compact closed category:

H

ALICE

H

·−→I

H

I−→·

= H
1H

H

BOB H H

A natural question now is, “what happens when the state preparation, and measure-
ment, are not based on names of the identity, but on names of other unitary maps?”.
It is demonstrated in [16] that when some other entangled resource is used in place
of the Bell state, the teleportation protocol can, “apply a unitary to |ψ〉 on its way
from Alice to Bob”.

In the categorical foundations approach, this is the following: instead of using
the unit εH = �1H � and counit η = �1H �, let us use the name and coname of some
unitary maps U, V : H → H , giving (via the definition of the name and coname)
the result shown in Fig. 14.4.

9 Even this post-selected version requires classical communication, in order to tell Bob when to
give up on the experiment. The requirement for classical communication in teleportation protocols
is important to prevent teleportation being used for superluminal signalling.

966 P. Hines

H H

�V �

H

�U�

= H
U V

H

H H

Fig. 14.4 Applying maps via teleporation (categorically)

Note (as emphasised in [22]) the apparently acausal order of application on the
right hand side. Chronologically, the preparation of the state �U� happens first,
then a measurement is made resulting in the state �V �. However, when a state |ψ〉
is teleported using this arrangement, the result is U V (|ψ〉)—i.e. V is applied first,
followed by U .

14.11 Evaluation by Teleportation, and the vN Architecture

14.11.1 The Story so Far

So far, we have seen that “evaluation” is the key part of the von Neumann architec-
ture (Sect. 14.4). The only possible competition for this rôle is “relative addressing”,
and we have seen in Sect. 14.4.1 that this arises quite naturally from evaluation. We
have also seen that evaluation is a categorical property that arises from monoidal
closure—an abstract form of Currying, and the notion of naming an arrow.

The link with quantum mechanics follows from the categorical foundations pro-
gram where compact closed categories are not only used, but are a key part of the
program. Physically, compact closure is interpreted as the teleportation protocol of
[15], and in general, the implementing a logic gate by teleportation of [16]. This
strongly suggests that a (resource-sensitive) form of evaluation is available, and
may be implemented in the quantum world. Modulo questions of reversibility and
resource-sensitivity, can we therefore describe some form of von Neumann archi-
tecture for quantum computers?

The question that this section aims to answer is therefore:

Can we apply an unknown unitary map to a quantum state?

The “unknown unitary map” is given as a quantum resource—i.e. we are given its
name10; a maximally entangled state vector �U� ∈ H ⊗ H . Our question now

10 A natural question at this point is,‘why not give the unknown map as a coname, rather than a
name? From the physical interpretation of Sect. 14.10.2, a coname is interpreted as a (successful)
measurement; that is, it is derived from a classically determined measurement apparatus. It is hard
to see how we may go from an arbitrary quantum state to a measurement against some basis
containing that state—thus the coname can only be given as classical information.

14 The Quantum Code-Data Distinction 967

is, given �U� ∈ H ⊗ H , and a state vector |ψ〉 ∈ H , can we reliably produce
U (|ψ〉) ∈ H?

14.11.2 Postselection, and Unitary Corrections

Recall how, as shown in Fig. 14.4, unitary maps may be applied using a teleportation
protocol. By letting the name in this diagram be our “unknown map”, and taking the
coname to be the coname of the identity, we are able to apply our unknown map to
an arbitrary state |ψ〉 ∈ H .

As it stands, this diagram describes a post-selected protocol; if the measurement
at does not yield the required result (i.e the coname of the identity) we abandon
the experiment and start again. Unfortunately, the experimenter has no control over
the actual result of measurement—at best, he may specify a complete maximally
entangled orthonormal basis set {�Vj�} j=1...n2 ⊆ H ⊗ H , and measure against that.
Thus, when working with a single qubit, we expect to observe the “correct” outcome
with a probability of 1

4 .
This feature is why [78] refer to evaluation via teleportation protocols as “prob-

abilistic evaluation”. However, in the original teleportation protocol, [15], Bob
applies a unitary operation to correct for this “incorrect experimental outcome”.
In [16], it is demonstrated how a similar technique can be used to implement certain
quantum logic gates, with probability 1.

In the categorical foundations model presented in [4], the classical information
flow and conditioning of a unitary correction on the result of a measurement are
modelled using biproducts and canonical distributivity and associativity isomor-
phisms. We do not give an exposition of the categorical treatment of classical infor-
mation here (see [23] for more details), but simply consider under what conditions
a unitary correction may be applied, to give the desired result.

With a unitary correction, Fig. 14.4. becomes as shown in Fig. 14.5. Of course,
what we wish to apply is the unitary U : H → H , rather than the composite CU V :
H → H — thus we need conditions for these two to be equal. The most general
solution is C = U V −1U−1 : H → H — however, C is a classically determined
correction, and there is no classical information available about the operation U
itself (from a von Neumann architecture point of view, it may have been loaded into

H H

�V �

H

�U�

= H
CU V

H

H C

Classical
signal

H

Fig. 14.5 Application by teleportation, with unitary correction

968 P. Hines

some “quantum instruction register” from memory, and be the outcome of some
previous quantum computation).

Therefore, the unitary C : H → H may be conditioned on the measurement out-
come �V �, but cannot be dependent on U . This immediately imposes a restriction
on the class of unitaries that may be implemented by teleportation.

It is immediate that operations that commute with all members of {Vj }n2

j=1 may be

implemented deterministically, simply by taking C = V −1. Slightly more generally,
let us assume (without loss of generality — see Sect. 14.11.3 below) that {Vj }n2

j=1
form a group G. In this case, we may implement the group C of unitary operations
that satisfy V −1

j U Vj ∈ C , for all Vj ∈ G and U ∈ C.
Thus we cannot deterministically implement all unitary maps in using a telepor-

tation protocol—the question now is: how severe is this restriction, and can we still
do useful quantum computation?

14.11.3 Choosing a Measurement Basis

The only choice the experimenter has in the protocol shown in Fig. 14.5. is the
choice of measurement basis—this must be a maximally entangled basis set for
H ⊗ H . As noted above, the basic assumption is that we have no information about
the unitary map U , so in the general case there is no particular reason to favour
one maximally entangled orthonormal basis over another. In any case, they are all
equivalent up to some unitary isomorphism.

In a more explicitly computational setting, let us assume that H is the tensor
product of a number of qubits. In this case, for both experimental and theoretical
reasons, it is common to choose a basis based on the Pauli group.

Definition 13 Pauli groups, Bell basis
Consider the 2-dimensional Hilbert space of qubits Qu, with orthonormal basis
{|0〉, |1〉}. The (1-qubit) Pauli group G1 that acts on Qu consists of the following
unitary operations (given as matrices)

I =
(

1 0
0 1

)

, X =
(

0 1
1 0

)

, Y =
(

0 −i
i 0

)

, Z =
(

1 0
0 −1

)

The names of these operations form a (maximally entangled) orthonormal basis for
the space Qu ⊗ Qu called the Bell basis.

In general, the Pauli group Gn is the n-fold tensor product of G, so Gn =
{⊗n

j=1W j : W j ∈ G1}. Note that the names of the members of Gn also form a
maximally entangled orthonormal basis for the space ⊗ j = 1n Qu

Physically, Pauli matrices correspond to the observables of spin 1
2 particles—i.e.

fermions such as protons, neutrons, &c. The names of Pauli group operations also
form a very convenient maximally entangled basis for teleportation experiments,
because of the following property:

14 The Quantum Code-Data Distinction 969

Proposition 1 Let U be a member of the Pauli group Gn, and consider |ψ〉 ∈
⊗n

j=1 Qu. Then, experimentally, U (|ψ〉) may be realised by 1-qubit operations.

Proof This is immediate from the definition of Gn as the tensor product of a number
of copies of G1. �

Corollary 1 When using the names of the Pauli group Gn as the measurement basis
for a teleportation protocol (as shown in Fig. 14.5), the required unitary corrections
may be carried out as a series of 1-qubit operations.

Corollary 2 When using the names of the Pauli group Gn in a teleportation protocol,
the operations that may be implemented deterministically are exactly the group Cn

of operations that satisfy Cn = G−1
n CnGn.

14.11.4 The Clifford Group, and the Gottesman-Knill Theorem

The group specified in Corollary 2 above is well-known as the Clifford group Cn—
the stabiliser of the Pauli group Gn . It is key to a number of different fields, including
quantum error-correction, and measurement-based computation.

It is also the basis of one of the most significant recent results on quantum
computation—the Gottesman-Knill theorem:

Theorem 8 Any quantum circuit built up from:

• Computational basis preparations,
• Clifford group operations,
• Computational basis measurements

may be efficiently simulated on a classical computer.

Proof This is proved in [39]—see also [79] for a good exposition.

Corollary 3 If we wish to use teleportation to provide a deterministic evaluation
operation, satisfying the conditions laid out in Sect. 14.11.1, we are restricted to
quantum operations that can be efficiently simulated by a classical computer.

A Comment: Measurement-Based Computing

For readers familiar with measurement-based computation, and the correspondence
with implementing operations via teleportation given in [7], nothing in the above
discussion should be interpreted as stating that measurement-based computation
is restricted to the Clifford group. In particular, measurement-based computing is
about applying known unitary operations, and the resulting feed-forward of classi-
cal information on experimental outcomes and corresponding unitary corrections is
well-studied—see [25, 26] for a formal approach with a very theoretical computer
science flavour.

970 P. Hines

A Question: Other Measurement Bases

A natural question at this point is whether choosing an alternative measurement
basis (i.e. not based on the Pauli operations) will give us qualitatively different
results. Recall that given two orthonormal basis sets B1, B2 for a space H ⊗ H ,
we may give a unitary map D : H ⊗ H → H ⊗ H that maps one to the other—all
orthonormal basis sets are equivalent up to isomorphism.

14.12 Naming an Unknown Arrow

After presenting such a negative result, it would be nice to discover something that
quantum evaluation can do that classical evaluation cannot. So far, we have been
considering how data may be interpreted as code, and applied to some other datum.
Where the quantum setting wins out is in the dual process—given some implemen-
tation of a fragment of code, how may we physically produce the datum representing
it (the name of the function)?

We treat a physical implementation of an instruction as a black box that we may
give an input, and in return receive an output. In the classical case, we assume the
black box is simply a function between the input and output sets, and in the quantum
case, we assume a unitary map from the input to the output space.11

The question is then, given such a black box, how may we produce its name, as
a physical resource?

14.12.1 The Classical Case

In the classical case, the situation is depressingly straightforward. We are given a
black box that implements some function between finite sets, f : X → Y . We
have no additional information about the function f , but we wish to produce � f � ∈
Y × X , the “name” of f : X → Y .

In the absence of other information about f , the only option is a brute-force
investigation—we must feed into the black box every element of X , and record the
output in each case.12 Hence, the number of steps required to give the name of a
function f : X → Y is exactly |X |. Note that the sucess of this procedure depends
on

11 In both cases, we ignore questions of timing and assume that the time spent processing is con-
stant, regardless of the input. However, if the processing time is not constant, it maybe measured,
and gives additional (classical) information about the operation of both quantum and classical black
boxes. See [63] for applications of this in classical cryptography, and [17, 42, 72] for the key rôle
that processing time plays in quantum computation.
12 Even in the presence of a number of identical copies of the black box, and finite input/output
sets, this procedure is at best tedious. In the infinite case, it is straightforwardly impossible—thus
from a physical point of view, arbitrary functions cannot be named, even in the classical world.
Under what conditions computable functions may be named is left as an interesting exercise.

14 The Quantum Code-Data Distinction 971

• X is a finite set.
• the black box has no “internal states”—given an input x ∈ X it returns the same

output f (x) ∈ Y regardless of the previous set of inputs to the black box.

14.12.2 The Quantum Case

The quantum case is also remarkably straightforward. Let us assume that the black
box implements some unitary operation U : H → H , and is subject to similar
constraints to the classical case—i.e. a unitary map is implemented in constant
time, and the input does not become entangled with some internal state of the
black box.

Now recall the definition of the name of an arrow in a compact closed category,
given diagramatically as

H

I−→·

1H
H

H
U

H

Interpreting the counit as the preparation of a maximally entangled pair (i.e. the
name of the identity map), we simply create such an entangled pair, and pass one
half of this pair through the black box, and do nothing at all to the other half. The
resulting quantum state (taken as a whole) is then the name of the operation imple-
mented by the black box.

Thus, creating the name of an unknown operation is a 1-step operation in the
quantum case—compared to an arbitrarily long procedure in the classical case.
Although this is arbitrarily more efficient for the quantum case, we may wonder
what use it is . . .

14.12.3 A Fiction About Alice and Bob

Few papers on quantum computation or information are complete without a story
about the QM information researchers, Alice and Bob. This paper is no exception,
although the presented interpretation is more fanciful than most.

• Let us assume that Bob has developed a quantum computer Q that imple-
ments some interesting unitary map U on n-qubit registers. Alice, on the
other hand, holds an n-qubit register R that she wishes to process using Bob’s
computer.

• Bob is happy for Alice to make this calculation, but does not wish to loan his com-
puter to Alice—he may wish to prevent her reverse-engineering it by repeated
applications to elements of the computational basis, or perhaps she still has not
returned the textbooks she “borrowed” when they used to share an office.

972 P. Hines

To get around this impass, Bob works in the space of 2n-qubit registers (and
hence a space of size 22n , and produces the maximally entangled resource B =
�I d�, where I d is the identity map. He then applies U to the final n registers of B
to get some new resource B′, where B′ is the name of the unitary map U . Finally, he
transmits the whole of B′ to Alice.

Alice then treats the resource B′ as the name of an unknown unitary map, and
using the procedure described in Sect. 14.12.2 is able (albeit probabilistically) to
produce U (R), the result of applying Bob’s quantum computer Q to her quantum
register R.

In this manner, it seems that Bob may give out “samples” of his quantum com-
puter Q that can be used exactly once, without Alice ever getting her hands on
the precious machine. Perhaps the best conclusion to draw from this is that Digital
Rights Management is much easier to enforce in the quantum world !

Unfortunately, if Alice is ever to implement Bob’s unknown operation reliably, it
must be a member of the Clifford group, and further classical communication with
Bob will be required. So, it seems that the Quantum Rights ManagementTM protocol
is in fact about distributing limited copies of classical programs.

However, if Bob can be persuaded to be a little less paranoid about Alice reverse-
engineering is computer, he may find out from [85] that all he needs to perform
universal quantum computation is Clifford group operations, and single π

8 phase-
shifts. He may then split the above protocol into several parts, sending Alice either
the name of some Clifford group operation, or a classical instruction to perform a π

8
phase-shift to a particular qubit, until the computation is complete.

Open question: If Bob performs the procedure described above, how much informa-
tion can Alice deduce about the structure of his quantum computer?

14.13 Other Aspects

Our search for a quantum analogue of the von Neumann architecture has involved
a lot of digressions into assorted, undeniably interesting, topics. Our perhaps unsur-
prising conclusion is that quantum computers cannot implement a suitable form of
evaluation. However, our interest in quantum analogues of the vN architecture was
not arbitrary—rather, we were interested in the computational features given in the
list of Sect. 14.2.3. Although the behaviour of evaluation in the quantum setting
prevents us from forming a direct analogue of the von Neumann architecture, it is
worthwhile to consider topics related to this list directly.

14.13.1 Computational Universality and Quantum Computers

Much has been made of the fact that the von Neumann architecture allows for com-
putationally universal machines. By computationally universal we mean, “capable
of performing any computation that may be performed on a Turing machine”. By the

14 The Quantum Code-Data Distinction 973

Church-Turing thesis, this is believed to cover any computation that can be effiec-
tively, or mechanically performed [43, 24].

The EDVAC machine, running the von Neumann architecture, was not the first
computationally universal physical machine—this honour is believed to belong to
the Z3 machine of Konrad Zuse machine [88] (also see [87] for an in-depth discus-
sion, and the architecture of the Z3). Had the analytic engine of Charles Babbage
[93] been completed, this would have claimed priority by at least 100 years.

Our interest in the von Neumann architecture has more been in the high-level
control structures that arise naturally. However, it is worthwhile to consider whether
a quantum computer can be computationally universal.13 In one sense, this question
is trivial; when restricted to a fixed computational basis, a quantum Turing machine
[28] behaves exactly as a classical reversible Turing machine, and these are known
to be computationally universal.

However, as discussed in Sect. 14.6.1, it is hard to see how a device restricted to
a computational basis—for both “code” and “data”—may be considered in any way
a quantum computer. A more interesting question is whether a computer may be
both coherent and computationally universal—“fully quantum” in the terminology
of [28, 76]. This question has been intensively studied, with no definite conclusion
[76, 72, 42, 75]—and as always, the finite-dimensional case is much simpler [52].

Finally, the same features that make the von Neumann architecture universal
contribute to its utility as a basis for high-level languages—although the connection
between the ability to produce high-level languages, and computational universality,
is far from clear. The papers [47, 49, 51] axiomatise the distinction between “high-
level” and “low-level” languages in terms of domain theory, and make connections
to computational universality. A quantum-mechanical version of this theory has also
been presented in [50], but the situation there is even less clear.

14.13.2 Logical and Lambda-Calculii Interpretations
of Monoidal Closure

Although we have emphasised the interchangeability of code and data as the key
to the von Neumann architecture, it is more traditionally associated with other
fields of theoretical computer science—Church’s λ calculus, and categorical logic
(and, of course, the connections between lambda calculii and logics given by the
Curry-Howard isomorphism [91]). We refer to [69, 66, 13] for an introduction to
categorical logic.

13 We strongly distinguish this from the idea of a universal quantum gate that can simulate (up to
a reasonable approximation) any other quantum gate. In particular, universal computation requires
the possibility of non-termination of an algorithm . . . and indeed the undecidability of termination
is a fundamental theorem of theoretical computer science [54]. Both the usual quantum circuit
model [17] and the (restricted forms of) quantum Turing machines contained in [17] require uncon-
ditional termination in exactly K steps, where K is some a priori fixed value.

974 P. Hines

The logical interpretation of categories used to model quantum protocols is given
by Abramsky and Duncan, in [29, 6]. We do not give an exposition of this, but
rather consider the conditions required for an untyped analogue, in the search for a
computational system similar to the untyped lambda calculus.

Traditionally, the pure untyped lambda calculus is modelled by a C-monoid, or
one-object Cartesian closed category14 without a terminal object. (See also [3] for a
computationally universal combinatory logic in terms of (untyped) compact closure,
rather than Cartesian closure).

Given a Cartesian closed category (C,×), a C-monoid is the endomorphism
monoid of an object D ∈ Ob(C) that satisfies

D ∼= D × D ∼= [D → D]

The identity D ∼= D × D is relatively easy to satisfy: for sets and functions, and
many other categories, this is satisfied by any countably infinite set (see [44, 45] for
the general setting). However, D ∼= [D → D] is less easy to satisfy—simple car-
dinality arguments demonstrate that no object in the category of sets and functions
may satisfy this identity. The usual route to objects satisfying such identities is via
domain theory. See [1] or [74] for a general perspective, and [66] for a categorical
exposition related to C-monoids.

In compact closed categories, the situation is both simpler, and more subtle. The
simple form of the internal hom object [X → Y] = Y ∗ ⊗ X means that N ∼= [N →
N] is equivalent to self-duality N = N∗, together with the identity N ∼= N ⊗ N .
Given any object N ∼= N ⊗ N , note also that G = N ⊗ N∗ satisfies

G ∼= G ⊗ G ∼= [G → G]

We refer to [44, 48] for an explicit description of one-object analogues of compact
closed categories.

In the particular case of Hilbert spaces, any separable infinite-dimensional
Hilbert space H certainly satisfies H ∼= H ⊗ H . However, recall from [2] that
only the category of finite-dimensional spaces is compact closed—thus, it is hard
to see how evaluation in the quantum setting may be used to produce some form
of (untyped) lambda calculus or combinatory logic. Infinitary versions of the Choi-
Jamiołkowski correspondence have been explored in [82], in the context of order
theory and C* algebras, but the categorical interpretation is not straightforward.

14 The connection between C-monoids and Church’s lambda calculus is not straightforward. As
observed in [66], the product structure is equivalent to requiring surjective pairing in the lambda
calculus. We also refer to [66] for a demonstration—via Occam’s Razor—of how combinatory
logic arises from C-monoids, without explicit reference to products, i.e. using the closed, but not
monoidal closed, structure—giving what [66] refers to as “monstrous” coherence conditions. The
author leaves it to those braver than himself to reason about quantum physics using the (admittedly
elegant) language of such monstrosities!

14 The Quantum Code-Data Distinction 975

14.13.3 Backus, Functional Languages, and Non- von
Neumann Architectures

Throughout this paper, we have praised the von Neumann architecture as a signif-
icant advance in both theoretical and practical computer science. This is certainly
the case; however, many programmers and theoreticians also see the near-universal
reliance on it as an impediment, particularly with regard to either parallel or asyn-
chronous computation. The von Neumann bottleneck is a common term first appear-
ing in J. Backus’ Turing award acceptance speech, “Can Programming be Liberated
from the von Neumann Style?” [11]).

Thus, although we consider it unfortunate that quantum computers cannot run
some analogue of the von Neumann architecture, it may instead be seen as an oppor-
tunity.

Backus’ speech gives a strong defence of functional programming and functional
programming languages. Functional programs are based on the notion of evaluating
functions, rather than updating states. Unfortunately, they are often easier to char-
acterise in terms of features they do not possess, such as

Functional programming languages have no variables, no assignment statements, and no
iterative constructs. This design is based on the concept of mathematical functions, which
are often defined by separation into various cases, each of which is separately defined by
appealing (possibly recursively) to function applications. — [32].

There is no space here for an exposition of the positive aspects of functional
languages and programming—we refer to Backus’ speech and subsequent works
[11, 12, 53] for positive properties such as referential transparency, lazy evaluation,
freedom from side-effects and state-freeness.15

As well as a plea for programming languages based on different principles, it
is clear that Backus considered the von Neumann style of programming to be a
direct consequence of the von Neumann architecture, and the persistence of the von
Neumann architecture to be due to the universality of languages based on it. From
[11],

Our fixation on von Neumann languages has continued the primacy of the von Neumann
computer . . . The absence of programming styles founded on non-von Neumann principles
has deprived designers of an intellectual foundation for new computer architectures.

A stated aim of [11] is thus to provide programming concepts and languages that
naturally lead to different underlying computer architectures—unfortunately, func-
tional programs still tend to be executed on vN architecture machines!

Another key point of this program is that functional programming languages
could, or should, come equipped with an “algebra of combining forms”. This is
an algebraic system that is intended to, solve equations whose “unknowns” are

15 Side-effects and states are often considered essential for input/output, storage, exception-
handling, &c. We refer to [96] for how such features are handled in functional programming using
the very categorical idea of monads.

976 P. Hines

programs, in much the same way as one transforms programs in high school alge-
bra—[11]. Whether such a system is possible for quantum algorithms remains
open—although a step in this direction is [74], giving domain-theoretic analogues
of differential equations with both classical and quantum search as their solutions.

Acknowledgments The author wishes to thank many individuals, and is very grateful for many
discussions with: S. Abramsky and B. Coecke on the categorical foundations program and category
theory generally, T. Altenkirch on quantum conditionals, iteration, and programming languages,
V. Danos and R. Duncan for interest in an early draft of this paper, S. Braunstein on teleportation
and the Choi-Jamiołkowski correspondence from a physicists perspective, and the software prob-
lem for quantum computers, K. Martin on the behaviour of quantum algorithms from a domain
theory point of view, P. Selinger on functional programming and algebras of combining forms, and
P. Scott on logical and categorical interpretations, and connections with lambda calculus.

Appendix

We consider the conditions required for a state vector to correspond to a unitary
map, and show that this is intimately connected with questions of entanglement.

Definition 14 Let H denote a complex Hilbert space with orthonormal (computa-
tional) basis {ei }i=1..n . Then for each basis vector ei we define the left-span of ei to
be the subspace of H ⊗ H generated by the basis vectors {ei ⊗ e j }n

j=1. Dually,
we define the right-span of e j to be the subspace of H ⊗ H generated by the
basis vectors {ei ⊗ e j }n

i=1. We denote these spaces by l Span(ei) and r Span(ej)

respectively.

Our claim is that the vectors that are the names of unitary maps are exactly those
that are equidistant to the left span and the right span of each basis vector ei , and
thus maximally entangled.

Theorem 9 Let H denote a complex Hilbert space with orthonormal basis
{ei }i=1..N , and let M : H → H denote a linear map. Then the following two
conditions are equivalent:

(i) M is a unitary map.
(ii) For each basis vector ei , the norm of the projection of �M� onto either

l Span(ei) or r Span(ei) is 1
n .

Proof ((i) ⇒ (ii) By definition of a unitary map, M satisfies

M M† = I and I = M† M

(It is easier to state that M† = M−1. However, interesting and computationally
important C∗ algebras such as the Kuntz-Krieger algebras of [9] satisfy one-sided
versions of these conditions, so we use them separately for future reference). Written
in terms of matrix elements, we have that

14 The Quantum Code-Data Distinction 977

(M M†)ik =
n∑

j=1

mi j mkj =
{

1 i = k
0 i �= k

(M† M)ik =
n∑

j=1

m ji m jk =
{

1 i = k
0 i �= k

These conditions can also be characterised as “the sum of the norms of the entries
in each row is 1, as is the sum of the norms of the entries in each column”.

Moving to the name �M� ∈ H ⊗ H , we have

〈�M�|�M�〉 = 1√
n

1√
n

=
⎛

⎝
n∑

α,β=1

⎛

⎝
n∑

i, j=1

〈mαβ(ei ⊗ e j)|mi j (ei ⊗ e j)〉
⎞

⎠

⎞

⎠

Using the Kroneker delta notation, 〈ei ⊗ e j |eα ⊗ eβ〉 = δαiδβ j , so

〈�M�|�M�〉 = 1√
n

1√
n

=
⎛

⎝
n∑

α,β,i, j=1

mαβmi jδαiδβ j

⎞

⎠

Hence, by the condition imposed on the matrix elements by the unitarity require-
ment,

〈�M�|�M�〉 = 1

N

n∑

α,β=1

mαβmαβ = 1

So the unitarity of M implies that �M� has norm 1.
For the next step, observe that we may isolate the individual mi j by

mi j = √
n.〈ei ⊗ e j |�M�〉

and so the first unitarity condition gives that

1 =
n∑

j=1

1√
n
〈�M�|ei ⊗ e j 〉 1√

n
〈ei ⊗ e j |�M�〉

Hence

1

n
=

n∑

j=1

〈�M�|ei ⊗ e j 〉〈ei ⊗ e j |�M�〉

Using Dirac notation, for any orthnormal basis B the identity is given by I d =∑
b∈B |b〉〈b|, and so the inner product of vectors φ,ψ may be written as 〈φ|ψ〉 =

978 P. Hines

∑
b∈B〈φ| b〉〈b|ψ〉. From the definition of the space l Span(ei) in terms of a basis

set, we thus deduce that the projection of �M� onto the space l Span(ei) has norm
1
N .

The dual condition about the right spans {r Span(ei)}n
i=1 follows from the second

unitarity condition.
(ii) ⇒ (i) Let ψ = �M� satisfy the left and right span conditions. We may write
these fully as

1

n
=

∑

j

〈ψ |ei ⊗ e j 〉〈ei ⊗ e j |ψ〉

and
1

n
=

∑

j

〈ψ |ei ⊗ e j 〉〈ei ⊗ e j |ψ〉

respectively. The definition of the naming operation � � gives that

[M]i j = √
n.〈ei ⊗ e j |ψ〉

and almost identical reasoning to above applied to the left span condition gives∑n
j=1[M]i j .[M]i j = 1. Similarly, the right span condition gives that

n∑

i=1

[M]i j .[M]i j = 1.

From above, these are the two conditions required for unitarity, and hence our result
follows. �

Interpretation

Although the above is presented abstractly, a quantum computational interpretation
is immediate: given a quantum register r ∈ q Byte, and an observation on a single
arbitrary qubit with respect to any orthonormal basis {b1, b2}, then r is the name
of a unitary map exactly when the observation of r gives either b1 or b2 with equal
probability.

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 177 (1991) 974
2. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and Trace Ideals in Tensored ∗-categories.

J. Pure Appl. Algebra 143(1) 3–47 (1999) 962, 974
3. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear combinatory alge-

bras. Math. Struct. Comput. Sci. 12(5) 625–665 (2002) 974

14 The Quantum Code-Data Distinction 979

4. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pp. 415–425.
IEEE Computer Soc. Press (2004) 953, 960, 963, 964, 965, 967

5. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories.
In: Proceedings of CALCO 2005, Springer LNCS 3629, pp. 1–31 (2005) 945, 955, 964

6. Abramsky, S., Duncan, R.: A categorical quantum logic. Math. Struct. Comput. Sci. 16(3)
(2006) 949, 974

7. Aliferis, P.: D Leung Computation by Measurements: A unifying picture. Phys. Rev. A 70,
062314 (2004) 969

8. Altenkirch, T., Grattage, J., Vizzotto, J.: An Algebra of Pure Quantum Programming ENTCS,
3rd International Workshop on Quantum Programming Languages (2005) (to appear) 944

9. Anantharaman, C.: Delaroche C∗– algèbres de Cuntz- Krieger et groupes Fuchsiens in Oper-
ator Theory, Operator Algebras and Related Topics (Timisoara 1996) The Theta Foundation,
Bucharest, pp. 17–35 (1997) 976

10. Aspray, W.F.: Pioneer day ‘82: history of the stored program concept. Ann. Hist. Comp. 4(4)
358–367 (1982) 942, 943

11. Backus, J.: Can Programming Be Liberated from the von Neumann Style? A functional style
and its algebra of programs. Commun. ACM 21(8) 613–641 (1978) 944, 975, 976

12. Backus, J.: Function level programs as mathematical objects functional programming lan-
guages and computer architecture archive. In: Proceedings of 1981 Conference on Functional
Programming Languages and Computer Architecture, pp. 1–10. Portsmouth, New Hampshire
(1981) 975

13. Barr, M., Wells, C.: Category Theory for Computer Science, 3rd edn., Centre de Recherches
Mathématique, Montreal (1999) 955, 973

14. Bennett, C.: Logical reversibility of computation. IBM J. Res. Develop. 17 525–532 (1973) 948
15. Bennett, H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an

unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev.
Lett. 70, 1895–1899 (1993) 946, 966, 967

16. Brassard, G., Braunstein, S., Cleve, R.: Teleportation as a quantum computation. Physica D
120, 43–47 (1998) 946, 953, 965, 966, 967

17. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473
(1997) 970, 973

18. Brown, A., Page, A.: Elements of Functional Analysis. Van Nostrand Reinhold Publishing,
London (1970) 945

19. Burks, A.: Who invented the computer? The legal battle that changed computing history
Promethius Books (2003) 942

20. Choi, M.: Completely Positive Linear Maps on Complex Matrices, Linear Algebra and Its
Applications, pp. 285–290 (1975) 953, 963, 964

21. Coecke, B.: Introducing Categories to the practicisng physicist (Manuscript) Available as:
http://web.comlab.ox.ac.uk/oucl/work/bob.coecke/Cats.pdf (2005) 955

22. Coecke, B.: Kindergarten quantum mechanics – Lecture notes. In: Quantum Theory: Recon-
siderations of the Foundations III, p. 8198. AIP Press, New York (2006) 964, 966

23. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L.,
Lomonaco, S. (eds.) The Mathematics of Quantum Computation and Technology. Taylor and
Francis (to appear) 964, 967

24. Copeland, B.: The church-turing thesis. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy (Fall 2002 Edition), available as http://plato.stanford.edu/archives/fall2002/
entries/church-turing/ The citation above refers to the version in the following archive edition
(2002) 973

25. Danos, V., Kashefi, E., Panangaden, P.: The one way to quantum computation. In: Bugliesi,
M. et al.: (eds.) ICALP 2006, Part II, Springer LNCS 4052 1321 (2006) 969

26. Danos, V., Kashefi, E., Panangaden, P.: The Measurement Calculus quant-ph: 0704.1263v1
(2007) 969

980 P. Hines

27. Darwin, C.G.: Free Motion in the wave mechanics. Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character 117 (766)
pp. 258–293 (1927) 946

28. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum com-
puter Proceedings of the Royal Society of London, A 400, pp. 97–117 (1985) 946, 973

29. Duncan, R.: Types for Quantum Computation, DPhil. Thesis, Oxford University (2007) 949, 974
30. Eilenburg, S., Kelly, G.: Closed Categories Proceedings of the Conference on Categorical

Algebra (La Jolla 1965), Springer 421562 (1966) 958
31. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-

Wesley, Reading, Mass (1965) 945
32. Finkel, R.: Advanced Programming Language Design. Addison-Wesley, Reading (1996) 975
33. Fouche, W., Heidema, J., Jones, G., Potgieter, P.: Halting in quantum Turing computation

(2008)
34. Gay, S.: Quantum programming languages: survey and bibliography. Math. Struct. Comput.

Sci. 16(4) (2006) 944
35. Geroch, R.: Mathematical Physics. University of Chicago Press, Chicago (1985) 955
36. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1102 (1987) 949
37. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types, Cambridge Tracts in Theoretical

Computer Science, C.U.P (1989) 949
38. Godfrey, M., Hendry, D.: The computer as von Neumann planned it. IEEE Ann. History

Comput. 15(1), (1993) 943
39. Gottesman, D.: The Heisenberg representation of quantum computers. In: Corney, S.P.,

Delbourgo, R. Jarvis, P.D. (eds.), Group22: Proceedings of XXII International Colloquium
on Group Theoretic Methods in Physics, pp. 32–43. Cambridge, MA. Extended version at
arXiv:quant-ph/9807006 (1999) 969

40. Grattage, J.: QML – A Functional Quantum Programming Language, PhD Thesis, Univ.
Nottingham (2006) 944, 945

41. J. Gruska Quantum Computing. McGraw-Hill, New York (1999) 944
42. Hagar, A., Korolev, A.: What is quantum in quantum computing? A lesson from two halt-

ing problems,ESF Workshop on The Logic of Quantum Information 2004, available as
http://www.webalice.it/shakush/ST1.pdf (2004) 970, 973

43. Herken, R. (ed.): The universal Turing machine: A half-century survey, 2nd ed. Springer, New
York (1995) 973

44. Hines, P.: The categorical theory of self-similarity. Theory Appl. Categories 6, 33–46
(1999) 974

45. Hines, P.: A short note on coherence and self-similarity. J. Pure Appl. Algebra 175(1), 135–139
(2002) 974

46. Hines, P.: A categorical framework for finite state machines. Math. Struct. Comput. Sci. 13(3),
451–480 (2003) 962

47. Hines, P.: Physical systems as constructive logics. In: Calude, Dinneen, Paun, Rozenburg,
Stepney (eds.) Springer LNCS, vol. 4135, pp. 101–112 (2006) 973

48. Hines, P.: Compact closed monoids – Definitions and Constructions GeoCal, CIRM Marseille
(2006) 974

49. Hines, P.: Machine semantics. Theor. Comput. Sci. 409, 1–23 (2008) 973
50. Hines, P.: Towards a quantum machine semantics. Mathematical Foundations of Programming

Semantics (2007), invited talk 973
51. Hines, P.: From causality to computational models. Int. J. Unconventional Comput. 4(3)

249–272 (2008) 973
52. Hines, P.: Quantum Circuit Oracles for Abstract Machine Computations. Available as:

http://www.peterhines.net/downloads/papers/Circuits.pdf (submitted) 944, 973
53. Hughes, J.: Why functional programming matters. In Turner, D. (ed.) Research Topics in

Functional Programming. Addison Wesley, New York (1990) 975

14 The Quantum Code-Data Distinction 981

54. Immerman, N.: Computability and complexity. In: Zalta, E.N. (ed.) The Stanford Encyclope-
dia of Philosophy (Fall 2006 Edition), available as: http://plato.stanford.edu/archives/fall2006/
entries/computability/ (2002) 973

55. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness
of operators. Rep. Math. Phys. 3, 275–278 (1972) 953, 963, 964

56. Johnstone, P.: Stone Spaces, Cambridge Studies in Advanced Mathematics 3. Cambridge
University Press, Cambridge (1986) 956

57. Johnstone, P.: Review of, ‘Natural dualities for the working algebraist’, by Clarke, D.,
Davey, B., American Mathematical Society (2000) 955

58. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88(1), 55–112 (1991) 960
59. Joyal, A., Street, R.: The geometry of tensor calculus II manuscript 960
60. Joyal, A., Street, R., Verity, D.: Traced Monoidal categories. Math. Proc. Camb. Phil. Soc.

425–446 (1996) 960
61. Jozsa, R., Linden, N.: On the rôle of entanglement in quantum speedup. Proceedings of the

royal society. Math. Phys. Eng. Sci. 459(2038), 2011–2032 (2003) 945
62. Kelly, M., Laplaza, M.: Coherence for compact closed categories. J. Pure Appl. Algebra 19,

193–213 (1980) 960
63. Kocher, P.C.: Timing attacks on implementations of Diffie Hellman, RSA, DSS, and Other

Systems. In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO 96, Springer-Verlag, LNCS,
vol. 1109, pp.104–113 (1996) 970

64. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation, Graduate Studies in
Mathematics (47), American Mathematical Society, Providence (2002) 945

65. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
5, 183–191 (1961) 948

66. Lambek, J., Scott, P.: An Introduction to Higher-Order Categorical Logic, Cambridge Studies
in Advanced Mathematics 7. Cambridge University Press, Cambridge (1986) 955, 959, 973, 974

67. Laplaza, M.: Coherence in non-monoidal closed categories. Trans. Am. Math. Soc. 230,
293–311 (1977) 958

68. Laplaza, M.: Embedding of closed categories into monoidal closed categories. Trans. Am.
Math. Soc. 233, 85–91 (1977) 958

69. Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. 50(5)
869–872 (1963) 973

70. Lee, J.A.N.: Looking Back, IEEE Computer Magazine (Feb. 1996) 942
71. Lee, J.A.N.: John Louis von Neumann, The History of Computing Series (NSF project CDA-

931261). available as http://ei.cs.vt.edu/_history/VonNeumann.html (2002) 942, 944
72. Linden, N., Popsecue, L.: The halting problem for quantum computers, arXiv:quant-

ph:/9806054 v2 1998 (1998) 946, 970, 973
73. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998) 955, 957, 959
74. Martin, K.: Domain theory and Measurement This volume (2008) 944, 974, 976
75. Miyadera, T., Ohya, M.: Designing Quantum Turing Machine is uncomputable Proc. EQIS 02

(2002) 973
76. Myers, J.: Can a universal computer be fully quantum? Phys. Rev. Lett. 78(9) 1823–1824

(1997) 946, 973
77. von Neumann, J.: First Draft of a Report on the EDVAC U.S. Army report on Contract No.

W-670-ORD-4926. , University of Pennsylvania. Moore School of Electrical Engineering. See
also [38] (1945) 942, 943

78. Nielsen, M., Chuang, I.: Programmable quantum gate arrays. Phys. Rev. Lett. 79, quant-
ph/9703032 (1997) 950, 951, 953, 964, 967

79. Nielsen, M.: Chuang Quantum Computation and Quantum Information. Cambridge University
Press, Cambridge (2000) 944, 945, 969

80. Pati, A., Braunstein, S.: Impossibility of deleting an unknown quantum state. Nature 404,
164–165 (2000) 947

81. Pati, A., Braunstein, S.: Quantum deleting and signaling. Phys. Lett. A 315, 208–212 (2003) 947

982 P. Hines

82. Raginsky, M.: Radon-Nikodym Derivatives of Quantum Operations arXiv:math-ph/0303056
(2003) 974

83. Renstall, G.: On logics without contraction, PhD Thesis, University of Queensland (1994) 947
84. Renstall, G.: An introduction to sub-structural logics. Routledge NY (1999) 947
85. Shi, Y.: Both Toffoli and Controlled-NOT need a little help to do universal quantum computa-

tion arXiv:quant-ph/0205115 v2 (2002) 952, 972
86. Roeder, D.: Category theory applied to Pontryagin duality. Pacific J. Math. 52(2), 519–527

(1974) 956
87. Rojas, R.: Konrad Zuse’s legacy. IEEE Ann. History Comput. 19(2), 5–16 (1997) 973
88. Rojas, R.: How to make Zuse’s Z3 a universal computer. IEEE Ann. History Comput. 20(3),

51–54 (1998) 973
89. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings

of the 3rd International Workshop on Quantum Programming Languages, ENTCS, vol. 170,
pp. 139–163 (2007) 963, 964

90. Shum, M.C.: Tortile tensor categories. J. Pure Appl. Algebra 93, 57–110 (1994) 962
91. Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism, Studies In: Abram-

sky, Artemov, Gabbay, Kechris, Pillay, Shore (eds.) Logic and the Foundations of Mathemat-
ics, vol. 149. Elsevier (2006) 973

92. Stern, N.: From ENIAC to UNIVAC: An Appraisal of the Eckert-Mauchly Computers. Digital
Press, Bedford, MA (1981) 942

93. Swade, D.: The difference engine: Charles Babbage and the quest to build the first computer,
Penguin – Putnam (2001) 973

94. Thomsen, M., Gl¨uck, R., Axelsen, H.: Towards designing a reversible processor architecture.
Proceedings of the Reversible Computation 2009, ENTCS (to appear) 948

95. Yu Vlasov, A.: Programmable quantum networks with pure states. In: Stones, J.E. (ed) Com-
puter Science and Quantum Computing, pp. 33–61. Nova Science Publishers, Inc. (2005) 944

96. Wadler, P.: Monads for functional programming. In: Jeuring & Meijer (eds.) Advanced Func-
tional Programming. Springer, LNCS 925 (1995) 975

97. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982) 946

Chapter 15
A Categorical Presentation of Quantum
Computation with Anyons

P. Panangaden and É.O. Paquette

Abstract In nature one observes that in three space dimensions particles are either
symmetric under interchange (bosons) or antisymmetric (fermions). These phases
give rise to the two possible “statistics” that one observes. In two dimensions, how-
ever, a whole continuum of phases is possible. “Anyon” is a term coined in by Frank
Wilczek to describe particles in 2 dimensions that can acquire “any” phase when
two or more of them are interchanged. The exchange of two such anyons can be
expressed via representations of the braid group and hence, it permits one to encode
information in topological features of a system composed of many anyons. Kitaev
suggested the possibility that such topological excitations would be stable and could
thus be used for robust quantum computation.

This paper aims to

1. give the categorical structure necessary to describe such a computing process;
2. illustrate this structure with a concrete example namely: Fibonacci anyons.

15.1 Introduction

The mathematics and physics of anyons probe the most fundamental principles of
quantum mechanics. They involve a fascinating mix of experimental phenomena
(the fractional quantum Hall effect), topology (braids), algebra (Temperley-Lieb
algebra, braid group and category theory) and quantum field theory. Because of their
topological nature, it is hoped that one can use them as stable realisations of qubits
for quantum computation, as proposed originally by Kitaev [28]. In this article we

P. Panangaden (B)
School of Computer Science, McGill University, Montreal, QC, Canada
e-mail: prakash@cs.mcgill.ca

É.O. Paquette (B)
School of Computer Science, McGill University, Montreal, QC, Canada
e-mail: eopaquette@holon23.net

Panangaden, P., Paquette, É.O.: A Categorical Presentation of Quantum Computation with
Anyons. Lect. Notes Phys. 813, 983–1025 (2011)
DOI 10.1007/978-3-642-12821-9_15 c© Springer-Verlag Berlin Heidelberg 2011

984 P. Panangaden and É.O. Paquette

review the mathematics of anyons and discuss the relations with braids, topology
and modular tensor categories.

The spin-statistics theorem [34, 38, 44, 47] says, roughly speaking, that particles
with 1

2 -integer spin satisfy Fermi-Dirac statistics (or are “fermions”) while particles
with integer spin satisfy Bose-Einstein statistics (or are “bosons”). This statement is
one of the few actual theorems of relativistic quantum field theory. What this means
is that it can be proved from very general assumptions of quantum mechanics and
relativity and does not depend on particular models of particles.

The proofs traditionally given [47, 17, 18] involve quantum field theory and rest
on assumptions about causality, invariance and positivity of energy. Nevertheless,
the statement seems to have a compellingly topological flavor. Indeed such a topo-
logical reading has been given by Finkelstein and Rubinstein [20], but for extended
objects rather than for elementary particles. The review article by Duck and Sudar-
shan [17] critiques this and other approaches to the spin-statistics theorem. Their
essential point is that elementary particles are not extended objects and thus the
topological arguments do not apply. Wightman points out that relativistic invariance
is essential to the proof and argues that there is no spin-statistics connection when
only euclidean invariance is assumed.

What is clear is that the proof does depend on the fact that relativistic quantum
field theory is formulated on a 3 + 1 dimensional spacetime. In a 2 + 1 dimensional
spacetime—which can be realised in the laboratory using surface phenomena—the
usual argument for the existence of two kinds of statistics is not valid anymore. Nor
is the argument for the existence of two kinds of spins. There is still a connection
between spin and statistics but now a continuum of possibilities for each exists.

The experimental investigations of the relevant surface phenomena reveal many
surprises. For example, the entities involved have flux tubes that are extended
objects, so the topological intuitions underlying the spin-statistics theorem are no
longer just heuristic. Furthermore there are collective excitations that behave like
particles but like particles with fractional electric charge. Such fractional electric
charges are never seen in nature and there are strong theoretical reasons (superse-
lection rules) to think that they cannot occur free in nature.

In the mathematical physics literature, anyons seem to be intimately related to
concepts such as modular tensor categories (MTC), a particular class of monoidal
categories, modular functors (MF), topological quantum field theory (TQFT) and
conformal field theory (CFT). There is, however, an order to this collection of ideas.
Indeed, the preceding mathematical constructions may be related in the following
way [5]:

MTC topological 2D MF complex analytic 2D MF

3D TQFT rational CFT

Definitions and an expository account of these relations—along with the precise
assumptions needed to define them—are given by Bakalov and Kirilov in [5]. There,

15 A Categorical Presentation of Quantum Computation with Anyons 985

they essentially present a complete picture of the results found in [4, 13, 27, 41, 42]
and [48]. The main point is that most of these structure are essentially equivalent.
Using this and the fact that the theory of anyons is correctly described by semisimple
MTCs, the categorical semantics for topological quantum computation with anyons
that we present in Sect. 15.4 is based on these.

The prerequisites for this paper are relatively modest. We will assume that the
reader is familiar with basic category theory and quantum computation. For an
introduction to category theory, the reader is referred to [12] or, for a more technical
introduction, to [31]. For quantum computation, we suggest [37] or, for a more
categorical introduction to the subject [2].

15.1.1 Physical Background

The physical effect most associated with anyons is called the fractional quantum
Hall effect (fqHe). In order to set the stage we first explain the classical Hall effect,
then the (integer) quantum Hall effect and finally the remarkable features of the
fqHe. The summary here is very brief and is no substitute for the many thorough
papers that have been written in the physics literature. A particularly lucid presenta-
tion of the physical ideas appears in the 1998 Nobel lecture of Horst Störmer [46].

The Hall effect was discovered the same year that Einstein was born, 1879. The
idea is very simple. Consider a fixed current flowing through a conductor, which
we take to be a flat strip. The current flows along the long axis of the strip. If one
measures the voltage at various points along the direction of current flow, one gets a
drop in the voltage associated with the normal electrical resistance of the material.
According to Ohm’s law we have R = V/I , where V is the measured voltage drop
between two points, I is the current and R is the resistance between the two points.
One can also measure the voltage drop between two points lying transverse to the
flow of the current. One does not expect to see a voltage drop, and indeed none
is detected. However, if one applies a magnetic field in the direction perpendicular
to the strip then there is a transverse force on the electrons flowing through the
conductor: this is the well known Lorentz force law. This can be written as

F = qv × B

where F is the force, v is the velocity of the charged particle, q is its charge and B is
the applied magnetic field. The × denotes the 3-vector cross product, so the force is
perpendicular to both the direction of motion of the charge and the direction of the
applied magnetic field. The upshot is that the electrons are pushed to one side and a
voltage develops in the direction across the current flow. This is the Hall effect and
is well understood in terms of classical electrodynamics.

The transverse voltage in the Hall effect VH , yields an effective Hall “resistance”
denoted by RH = VH /I . The resistance is now a tensor: the voltage and current are
no longer in the same direction. Since the transverse force increases linearly with
the applied magnetic field, one expects that RH depends linearly on the applied
magnetic field B; this is indeed what Hall found. Less obvious is the fact that the

986 P. Panangaden and É.O. Paquette

Hall resistance decreases with increasing electron density. The reason for this is that,
for a fixed current, the electrons have to travel faster to achieve the same current so
according to the Lorentz force law the transverse force is greater.

A remarkable thing happens in two-dimensional systems at low temperatures.
The simple linear behavior of the Hall resistance on the applied magnetic field is
replaced by a complicated graph featuring plateaus followed by jumps. Furthermore,
the value of the Hall resistance jumps according to a very simple law

RH = h

ie2

where, h is Planck’s constant, e is the charge of an electron and i takes on pos-
itive integer values. The Hall resistance seems to be “quantised.” In addition to
this strange behavior of the Hall resistance, the ordinary resistance vanishes at the
points corresponding to the plateaus of the Hall resistance. This behavior has been
measured very accurately and seems to be universal, i.e. independent of the actual
materials used. This phenomenon is called the integer quantum Hall effect. It was
discovered in 1980 by Klaus von Klitzing [30].

It is worth emphasising that the two-dimensional nature of the system is crucial.
In this case, by “two-dimensional” we mean that electrons are really confined to
thin layers and can only move in two dimensions. The “thin” strips used by Hall
are, of course, monstrously thick by these standards. Part of the brilliance of the
experimentalists who made these discoveries is their skill in making ultra-thin and
ultra-pure materials.

Roughly speaking, one can understand the iqHe as arising from the same mecha-
nism that causes electron orbits in atoms to be quantised. From the wave mechanics
point of view, electron orbits are quantised because the electron wave function for a
confined electron has to obey periodic boundary conditions; this is the same reason
that guitar strings have discrete spectra. In the case of the iqHe the Lorentz force
does not cause the electrons to move in circular orbits but they tend that way. This
is, of course, a very intuitive explanation. A rigorous understanding requires much
more sophisticated arguments and detailed calculations. In 1981 Robert Laugh-
lin [32] explained the iqHe as a manifestation of gauge invariance: a deep symmetry
principle. However, despite the complexity of the phenomenon, the explanation of
the iqHe can be given entirely in terms of the behavior of electrons at low tempera-
ture confined to two dimensions and interacting with impurities and with the applied
magnetic field.

The fractional quantum Hall effect is like the iqHe except that instead of the
integer values appearing in the formula

RH = h

ie2

we can have fractional values of i at which plateaus appear. Furthermore, these
fractional values are simple fractions like 1

3 or 2
5 . This discovery was made by

15 A Categorical Presentation of Quantum Computation with Anyons 987

Horst Störmer and Daniel Tsui in 1981 and was a complete surprise [46]. The elec-
trons formed complicated composite entities that behaved as if they had fractional
charges! Free particles with fractions of the basic electron charge are never seen
in nature. It is natural to think that composite entities could seem to have some
multiple of the electronic charge but these fractionally charged “particles” were
astonishing.

The crucial point is that one cannot explain the fqHe in terms of the behavior
of electrons qua electrons. One has to think of the collection of electrons moving
in a two-dimensional landscape as collectively forming a fluid with the excitations
having a strikingly different character than individual electrons. They are effectively
extended objects with nontrivial topological possibilities. The interaction with the
magnetic field creates flux tubes that intersect the plane in which the electrons are
confined and thus yield ribbon-like objects that can be wound around each other.
These are called chargeon-fluxon composites.

15.2 Spin and Statistics

Consider a system of n identical particles in quantum mechanics. A permutation
of these particles leaves the system physically unchanged in 3 space dimensions.
Thus, the only way that the state of the system can change is to be multiplied by a
phase. The Hilbert space of the system must carry a unitary representation ρ of the
permutation group Sn .

Now if σ is a permutation, ρ(σ) = eiθ I since all that can happen is a change of
phase. Let τ be a transposition: τ 2 = id, where id is the identity permutation. Thus,
ρ(τ 2) = [ρ(τ)]2 = I so ρ(τ) = ±I . This holds for any transposition. Suppose
that τ1 and τ2 share an element, i.e. τ1 interchanges a and b while τ2 interchanges b
and c. This means that τ1τ2τ1 = τ2τ1τ2. It follows that ρ(τ1) = ρ(τ2), for, if one of
them, say τ1, mapped to −I and the other to I under ρ we would have ρ(τ1τ2τ1) = I
while ρ(τ2τ1τ2) = −I . We infer that, for a given ρ, either all transpositions map to I
or all transpositions map to −I . Every permutation is the product of transpositions.
Thus, there are just two possibilities for ρ, either all permutations map to I or all
permutations σ map to (−1)sign(σ) I . Particles obeying the former type of statistics
are called bosons and those obeying the latter are called fermions.

We now consider the effect of transporting a particle in a loop. If we bring the par-
ticle back to its original position the physics must be unchanged. The Hilbert space
must carry a representation of the rotation group SO(3) which describes how the
particle transforms under rotation. The group SO(3) can be visualised as a sphere
with antipodal points identified. Its homotopy group is Z2. This means that there are
two kinds of loops: a closed loop on the surface of the sphere and a curve from a
point on the sphere to its antipode. The first kind of loop is deformable to the trivial
identity loop: that is, the loop that stays at a point. If one performs a 4π rotation
the curve is homotopic to the identity. Thus a 4π rotation must correspond to the
identity transformation and a 2π rotation to multiplication by ±1.

988 P. Panangaden and É.O. Paquette

The group SO(3) has a covering group, that is, a group with trivial homotopy
with continuous surjective homomorphism onto SO(3); this is the group SU (2)

of unitary 2-by-2 matrices with determinant +1. The representations of SU (2) are
well understood: they are classified by a number s—called the spin—which is either
an integer or a half-integer in natural units. The dimension of the representation is
2s + 1: a qubit is often thought of as a spin 1

2 particle. Particles in nature come in
these two species: integer spin or half-integer spin.

According to the spin-statistics theorem, particles that obey Bose-Einstein statis-
tics have integer spin while particles that obey Fermi-Dirac statistics have half-
integer spin. This is not an assumption about particular models of elementary
particles; it is one of the fundamental theorems of relativistic quantum field theory.

The spin-statistics theorem was first proved by Fierz [19] and Pauli [38] in 1940
for non-interacting quantum fields. Further proofs were given by Pauli himself [39]
and deWet [15]. Almost 20 years after the original proof, the spin-statistics theo-
rem was extended to interacting quantum fields by Lüders and Zumino [34] and by
Burgoyne [11]. Later several new proofs were given.

The basic mathematical structure of some of the proofs was placed in the context
of rigorous quantum field theory by Streater and Wightman [47] using the idea of
describing a field theory in terms of the complex analytic properties of vacuum
expectation values [50].

The proof in Streater and Wightman [47] is based on the following assumptions:

1. Poincaré invariance,
2. the vacuum is the lowest energy state, thus, the energy spectrum is bounded

below,
3. particle annihilation operators annihilate the vacuum,
4. locality: fields at spacelike separation commute or anti-commute and
5. the metric on Hilbert space is positive definite.1

The proof given by Streater and Wightman depends heavily on properties of
vacuum expectation values of monomials of field operators and their properties as
holomorphic functions.

The proof goes by assuming the wrong statistics—e.g. by assuming commutators
for spin 1

2 particles—and then taking vacuum expectation values and finally using
analytic continuation to deduce an equation from which it follows that the field van-
ishes. The analytic continuation process uses a complexified version of the Lorentz
group. The essential reason why the proof works is that with the wrong sign in the
commutation relations the energy is not bounded below.

This proof makes no mention of topology. Is there a topological reason for the
spin-statistics theorem? There have been several papers on this topic: an interesting
one is by Finkelstein and Rubinstein [20]. Their argument is based on the idea that

1 To a mathematician this is part of the definition of Hilbert space. However, there have been pro-
posals in physics to consider analogues of Hilbert spaces with an indefinite metric. In the physics
literature these are sometimes also called “Hilbert spaces.”

15 A Categorical Presentation of Quantum Computation with Anyons 989

the exchange of two particles can be deformed to a rotation by 2π of one of them.
They give a very appealing heuristic argument for this based on a “rubber band
lemma.” They make all this precise in the context of solitons—not for the elementary
particles for which the original spin-statistics theorem was proved. Rafael Sorkin has
been a major presence in the topological approach to spin-statistics theorems. Topo-
logical arguments were given by Balachandran et al. [6] for various situations; for
example, in [7] they proved a topological spin-statistics theorem for strings. Many
subsequent papers were written about a spin-statistics theorem for various kinds
of “kinks”, “geons” and other entities constructed from topological non-trivialities,
see, for example [16]. In an important paper Berry and Robbins [8] showed that
one could associate a geometric phase shift associated with exchanging two spin 1

2
particles and obtain a spin-statistics theorem this way. However, this has not been
extended to many particle systems.

There have been several critiques of the non-traditional proofs of the spin-
statistics theorem. In a survey article Duck and Sudarshan [17] discuss these and
several other proofs. The main point that they make is that the topological proofs
apply to “extended objects” and that elementary particles cannot be assumed to have
ribbons or other topologically nontrivial structures associated with them. Thus, the
topological proofs go not give a substitute for the classical spin-statistics theorem.
Wightman [51] pointed out that in the absence of Lorentz invariance there is no
spin-statistics connection. Thus attempts to derive it from elementary principles
based on euclidean invariance rather than invariance under the Poincaré group are
doomed.

15.3 Anyons and Braids

The fact that in two dimensions there are more possibilities for the spin and the
statistics is originally due to Leinaas and Myrheim [33], who said “ In one and two
dimensions a continuum of possible intermediate cases connects the bosons and
fermion cases.” The possibility was independently rediscovered a few years later by
Wilczek [52, 53] and Sorkin [45].

Consider what happens when there are many particles. If they are all labeled as
being distinct then arbitrary trajectories can be deformed into the identity transfor-
mation. However, in quantum mechanics particles are indistinguishable. Now when
there is a trajectory it could correspond to an arbitrary permutation of the particles.
However, the strands corresponding to each trajectory can be disentangled so all one
has is the permutation.

When a particle in 2 + 1 dimensional spacetime is wound around another twice
a nontrivial winding occurs and there is no reason why the phase change should
be ±1. For a system of N particles the transformation in the wave function is given
by a representation of the braid group.

The state-space of an n-particle system has to carry a representation of the braid
group rather than of the permutation group. The representations are a much richer

990 P. Panangaden and É.O. Paquette

collection and we have the possibility of many more kinds of statistics in two dimen-
sions: these particles are the anyons.

There is still a spin-statistics connection, however, it is now more complicated.
As we have seen there are more than two possibilities for the “statistics”: interchang-
ing particles can cause arbitrary phase shifts. The rotation group in two dimensions
is SO(2). This group has the same homotopy group as a circle so it has an infinite
family of types of “spin.”

There is another new feature to be considered. As we have mentioned before, the
physical quasi-particles that arise in the fractional quantum Hall effect are extended
objects with charge and tubes of magnetic flux. Not only is there braiding but also
twisting. Later, when we formalise the theory categorically we will introduce addi-
tional algebraic structure: the aptly named ribbon structure to capture this. For the
moment we confine our attention to braiding.

The braid group can be described by giving generators and relations. We think of
there being a fixed set of n points along a line segment and we visualise an element
of the braid group as a set of strands connecting two such collections of n points.
Each strand must go from one of the lower points to one of the upper points. The
generators are interchanges of two adjacent strands: this can happen in two ways,
the strand of particle i crosses over the strand of particle i + 1 – we call this bi – or
it can cross under, we call this b−1

i . For n points the generators are b1 to bn−1 and
their inverses. The generators obey the following equations:

bi b j = b j bi for |i − j | ≥ 2 (15.1)

bi bi+1bi = bi+1bi bi+1 for 1 ≤ i ≤ n − 1. (15.2)

which respectively depicts as:

=

i i + 1 j j + 1i i + 1 j j + 1

...

...

...

and

=

i i + 1 i + 2i i + 1 i + 2

Now a collection of N anyons corresponds to a representation of the braid group
on N particles. The simplest case is when they correspond to one-dimensional repre-
sentations; higher dimensional representations are, in principle, also possible. In the

15 A Categorical Presentation of Quantum Computation with Anyons 991

case of one dimensional representations the wavefunction will transform in response
to one particle being wound around another by acquiring a phase factor exp(iθ);
clearly one-dimensional representations of any group are always abelian. Thus, the
generator b j is represented by a exp(iθ j). Note that—unlike in the permutation
group – b2

j �= I d so exp(2iθ j) need not be equal to 1. If one looks at the elements
of the braid group in this representation they form an abelian group since, for each
generator b j occurring in a word, one gets a factor of exp(ikθ j) where k is the num-
ber of times that b j appears in the word minus the number of times b−1

j occurs. The
order in which the generators appear is not important in this simple representation
and for this reason anyons obeying these rules are called abelian anyons. In fact,
the equations for the generators (the so-called Yang-Baxter equation) implies that
the phase factors are the same for all the generators. To see this note that this equa-
tion implies that exp(iθ j) exp(iθ j+1) exp(iθ j) = exp(iθ j+1) exp(iθ j) exp(iθ j+1),
whence the result follows immediately. Anyons transforming according to higher
dimensional representations of the braid group will not have this simple abelian
character: they are called nonabelian anyons.

Physically anyons are collective excitations rather than “elementary” particles.
Thus when they are put together they form new excitations in complex ways. What
is remarkable is that the complicated physics is summarised by simple algebraic
rules called fusion rules. The best way to express the fusion rules is through the
theory of semisimple monoidal categories which we will do in the next section.

In order to understand the meaning of fusion rules consider spin in quantum
mechanics. Recall that elementary particles carry irreducible representations of
SU (2). When two particles are combined to form a composite entity one gets a
system that transforms according to the tensor product of the representations. Such
a tensor product need not be irreducible so one has to decompose it into irreducible
representations: this is called “plethysm” in the mathematics literature. Thus, for
example, when one combines a spin j particle with a spin k particle the one gets a
system that can be in states of spin | j − k| up to j + k (see, for example, Quantum
Mechanics II by A. Messiah [35]). Thus one can write heuristically

J ⊗ K = J − K ⊕ . . . ⊕ J + K.

The characterization of the irreducible representation of SU (2) comes from the
algebra of the infinitesimal generators (the Lie algebra su(2)). These are the familiar
angular momentum operators obeying the following equations

[Jx , Jy] de f= Jx Jy − Jy Jx = i h̄εxyz Jz .

In general, for a Lie algebra, one can have relations of the form

[Kα, Kβ] = Cγ
αβ Kγ

992 P. Panangaden and É.O. Paquette

where the K s are from the Lie algebra and the Cs are constants called structure
constants. For more complicated groups like SU (3) one can write similar relations:
in the case of SU (3) there are examples with more than one copy of a given repre-
sentation.

In considering combinations of anyons of different types we associate with each
type of anyon a charge, really this is just another name for “type.” Then one will
have rules for decomposing combinations of anyons of charges, say, A and B, which
will take the form A⊗ B = The theory of monoidal categories is just an abstract
presentation of the notion of tensor products so it is the ideal setting to describe the
combinatorics of fusion rules.

We can write the fusion rules in a form that looks like the defining equations for
a Lie algebra. We write 〈a, b〉 for the fusion of anyons of type a and b. Then we can
express fusion rules as

〈a, b〉 = N c
abc,

where a, b and c are anyon types and the Ns are just natural numbers. Thus a rule
of the form

〈a, b〉 = 2a + b + 3c

would mean that fusing an a-type anyon with a b-type anyon yields either an a-type
anyon, which can occur in two ways, or a b type anyon, or a c-type anyon, this last
possibility can occur in three ways. For abelian anyons we have N k

i j = 0 unless
k = i + j , in which case it is 1. Formally, this looks like the rules for decomposing
tensor products of irreducible representations of a Lie group into irreducible repre-
sentations. However, this does not mean that the fusion rules correspond to the rules
for combining irreducible representations of some Lie group. The resemblance is
purely formal.

What is the connection between physical anyons and qubits? It is not an anyon by
itself that forms a qubit, rather it is the set of fusion possibilities that forms a qubit.
If we have a fusion rule with N c

ab = 2 then when we fuse an “a” anyon with a “b”
anyon to obtain a “c” anyon, we get a two dimensional space of fusion possibilities.
This fusion space forms the qubit. In the case of Fibonacci anyons, to be discussed
in detail in later sections, we have two types of anyons 1 and τ with fusion rule
〈τ, τ 〉 = 1 + τ . If we fuse τ and 〈τ, τ 〉 we get 1 + 2 · τ . Thus, if we look at the case
when we have a τ as the result we get a 2-dimensional space of fusion possibilities
and this simulates a qubit. An operation or a one-qubit gate on such a qubit consists
of a braid connecting three τ anyons to three τ anyons where both triple have τ as
global charge. Similarly, a two-qubit gate will be a braiding of two such triples.

15.4 The Algebra of Anyons: Modular Tensor Categories

From the discussion so far we can see that there are two aspects of anyonic
behavior that need to be formalized. The first is the rather complicated kinematics
involving braiding and the second is the dynamics of the anyons. Formalising the

15 A Categorical Presentation of Quantum Computation with Anyons 993

former entails having an algebraic structure rich enough to capture charges, braiding
and fusion rules and the second requires a way of linking the kinematics with the
dynamics according to the usual rules of quantum mechanics formulated in Hilbert
spaces.

The kinematic side requires that we have a set of of algebraic rules that describes
a system of anyons, their charge, their fusion rules and all this together with an
action of the braid group, a formal system which embodies—at least partially—their
trajectories in a 2+1 dimensional space.2 Our aim is to give a categorical semantics
that will take care of both the algebraic structures describing a system of anyons and
that allows one to overlay the dynamics on top. Modular tensor categories provides
such a language.

At this point it is worth reflecting on the use of categories. The first essen-
tial point is that there are different kinds of charges. Thus, an algebraic descrip-
tion must embody several types of objects. This is exactly what categories allow.
Indeed, one can think of category theory as a kind of “higher-dimensional” alge-
bra as advocated, for example, by John Baez. Second, the paths swept out by
anyons are a crucial part of the physical description. One needs an algebraic
formalism that allows these relations between anyons to be captured, the mor-
phisms or arrows in a category give the right level of extra structure to express
this. In particular we can have notions of objects being isomorphic without being
identical.

Consider a category with tensor products, written ⊗. It could happen that
A ⊗ (B ⊗ C) is identical to (A ⊗ B) ⊗ C ; if this is the case we say we have
strict associativity. More commonly we have mere isomorphism between these two
objects. In ordinary algebra equations like this are interpreted as identities and one
would be forced to make everything strict. With categories one can have these equa-
tions holding non-strictly, or, as in the jargon of category theory, “holding up to
isomorphism.”

Let us first consider the basic properties of anyons and the algebra that is neces-
sary to express these properties:

1. First, we have a system of labels, or types, that will represent the charges of our
anyons.

2. We also need a way to express a compound system of anyons. This will be
expressed by a monoidal (tensor) structure; this way, we will represent a com-
pound system of anyons as the tensor product of their respective charges. The
trivial charge is simply the tensor unit. Importantly, this category is not strict
monoidal in general. This is physically important because, for instance, the
bracketing of a compound system of charges will indicate in which order fusions
occur.

2 Indeed, the braid group is not sufficient as anyons are extended objects. We need to have ribbons
(or framed) strands to adequately represent all movements such as, for instance, a rotation of an
anyon by 2π .

994 P. Panangaden and É.O. Paquette

3. As we saw in the preceding section, the worldlines of a system of anyons
is described by representations of the braid group. We will require that our
monoidal category has a braid structure as opposed to being symmetric.3

4. We need a way to express the notion of conjugate charge i.e. for a given charge
A, its conjugate charge A∗ is the unique charge that can fuse with A to yield the
trivial charge. The structure that captures these notions is called a rigid structure.

5. The fact that the objects we are looking at are extended objects—flux tubes—
means that, in general, representing their movements graphically with strands in
2 + 1 dimensions is not enough; the correct graphical representation is realised
by using ribbons, which can be twisted, instead of strands. The algebraic axiom-
atization of this has been given—long before mathematicians were aware of
anyons—and is called a ribbon structure on our category. The axioms for a
ribbon structure encapsulate correctly the algebraic rules imposed by the topo-
logical properties of ribbons including the possibility of twisting a ribbon.

6. We need a formal way to express the fusion rules and to map all the preceding
algebraic formalism into the context of Hilbert spaces. This will be taken care of
by an semisimple structure compatible with all the preceding structures.

7. Finally, we will consider a special class of semisimple ribbon categories called
modular tensor categories. Such categories prohibit an infinite number of possi-
ble charges for an anyon of a given theory. Moreover, such a category contains
within its defining data information about the fusion rules.

Note that most of the results that we present below are known and are discussed in
from a physical standpoint in [9, 14, 22, 24] and [40]. Our presentation contrasts
with these in the sense that we emphasise the link between the categorical structures
and the physical phenomena.

We now give detailed definitions of the categorical structures we mentioned
above. For a more detailed presentation of these notions, we refer the reader to [5]
and [12].

15.4.1 Charges and Compound Systems: Monoidal Categories

Definition 1 A monoidal category is a category C equipped with a bifunctor

⊗ : C × C → C

and three natural isomorphisms α, λ and ρ with components

αA,B;C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) , λA : 1 ⊗ A → A and ρA : A ⊗ 1 → A

3 Being symmetric means that the braiding σ is such that σB,AσA,B = 1A⊗B for all A and B.

15 A Categorical Presentation of Quantum Computation with Anyons 995

such that for all A, B, C and D ∈ |C|, both

(i) Pentagon axiom.

((A ⊗ B) ⊗ C) ⊗ D
αA,B;C ⊗1D αA⊗B,C;D

(A ⊗ (B ⊗ C)) ⊗ D

αA,B⊗C;D

(A ⊗ B) ⊗ (C ⊗ D)

αA,B;C⊗D

A ⊗ ((B ⊗ C) ⊗ D)
1A⊗αB,C;D

A ⊗ (B ⊗ (C ⊗ D))

and
(ii) Triangle axiom.

(A ⊗ 1) ⊗ B
αA,1;B

ρA⊗1B

A ⊗ (1 ⊗ B)

1A⊗λB

A ⊗ B

commute.

We interpret the components of this definition as follows:

– Objects: We will regard an A ∈ |C| as a label for a set of anyons. Note that this
set might contain a single anyon. However, in that case, the object must satisfy
some properties that we will consider below. Nonetheless, for simplicity purpose,
in what follows, we will assume that an object A is the charge of a single anyon;
this will make the explanations simpler.

– Tensor: Given a set of n charges A1, A2, . . . , An , the compound charge of the
system will be described by the n-fold tensor product A1 ⊗ A2 ⊗ . . . ⊗ An .

– Unit: The unit 1 ∈ |C| is the label indicating the trivial charge.

The natural isomorphisms are interpreted as:

– α: The bracketing of an n-fold tensor product indicates the order of the fusions
of the n components of the tensor product. The associativity isomorphism is used
to change the pattern of fusion meaning that

αA,B;C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

changes the order of the fusions from A ⊗ B to B ⊗ C occurring first.

996 P. Panangaden and É.O. Paquette

– λ and ρ: The natural isomorphisms λA : 1 ⊗ A → A and ρA : A ⊗ 1 → A
simply tells us that combining an anyon with charge A with the trivial charge 1
changes nothing about the compound charge or even to the charge of an anyon
obtained by fusing these two anyons together.

15.4.2 Worldlines: Braided Monoidal Categories

To correctly handle the movements of the anyons, our category needs at least a
braid structure. As a compound system of charges is represented by their tensor
product, the braiding will act on the components of such a tensor product of charges.
Thus, the braid structure must behave coherently with the monoidal structure.
What we need is called a braided monoidal category which is formally defined as
follows:

Definition 2 A braided monoidal category C is a monoidal category equipped with
a family of isomorphisms

σA,B : A ⊗ B ∼−→ B ⊗ A

natural in A and B ∈ |C|, such that

A ⊗ 1

σ1,A

λA
A

1 ⊗ A

ρA

and both

A ⊗ (B ⊗ C)
σA,B⊗C

(B ⊗ C) ⊗ A

αB,C;A

(A ⊗ B) ⊗ C

αA,B;C

σA,B⊗1C

B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C
αA,B;C B ⊗ (A ⊗ C)

1B⊗σA,C

and the same diagram with σ−1 instead of σ , commute for all A, B and C ∈ |C|.

15 A Categorical Presentation of Quantum Computation with Anyons 997

Of course,

– σ : The natural isomorphism σA,B is interpreted as the exchange of the charges A
and B.

The reader might wonder if such a definition is enough for our purposes, in the
sense that this is enough to adequately express the worldlines of a tuple of anyons.
The remarkable answer is “yes!” There is a coherence theorem for braided monoidal
categories, due to Joyal and Street, which says that given a natural isomorphism
built from tensoring and composing identities and components of α, λ, ρ and σ

from the braided monoidal structure, there is an associated braid. Moreover, two
such isomorphisms are equal if their associated braids are equal. The proof of this
theorem is quite technical and, for our purposes, the preceding comment is enough.
We refer the reader to [25] for the details.

Remark 1 Despite the fact that the our category is not strict and since every monoidal
category is equivalent to a strict monoidal category [31], we may omit bracketing
and unit isomorphisms if these aren’t necessary for the exposition.

15.4.3 Charge Conjugation: Rigidity

Now that we have some of the algebraic tools that describe the worldlines of anyons,
we introduce another structure to express the conjugation of the charges which is
similar to the notion of a compact structure on a monoidal category. This is given
via the notion of duals within C.

Definition 3 Let C be a braided monoidal category and A ∈ |C|. A dual of A is an
object A∗ ∈ |C| together with two morphisms i A : 1 → A⊗ A∗ and eA : A∗ ⊗ A →
1 that are such that

A∗ 1A∗⊗i

1A∗

A∗ ⊗ A ⊗ A∗

e⊗1A∗ and

A
i⊗1A

1A

A ⊗ A∗ ⊗ A

1A⊗e

A∗ A

commute. A braided monoidal category C is rigid if each A ∈ |C| has a dual.

Physically speaking, we will interpret the structural morphisms of the previous
definition in the following way:

– i : is interpreted as the creation of two quasi-particles with respective dual charges
and

– e: as the annihilation of such a pair.

998 P. Panangaden and É.O. Paquette

Now, given an f : A → B in a rigid braided monoidal category, we can define
f ∗ : B∗ → A∗ as the composite

B∗ 1B∗⊗i A−→ B∗ ⊗ A ⊗ A∗ 1B∗⊗ f ⊗1A∗−→ B∗ ⊗ B ⊗ A∗ eB⊗1A∗−→ A∗. (15.3)

It is easily verified this operation on morphisms together with A �→ A∗ on objects
defines a functor.

Later, we will need the following

Proposition 1 [5] Let C be a rigid braided monoidal category and B ∈ |C| together
with its dual B∗ ∈ |C| then, there are canonical isomorphisms

Hom(A ⊗ B, C) � Hom(A, C ⊗ B∗)
Hom(A, B ⊗ C) � Hom(B∗ ⊗ A, C).

15.4.4 Graphical Calculus for Rigid Braided Monoidal Categories

As we showed in Sect. 15.3, we can illustrate components of the braid group and
their composition with pictures. In fact, we can do more: we will now give pictorial
representation depicting completely the trajectories of anyons in 2+1 dimensions.
Such a graphical calculus comes for free with rigid braided monoidal categories and
adequately represents morphisms in such categories [5].

Let us now give the basic building blocs of such a graphical calculus:

– The identity on 1 ∈ |C| is represented as the empty picture. This is not surprising:
adding the trivial charge to the system is the same thing as adding nothing.

– The identity on a charge A ∈ |C| and its dual are respectively represented by

A A

– A morphism f : A → B is depicted as

A

B

f

15 A Categorical Presentation of Quantum Computation with Anyons 999

– The composition of morphisms f : A → B and g : B → C is given by stacking
the graphical representations of and f and g and connecting the arrows labeled
by B i.e.,

A

B

f

g

C

– The tensor product of morphisms f : A → B and g : C → D is given by
aligning the graphical representations of and f and g side by side in the f ⊗ g
order i.e.,

A

B

f g

C

D

hence obtaining the representation for f ⊗ g : A ⊗ C → B ⊗ D.
– The morphisms i A : 1 → A ⊗ A∗ and eA : A∗ ⊗ A → 1 of the rigid structure on

A ∈ |C| are represented as

A

A
and

respectively.
– The braiding σAB : A ⊗ B → B ⊗ A and it’s inverse are respectively depicted as

and

A

A

B

B

A

A

B

B

Remark 2 Note that the natural isomorphisms α, ρ and λ are not captured by this
formalism. For the first, we will introduce a graphical notation for fusion later. For
the latter two, it does not matter as already mentioned in our comment on the repre-
sentation of 11.

1000 P. Panangaden and É.O. Paquette

15.4.5 A Twist in the Worldlines: Ribbon Categories

As noted in the introduction of this section, the braid group is not enough to capture
completely the kinematics of the anyons. For instance, an anyon can revolve around
some center by 2π and the change induced on the system is not an identity. Let us
consider what this means.

Based on the language we already have from the theory of rigid braided monoidal
categories, we can build following process [40]:

1. A pair of (quasi-)particles with respective charges A and A∗ is created,
2. The two particles are swapped, the particle of charge A going behind the particle

of charge A∗ and, finally,
3. They annihilate.

Such a process is built from structural morphisms as

f = iA ◦ σ−1
A,A∗ ◦ eA.

From the graphical calculus on morphisms, f : 1 → 1 gets depicted as:

A Creation

Swap

Annihilation

The key point here is that the amplitude of the process is non-trivial as there is an
exchange occurring. Moreover, we have the following topological equivalences:

=

A

=

A A

telling us that the amplitude for the first process is equal to the amplitude of the
third which is, from bottom to top:

1. The creation of two pairs of particles with respective dual charges,
2. The exchange of the particle of charge A from the left pair with the one of charge

A from the right pair and
3. The annihilation of the particle of charge A from the right pair with the particle

of charge A∗ from the left pair and the annihilation of the particle of charge A
from the left pair with the particle of charge A∗ the right pair.

Now, consider the following deformation:

15 A Categorical Presentation of Quantum Computation with Anyons 1001

=

A

A
A

=

A

=

The third picture can be read as the creation of a pair of particles of charge A∗ and A
respectively and the particle of charge A gets rotated about 2π of some center which
illustrated in the gray box. Now, as noted, this amplitude is different from the trivial
amplitude depicted as the fourth picture. We conclude from this that illustrating
the worldlines of our anyons with strands is not completely faithful to the process.
Instead, we will use ribbons—or framed strands—so that:

=

AAA

=

A

→
framing

A A

==

This “winding around some center” is almost given already by the rigid braided
monoidal structure. Indeed, in any rigid braided monoidal category C, one can
define

γA : A∗∗ → A as γA := (A ⊗ eA∗) ◦ (A ⊗ σ−1
A∗ A∗∗) ◦ (i A ⊗ A∗∗)

for any A ∈ |C| (the reader may check that γA is topologically equivalent to the
framed ribbon of the preceding picture). However, note that we have a type mis-
match if we compare with the twist depicted above as the later is of type A → A.
To complete the definition, we need a natural isomorphism of type A → A∗∗ which
will behave coherently with the rest of the structure. Formally:

Definition 4 A ribbon category4 C is a rigid braided monoidal equipped with a nat-
ural isomorphism δ with components

δA : A → A∗∗

satisfying

(i) δA⊗B = δA ⊗ δB ;
(ii) δA∗ = (δ∗

A)−1 and,
(iii) δ1 = 1.

4 Sometimes called a tortile category.

1002 P. Panangaden and É.O. Paquette

This is enough to formally define the “twist” that we discussed:

Definition 5 Let C be a ribbon category. The twist map is defined as the natural
isomorphism θ with components

θA := γA ◦ δA : A → A.

Graphically, this is denoted as

:= = =: θA

AAAA

where we have deliberately omitted the isomorphism δA to avoid cluttering the pic-
ture. Note that we can (and did) get back to our strand notation and this is done
without loss inasmuch as we use this notation for the twist, keeping in mind that
this is a rotation of 2π of the strand around its center.

Interestingly, provided that we use these graphical conventions, any two pro-
cesses that can obtained by obtained by continuously deforming one into the other
will have the same amplitude! In fact, a theorem due to Reshetikhin and Tuarev
tells us that for two such diagrams, the isomorphisms corresponding to each of
these diagrams are equal. For an exact statement and a detailed proof, the reader
is referred to [41].

This completes our discussion on the algebraic context describing the worldlines
of anyons.

15.4.6 Towards Fusion: Semisimple Ribbon Categories

Now, we need fusion rules to build the fusion spaces where our quantum compu-
tational interpretation will take place but before, we need to introduce some new
concepts:

Definition 6 A morphism m : A → B is a monomorphism (or is monic) when for
any two f, g : C → A, we have

m ◦ f = m ◦ g ⇒ f = g.

Conversely,

Definition 7 A morphism h : A → B is an epimorphism (or is an epi) when for any
two f, g : B → C ,

f ◦ h = g ◦ h ⇒ f = g.

15 A Categorical Presentation of Quantum Computation with Anyons 1003

Because of its defining condition, a monomorphism (resp. epimorphism) is some-
time called left-cancellable (resp. right-cancellable). The two previous definitions
generalise the notions of injection and surjection in the usual sense. In fact, one may
check that in Set, these concepts coincide i.e., monics are exactly injections and epis
are exactly surjections.

Definition 8 A zero object in a category C is an object 0 ∈ |C| which is both initial
and terminal.

In particular, the presence of such an object enables us to define a zero morphism.
Indeed, if C is a category with a zero object then, for any A, B ∈ |C|, there exists a
unique morphism 0 : A → B defined as the composition A→0→B. Uniqueness of
the zero morphism follows from the fact that 0 is simultaneously initial and terminal
and hence, the set of arrows to and from it are singletons.

Such an object and its associated morphism enables in turn a generalisation of
the notion of kernel as follows:

Definition 9 The kernel of a morphism f : A → B in C, a category with a zero
object, is an arrow

Ker(f) := k : S → A

such that if f ◦ k = 0, the zero morphism, then for every h : C → A such that
h ◦ f = 0, h factors uniquely through k as h = h′ ◦ k. Diagrammatically,

S
0

k

A
f

B

C

h′

h
0

We can also define the dual notion:

Definition 10 The cokernel of a morphism f : A → B in C, a category with a zero
object, is an arrow

CoKer(f) := u : B → S

such that if u ◦ f = 0 and if h : B → C is such that h ◦ f = 0, then h factors
uniquely through u as h = u ◦ h′ i.e.:

1004 P. Panangaden and É.O. Paquette

S

h′A

0

f

0

B

u

h

C

We now can state the central definition of this subsection5:

Definition 11 A category C is

a. Preadditive if its homsets are abelian groups (written additively) and the compo-
sition of morphism is bilinear over the integers;

b. It is additive if, in addition, every finite set of objects has a biproduct;
c. It is preabelian if it is additive and every morphism in C has a kernel and a

cokernel and finally,
d. It is abelian if, in addition, every monomorphism is a kernel and epimorphism is

a cokernel.

Let us emphasise the most important part of the previous definition from our point of
view. The fact that a category C is abelian comes with a bonus: indeed, the previous
definitions not only says that the kernels and the cokernels in C behave the same
way as in vector spaces but also that its hom-sets are abelian groups and this can be
seen as a first step toward an interpretation of our formalism within the context of
complex vector spaces. To really get there, we need yet another notion inspired by
the following fact: the charges of our basic anyons are irreducible in the sense that
they cannot be decomposed into more elementary entities.6 Such a property of the
charges can be recast in categorical terms as follows:

Definition 12 Let C be an abelian category then, an S ∈ |C| such that S �� 0 is
simple if for all B ∈ |C|, f : B ↪→ S is either the zero morphism or an isomorphism.

This is the same as saying that A has no other subobject other than 0 and itself. From
this, we have

Definition 13 An abelian category C is semisimple if any A ∈ |C| is such that

A �
⊕

j∈J

N j S j

where S j is a simple object, J is the set of isomorphism classes of simple objects
and N j ∈ N are such that only a finite number of them are non-zero.

5 This definition is equivalent [23] to the standard definition of an abelian category [31].
6 Of course, this is an approximation in the effective field theory of these excitations.

15 A Categorical Presentation of Quantum Computation with Anyons 1005

This is enough to give our last definition in which there are now two distinct
monoidal products; one from the abelian structure written as ⊕ and one from the
ribbon structure denoted by ⊗.

Definition 14 A semisimple ribbon category C is a semisimple category endowed
with a ribbon structure where the tensor unit 1 ∈ |C| is simple, the tensor product
is bilinear and where for each simple object S ∈ |C|, End(S) � K, a field of
characteristic 0.

Remark 3 In what follows, we will assume that the field mentioned in the last defi-
nition is C, the complex field.

Remark 4 To lighten the notation, we will often use the index of simple objects to
identify morphisms involving these. For instance, 1i is the identity on the simple
object Si and the natural isomorphism σi j is of type Si ⊗ Sj → S j ⊗ Si . Corre-
spondingly, we will label the wires in the picture calculus only with the index i
instead of the label Si .

Now, having such a semisimple structure on C has many consequences. First, we can
now handle fusions of anyons. Second, it is from this structure that complex vector
spaces arise. Indeed, it is this fact that will enables us to define splitting spaces and
unitary representations of the braid group therein. Such a structure also enables the
following results:

Proposition 2 In semisimple ribbon categories, there are natural isomorphisms

A ⊗ (B ⊕ C) � (A ⊗ B) ⊕ (A ⊗ C) and (A ⊕ B) ⊗ C � (A ⊗ C) ⊕ (B ⊗ C).

Moreover,

(A ⊕ B)∗ � A∗ ⊕ B∗ and 0∗ = 0.

15.4.7 Modular Tensor Categories

Semi-simple ribbon categories can already handle the kinematics of a system of
anyons, our description of a particular model of anyon will take place within a
particular class of such categories namely, modular tensor categories. First, such
categories only allow a finite number of charges or rather, a finite set of isomorphism
classes of simple objects. There is no reason to think that this is true in nature,
however, all the applications that we have in mind for quantum computation can be
done with a finite number of anyon types. A second point that we will inspect later is
that the s-matrix defining the modularity condition has surprising connexions with
the fusion rules.

More generally, these extra assumptions on semisimple ribbon categories lead
to many interesting results; in particular, we can derive an equivalence between
MTCs and modular functors. Since the goal of this paper is to give an introduction

1006 P. Panangaden and É.O. Paquette

to computing with anyons, these results are not pursued here. The interested reader
might want to look at [5] for a complete exposition of these subjects.

Definition 15 A modular tensor category is a semisimple ribbon category C such
that

1. Finiteness condition: The index set J of isomorphism classes of simple objects
is finite and S0 := 1.

2. Modularity condition: For i, j ∈ J , the matrix s with entries

(s)i j =
[
λ1 ◦ (ei ⊗ e j) ◦ (idi ⊗ σi j ⊗ id j) ◦ (idi ⊗ σ j i ⊗ id j) ◦ (ii ⊗ i j) ◦ λ−1

1

]

i j

which are depicted as

i j

is invertible.

Remark 5 We indeed get a matrix for s since we have End(1) � C – a field of
characteristic 0—and the morphism depicted above is really of type 1 → 1 hence,
a scalar.

The scalar components of the s-matrix form the so-called Hopf link. They can be
thought of as the amplitude of the following process:

1. Two pairs of particles of respective charges A and A∗ are created,
2. The particle of charge A∗ from the left pair is wound around the particle of

charge A from the other pair and
3. The two pairs annihilate.

We don’t have yet the machinery to describe the surprising results that the modular-
ity constraint entails, but we will do so in the subsection on the Verlinde Formula
below.

15.4.8 Fusion Rules

For now on, we fix C to be a modular tensor category. As already mentioned, the
charge of an anyon is represented by a simple object in C. Suppose that two anyons
with charges Si and S j fuse together into an anyon of charge Sk and that in N k

i j
ways, we will write this as

Si ⊗ Sj � N k
i j Sk .

15 A Categorical Presentation of Quantum Computation with Anyons 1007

There, the lower labels of N k
i j then indicate which charges fuse together in order to

yield the charge identified by the upper label.

Remark 6 Note that such an expression always makes sense, since by assumption
the category is semisimple thus, each object is isomorphic to a direct sum of simple
ones.

Now, the fusion process can produce different charges and this constitutes a gen-
eralisation of our description above. Taking in account this fact, we get the following

Definition 16 [Fusion rule] Let Si and S j be simple objects in C and J be the index
set for the isomorphism classes of simple objects. The fusion rule of Si and S j is
given by

Si ⊗ S j �
⊕

k∈J

N k
i j Sk .

There, the coefficients N k
i j = Dim(Hom((Si ⊗ S j), Sk) are called the fusion coeffi-

cients of the fusion rule.

It is easy to verify that the fusion coefficients satisfy

N k
i j = N k

ji = N i∗
jk∗ = N k∗

i∗ j∗ = N 0
i∗ j∗k = . . . and N0

i j = δi j∗ .

and hence, in particular, we can lower and raise indices.

15.4.9 Translation to the Hilbert Space Context: Fusion
and Splitting Spaces

We now come to the crux of the story. We now need to connect our rather abstract
algebraic rules describing the kinematics of our anyons to dynamics which is
expressed in the language of Hilbert spaces. Such a translation is already built-in
a modular tensor category C. Indeed, we will use the facts that hom-sets of C
are vector spaces over C and that for all simple objects S, End(S) � C to build
the so-called splitting and fusion spaces in which we will simulate our qubits and
coqubits.

Before carrying on to define such spaces for a family of anyons, we will need the
following variant of Schur’s lemma:

Lemma 1 Let C be a semisimple abelian category and Si , S j ∈ |C| be simple
objects such that i �= j , then Hom(Si , S j) = {0}.
Proof Let f : Si → S j be arbitrary and consider Ker(f) : U ↪→ Si (the kernel
is necessary monic) then, as Si is simple by assumption, it follows that Ker(f) is
either 0 or an isomorphism. If the kernel is 0, then f is an injection and hence, an

1008 P. Panangaden and É.O. Paquette

isomorphism since S j is simple, but this cannot be possible as i �= j . Therefore,
by simplicity of Si we have U � Si and f = 0 from which we conclude that
Hom(Si , S j) = {0} as f is arbitrary. �

As a consequence of semisimplicity, the homset

Hom(Sk, Si ⊗ S j)

is really a complex vector space whose dimension is fixed by the fusion rule. Gener-
ally speaking, the passage from our modular tensor category to the category of finite
dimensional complex vector spaces will be handled by this fact.

Definition 17 Let Si , S j and Sk be simple objects in C, a splitting space7 is a com-
plex vector space

V i j
k � Hom(Sk , Si ⊗ Sj)

of dimension Ni j
k = dim(Hom(Sk, Si ⊗ S j))—the number of ways the charge Sk

can split as the compound charge Si ⊗ Sj . Its states

Hom(Sk, Sk) Hom(Sk, Si ⊗ Sj)

are called splitting states.

Note that the type of the splitting states makes sense. Indeed, if the splitting rule
tells us that Dim(Hom(Sk, Si ⊗ S j)) = Ni j

k , then through the fact homsets are
complex vector spaces, a splitting state is a linear map of type

C −→ C
N i j

k .

We now define the basis vectors of a splitting space. Let us introduce the fol-
lowing notation [40]: For Si , S j and Sk , some simple objects of C, if the following
fusion rule Si ⊗ Sj � N k

i j Sk holds, we will denote the basis state representing the
corresponding to the ηth possible splitting of Sk into Si ⊗ S j as |i j; k, η〉 so that the

set of basis vectors that spans the splitting space V i j
k is

{|i j; k, η〉 | η ∈ {1, 2, . . . , N i j
k }}.

In the category FdVectC, the basis vector |i − 1〉 : C → C
n of C

n := C ⊕ . . . ⊕ C

n times, can be assimilated to the i-th canonical injection

7 Such a space is also called a fusion space however, as the initialisation of a state takes place via
a splitting, we prefer our proposed terminology.

15 A Categorical Presentation of Quantum Computation with Anyons 1009

ιi : C −→ C
n :: 1 �→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

1
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with the “1” on the i-th line and 0’s elsewhere. Lifting this to our context, we can
define the basis vector

|i j; k, η〉

for fixed k and η as

Hom(Sk, Sk)
|i j;k,η〉

Hom(1Sk ,ιη)

Hom(Sk, Si ⊗ S j)

Hom(Sk, N i j
k Sk)

�

where ιη is the ηth canonical injection into the Ni j
k -fold biproduct of Sk’s.

According to the general form of the fusion rule, the compound charge Si ⊗ S j

could be obtained via the splitting of different charges. In the light of lemma 1,
each such splitting spaces are orthogonal one to the other. Thus, what we actually
get is a tuple8 of splitting spaces 〈V i j

k1
, . . . , V i j

kn
〉 where {k1, . . . , kn} ⊆ J , the index

set of isomorphism classes of simple objects. Each component of this tuple carries
a different possible branch of the computation labeled by the charge Skl . These
spaces are mutually orthogonal in the topological vector space V i j of dimension
∑

kl∈J N i j
kl

spanned by the set of vectors

{|i j; kl , η〉 | kl ∈ {k1, . . . , kn}, η ∈ {1, 2, . . . , Ni j
kl

}}.

Remark 7 We can also define costates. Indeed, so far, we have spoken of a splitting
state but the anyons can also—of course—fuse together thus yielding costates. As
an example, for each basis vector |i j; k, η〉, we can define a bra 〈i j; k, η| dualising
the defining diagram for the basis vector and using canonical projections instead of
the canonical injections.

Returning to our splitting spaces, we see that there is a morphism of type Sk →
Si ⊗ S j underlying each basis vector of a given splitting space. As it is determined
by the ηth canonical injection and the splitting rule, we depict such a morphism as:

8 Strictly speaking, it is a biproduct of fusion spaces but as the later is simultaneously a product
and a coproduct, it also makes sense to speak of tuples.

1010 P. Panangaden and É.O. Paquette

η

k

i j

Of course, such a family of morphisms satisfies the following two relations:

= δκ,κ δηηand

j

η

k

η

i

ji

η,κ =

ji

η

k

η

k

i k

(a) (b)

This is unsurprising as they define basis vectors. Indeed, the pictures above are
simply the abstraction of the equations

∑

η,k

|i j; k, η〉〈i j; k, η| = id and 〈i j; k, η|i j, k′, η′〉 = δk,k′δη,η′

satisfied by an orthonormal set of basis vectors.
More generally, a morphism

f : A → B,

where A and B are understood as compound systems of anyons, is of the form

⊕

j∈J

(

Hom(S j , A)
Hom(1S j , f)

Hom(S j , B)

)

.

Indeed, lemma 1 tells us that it is not possible to change the global charge from Si to
S j for i �= j as the set of transformation between different simple objects is trivial.
We will see some examples of such morphisms in the next section on Fibonacci
anyons.

15.4.10 Quantum Dimension

In a modular tensor category, the trace of a map f : A → A is defined as

Tr(A) : 1
i A−→ A ⊗ A∗ f ⊗1A−→ A ⊗ A∗ δA⊗1A∗−→ A∗∗ ⊗ A∗ eA∗−→ 1. (15.4)

15 A Categorical Presentation of Quantum Computation with Anyons 1011

Now, each charge Si has its own dimension. In fact, it is calculated much in the same
way than in FdVectC. Indeed, it is given by

di := Tr(1i).

Pictorially, this is

d i =

i

Such a number is called the quantum dimension of Si . Before discussing the
properties of this number consider the following

Lemma 2 [40] Let Si , S j and Sk ∈ C be simple objects then

di d j = Ni j
k dk .

Proof We give a pictorial proof:

= =di dj =
i j i j

j

η

k

i

k,η
η

where for the last equality we used (a) from the relations for the morphism under-
lying the basis vectors. Now, using the topological invariance of the diagram, we
get

η

= k,η

η

k

ji
= k Nk

ij

k
= k Nk

ij dk

Where for the first equality we used (b) from the same pair of relations. �
From this, it is easy to see that the quantum dimension of abelian anyons is

always 1 and that, independently of the charge. For a non-abelian anyon of charge
Si however, we have di > 1.

Example 1 We now give a specific example of quantum dimension via the Fibonacci
anyons briefly introduced at the end of Sect. 15.3. Consider the splitting space

Hom(I, τ⊗n)

1012 P. Panangaden and É.O. Paquette

there, τ⊗n is the n-fold tensor product of τ ’s all bracketed from the left. The dimen-
sion of this splitting space can be calculated using the fusion rule τ ⊗ τ � 1 ⊕ τ . In
doing so, one sees quite quickly that

τ⊗n � Fn−2 · I ⊕ Fn−1 · τ,

where Fm is the mth Fibonacci number. Now, using lemma 1, we have that

Hom(I, τ⊗n) � Hom(I, Fn−2 · I) ⊕ Hom(I, Fn−1 · τ) � Hom(I, Fn−2 · I).

Thus, for the first few values of n ≥ 2, we have

1, 1, 2, 3, 5, 8, 13, 21, . . .

As this is the sequence of the Fibonacci numbers, the rate of growth must be given
by the golden ratio φ.

On the other hand, using our calculations above, we find that dI = 1 as two
charges I fuse trivially. For dτ , we have that

d2
τ = 1 + dτ

from which one gets that, again, dτ = φ, the golden ratio.

The fact that the quantum dimension is an irrational number illustrates that the
splitting space obtained via such a set of τ anyons cannot be decomposed as a tensor
product of smaller ones or, in other words, that the information is encoded into
global degrees of freedom rather than local ones such as, for instance, the spin of an
electron.

15.4.11 The Verlinde Formula

Let C be a semisimple modular tensor category, we can build the fusion algebra K
of C. Without getting into the technical details of such a construction9 let us say
that it has for basis the set of x j = 〈S j 〉 for j ∈ J and for unit 1 = x0. There, 〈S j 〉
denotes the isomorphism class of Sj . Of course, the multiplication in K is given by
the fusion rules i.e.

xi x j =
∑

k

N k
i j xk .

9 This algebra is defined as K (C) ⊗Z K where K (C) is the Grothendieck ring of C. See for
instance [5] p. 32 and 53–54.

15 A Categorical Presentation of Quantum Computation with Anyons 1013

It turns out that this algebra can be diagonalised i.e. there exists a base in which the
multiplication becomes diagonal:

x ′
i x ′

j = δi jαx ′
j

where α is a scalar. The matrix that performs this diagonalisation is a renormalised
s-matrix, the (modular) S-matrix which we now define.

Definition 18 Let d j be the quantum dimension of Sj ∈ |C| and D be the scalar

√∑

j∈J

d2
j .

The S-matrix is

S := 1

D
s.

We now have from [5] p. 52 the following

Proposition 3 For a fixed j ∈ J , let N j be the matrix of multiplication by x j in the
basis {x j } that is (N j)ab = N a

jb and also, let D j be the diagonal matrix (D j)ab =
δab Sia/S0a, then

SNa S−1 = Da .

In fact, this proposition states that the S-matrix diagonalises the fusion rules. A
more complete discussion along with proofs is given in the source of this proposition
and [40].

Now, the previous proposition yields to the well-known result [49]:

Theorem 1 (Verlinde Formula)

Nk
i j =

∑

r

Si j S jr Sk∗r

S1r
.

In turn, this theorem says that the S-matrix is not only related to the braids used to
define it but also that given an S-matrix, one can calculate the fusion coefficients
in C.

15.4.12 Categorical Epilogue

This complete our categorical presentation of the algebra of a family of anyons.
Note that even if, in what follows, we use only the semisimple ribbon struc-
ture in our description of topological quantum computation, specifying completely

1014 P. Panangaden and É.O. Paquette

the modular tensor category structure was worth the work: indeed, specifying
the simple objects, the fusion rules, the pentagon and hexagon axioms, the twist
and the S-matrix completely determine the topological properties of a species of
anyons!

15.5 An Example: Fibonacci Anyons

The strategy now will be to assume a set of fusion rules of a given species of anyons
and solve the various algebraic constraints imposed by the semisimple modular
structure. Our intended model to illustrate quantum computation with anyons is
the formal semisimple modular tensor category Fib which captures the rules of
Fibonacci anyons (see [9, 14, 22, 24, 40] from which the material of this section
is derived).

• Fibonacci anyons have only two charges: 1 and τ , where 1 is the trivial charge,
• Both are their own anti-charge,
• They satisfies the following fusion rules:

1 ⊗ 1 � 1

1 ⊗ τ � τ ⊗ 1 � τ

τ ⊗ τ � 1 ⊕ τ

Categorically, this says that the semisimple modular tensor category Fib has

• Two simple objects 1 and τ where 1 is the tensor unit,
• That they are their own dual i.e.: 1∗ = 1 and τ ∗ = τ and,
• That 1 and τ satisfy the fusion rules given above.

Let us inspect the fusion rules. While the two first trivially hold, the third one says
that the charge resulting from the fusion of two anyons of charge τ is either 1 or τ .
It is precisely this third rule that tells us that our anyons are non-abelian as they can
fuse in two distinct ways.

Now, back to our model, consider three anyons of charge τ all lined up (τ⊗τ)⊗τ

and let them fuse in the order fixed by the bracketing. Such a process is algebraically
described by:

(τ ⊗ τ) ⊗ τ � (1 ⊕ τ) ⊗ τ

� (1 ⊗ τ) ⊕ (τ ⊗ τ)

� τ ⊕ (1 ⊕ τ)

� 1 ⊕ 2 · τ.

Hence, the fusion process for three τ anyons yields a final charge τ in 2 different
ways or 1 in a single way. These three scenarios depict as

15 A Categorical Presentation of Quantum Computation with Anyons 1015

τ

τ

oror 1

τ

τ τ τ τ τ ττ τ τ

τ

1

We now pass to the context of finite-dimensional complex vector spaces via the
splitting spaces whose basis vectors are dual to the fusion states described above.
Consider

Hom(b, (τ ⊗ τ) ⊗ τ) � Hom(b, 1 ⊕ 2 · τ)

� Hom(b, 1) ⊕ Hom(b, 2 · τ) and as 2 · τ := τ ⊕ τ this is

� Hom(b, 1) ⊕ 2 · Hom(b, τ). (15.5)

Now, using lemma 1 in conjunction with the property that for any b ∈ {1, τ },
End(b) � C; if we set b = 1, then (15.5) is isomorphic to C ⊕ 2 · 0. Conversely if
b = τ , then it is isomorphic to 0 ⊕ 2 · C.

From this, we conclude that considering the space of states with global charge
b ∈ {1, τ } is the same as considering

Hom(b, (τ ⊗ τ) ⊗ τ).

In its turn, such a consideration fixes either of the splitting spaces C or 2·C := C
2 as

orthogonal subspaces of C
3, the topological space representing our triple of anyons.

It is within this two-dimensional complex vector space that we will simulate our
qubit. Indeed, if b = τ , we are left with two degrees of freedom which are the two
possible outputs of the second splitting.

Remark 8 It is worth stressing that it takes three anyons of charge τ to simulate a
single qubit. Moreover, we shall see later that braiding these anyons together simu-
lates a unitary transformation on such a simulated qubit.

Remark 9 Since Fib is rigid, we can apply Proposition 1. We have

Hom(τ, (τ ⊗ τ) ⊗ τ) � Hom(1 ⊗ τ, (τ ⊗ τ) ⊗ τ)

� Hom(1, ((τ ⊗ τ) ⊗ τ) ⊗ τ).

Comparing this fact with what we got in Example 1, we see that these two encod-
ings are essentially the same. It is because of this that some authors, for instance
J. Preskill in [40], prefer to encode their qubits within a quadruple of anyons of
individual charge τ with global charge 1 instead. We choose the former to align
with the work of Bonesteel et al. [9] that we will explain in Sect. 15.6.

Now that we have an expression for the topological spaces in Fib, it will be handy
to fix a basis for them. Using the diagram given in the section on splitting spaces,
we get

1016 P. Panangaden and É.O. Paquette

Hom(τ, τ)
|i−2〉

Hom(1τ ,ιi)

Hom(τ, (τ ⊗ τ) ⊗ τ)

Hom(τ, 1 ⊕ 2 · τ)

�

with i ∈ {2, 3} and where the vertical isomorphism is built from the fusion rules.
Analogously, the basis vector |NC〉 spanning the one dimensional fusion space

is defined as

Hom(1, 1)
|NC〉

Hom(11,ι1)

Hom(1, (τ ⊗ τ) ⊗ τ)

Hom(1, 1 ⊕ 2 · τ)

�

It is labeled NC for Non-Computational. Indeed, the superposition of |NC〉 with
|0〉 or |1〉 is prohibited.

15.5.1 The F-Matrix

In order to ensure consistency of the model Fib, splitting has to be associative as
expressed categorically via the pentagon axiom from the monoidal structure [36].

There are two splitting spaces that can be obtained from a triple of anyons i.e.:
(τ ⊗ τ) ⊗ τ and τ ⊗ (τ ⊗ τ). The basis vectors for these two splitting spaces are –
of course – related by a unitary transformation called the F-matrix acting on the
splitting spaces and defined via the natural transformation α in the following way:

F : Hom(W, (S ⊗ T) ⊗ U)
Hom(1W ,αS,T ;U)

Hom(W, S ⊗ (T ⊗ U)). (15.6)

There, S, T, U and W ∈ {1, τ }.
Using splitting diagrams, we have:

=
b
(F S T U

W)ba

S

b

W

ST U T U

a

W

Considering the splitting diagram for fixed a and W as a basis vector, this is nothing
but the matrix expression of F . In order to obtain a solution for the F-matrix, we
need to recast the pentagon axiom from the monoidal structure in this context in
such a way that we obtain a matrix equation. Consider

15 A Categorical Presentation of Quantum Computation with Anyons 1017

S T U V

W

S T U V

W

S T U V

W

S T U V

W

S T U V

W

a

b

a

e

d

e

b

c

d

c

F F

F

F

F

S T U V

W

a

b

S T U V

W

e

b

S T U V

W

e

d

S T U V

W

c

d

S T U V

W

a c

==

=

There, we explicitly expressed where F was acting on the splitting states via subdi-
agrams drawn in solid lines. Passing to the underlying pentagon axiom is made via
the expression of F given in Eq. (15.6).

Now, equating both sides of the diagram yields

(F ST c
W)da(FaU V

W)cb =
∑

e

(F T U V
d)ce(F SeV

W)db(F ST U
b)ea. (15.7)

Solving this in conjunction with a given set of fusion rules yields the F-matrix. To
solve such an equation, one has to fix the labels for all the possible states in the
splitting basis and solve the resulting system of equations.

In Fib, for a triple of anyons of charge τ , the trivial charge can split into such a
triple in only one way. In this particular case, the F-matrix is

Fτττ
1 = [1]

as the first splitting must yields τ ⊗ τ .
Conversely, if the initial charge is τ then, the splitting process can occur in two

distinct manners. In order to get the F-matrix, we must use Eq. (15.7). For instance,
a possible splitting scenario occurs when one fixes a = 1 = c and d = τ = b.
Using this with (15.7) gives:

1018 P. Panangaden and É.O. Paquette

(Fττ1
1)τ1(F1ττ

1)1τ =
∑

e∈{1,τ }
(F τττ

τ)1e(Fτeτ
1)ττ (Fτττ

τ)e1

1 = F2
11 + Fτ1 F1τ .

Using this, the other consistency relations and the fact that F is unitary, we find:

Fτττ
τ =

[
F11 F1τ

Fτ1 Fττ

]

=
[

φ−1
√

φ−1
√

φ−1 −φ−1

]

where φ is the golden ratio.
Finally, combining the results for Fτττ

τ and Fτττ
1 yields

F =
⎡

⎣
1 0 0
0 φ−1

√
φ−1

0
√

φ−1 −φ−1

⎤

⎦

which is also unitary. The lower-right block induces a change of basis on the
2-dimensional splitting space while the upper-left block is the trivial transformation
on the one-dimensional splitting space.

15.5.2 Braiding Anyons

We now express what will be the consequence of exchanging two anyons on the
splitting space. As such an exchange is represented categorically by a braiding, this
will yield a representation of the braid group in the splitting space.

15.5.2.1 The R-Matrix

The game here is very similar to the one for the F-matrix except that we use the
hexagon axiom from the braided monoidal structure instead [36]. The R-matrix is a
morphism

R : Hom(W, (S ⊗ T) ⊗ U)
Hom(1W ,σS,T ⊗1U)

Hom(W, (T ⊗ S) ⊗ U).

or, using splitting diagrams:

[R S T
a] aa

=

S T U

W

a

ST U

W

a

15 A Categorical Presentation of Quantum Computation with Anyons 1019

We already have the F-matrix thus, the hexagon needs to be solved only for the
R-matrix. Recasted with splitting diagrams, the hexagon axiom becomes:

S T U

W

a

F F

R

F
R

S T U

W

b

ST U

W

ST U

W

c

ST U

W
b

R

ST U

W

c

a

Writing it as a matrix equation yields

RSU
c (FTSU

W)ca RST
a =

∑

b

(FTUS
W)bc RSb

W (FSTU
W)ba.

For a triple of anyons with charge τ , explicit calculations of the R-matrix yields:

⎡

⎣
−e−2iπ/5 0 0

0 e−4iπ/5 0
0 0 −e−2iπ/5

⎤

⎦

Such a diagonal form is not surprising: whether the global charge of a couple is 1
(resp. τ), it must remain so even if we exchange the two components of the pair.

15.5.2.2 The B-Matrix

The R-matrix provided in the previous section give us a way to exchange the
two leftmost anyons in a set of three. We now need a way to find the matrix that
exchanges the two rightmost anyons, this will be the B-matrix and is defined as

Hom(W, (S ⊗ T) ⊗ U)
B

Hom(1W ,αS,T ;U)

Hom(W, (S ⊗ U) ⊗ T)

Hom(W, S ⊗ (T ⊗ U))
Hom(1W ,1S⊗σT,U)

Hom(W, S ⊗ (U ⊗ T))

Hom(1W ,α−1
S,U ;T)

1020 P. Panangaden and É.O. Paquette

As we found both the F and the R matrix in Fib, we can compute the B-matrix as

B := F−1 RF

15.6 Universal Quantum Computation with Fibonacci Anyons

The basic idea to simulate quantum computation with anyons is given by the fol-
lowing steps:

1. Consider a compound system of anyons. We initialise a state in the splitting space
by fixing the charges of subsets of anyons according to the way they will fuse.
This determines the basis state in which the computation starts.

2. We braid the anyons together, it will induce a unitary action on the chosen split-
ting space.

3. Finally, we let the anyons fuse together and the way they fuse determines which
state is measured and this constitutes the output of our computation.

15.6.1 Simulating Qubits

First, the topological space for such a triple is a pair 〈C, C
2〉 where the

2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,

and the space of dimension one is spanned by:

|NC〉 := |(τ ⊗ τ) ⊗ τ ; 1, 1〉.

Of course, the simulation of a qubit will occur on the 2-dimensional space spanned
by {|0〉, |1〉}. Compound system of two or more qubits will be given by the com-
pound system of such a triple of anyons. Note that even if we fix the global charge
of the triple as τ , in the real world, it is possible that we may still measure 1.
These errors are known as “leakage errors” as there is some unexpected “leaks”
into another splitting space.

15.6.2 Quantum Computation

To perform actual quantum computation, it seems at first glance that we have two
problems:

1. First, we would like to apply any gate on our simulated qubits but we have only
the two braiding matrices and their inverses.

15 A Categorical Presentation of Quantum Computation with Anyons 1021

2. Second, even if we solve our first problem, it remains that this is not enough to
quantum compute. Indeed, we also need a two-qubit gate.

We answer these. First, a composition of length l of R- and B-matrices and their
inverses can get arbitrarily close to any element of SU (2) and that, with l reasonably
small. This is a consequence of the fact that our matrices together with their inverse
satisfies the Solovay-Kitaev theorem, see [37] pp. 617–624 for a precise statement
and a proof.

We now address the second problem. Following the works of Bonesteel et al.
in [9], we explain how to build a CNOT gate for our anyons; for this we will need
two triplets of τ anyons; one of them will act as our test qubit while the other will
be the target qubit. The idea is relatively simple: we need to intertwine a pair of
quasi-particles from the first triplet—the control pair—with the target triplet without
disturbing it; as the braid operators are dense in SU (2), we will arrange such an
intertwining so that its representation in SU (2) is close enough to to the identity.
The next thing is to implement a NOT—actually a i · NOT—by braiding our two
anyons of the control pair with those of the target triple. Finally, we extract the
control pair from the second triplet—again—without disturbing it. Now, the key
point is the following: a braiding involving the trivial charge 1 with an anyon of
arbitrary charge does not change anything. Thus, when measuring the control pair,
the i · NOT will occur if and only if the two anyons from the control pair fuse as an
anyon of charge τ ; otherwise the control pair only induces a trivial change on the
system.

(a) Consider the following braiding:

As an action on the splitting space of the three anyons involved, this is, in the
same order as depicted in the picture:

B3 R−2 B−4 R2 B4 R2 B−2 R−2 B−4 R−4 B−2 R4 B2 R−2 B2 R2 B−2 R3 ∼
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

This tells us how the given braid insert an anyon within a triplet without disturb-
ing it. In fact, this stresses the distinction between the dynamics of the anyons
and the consequences on the splitting space. Indeed, even if we disturbed the
initial configuration of anyons via multiple braidings, the effect on the splitting
space is approximately the identity.

1022 P. Panangaden and É.O. Paquette

(b) Now, we implement an i · NOT as the following braid:

The unitary acting on the splitting space of the initial triple is given by:

R−2 B−4 R4 B−2 R2 B2 R−2 B4 R−2 B4 R2 B−4 R2 B−2 R2 B−2 R−2 ∼
⎛

⎝
0 i 0
i 0 0
0 0 1

⎞

⎠

This combination of braids tells us how to implements a i · NOT gate on
the two dimensional fusion space of our triple of anyons. Again, this gate is
approximated.

(c) Finally, the i ·CNOT gate acting on two topological qubits is realised as follows:

insert NOT extract

First, instead of inserting 1 anyon, we insert a couple that will be used as a test
couple and that in the very same manner as described in (a) – as these two will
fuse together yielding either 1 or τ , this is exactly what we want. Secondly,
we apply the i · NOT-gate computed in (b). Finally, we extract the control pair
returning it to its original position by applying the insertion procedure in reverse
order. This is done, again, without disturbing the triple at stance here.

We claim that this implements a CNOT. Indeed, the test couple can fuse in two
ways. If it fuse as 1, then nothing happens as 1 is the trivial charge. If it fuse as τ ,
then we effectively apply the i · NOT gate computed in (b).

Interestingly, we may replace the i · NOT by any other braid thus obtaining a
way to perform other controlled operations give such a pair of topological qubits. It
turns out that this gate together with the R and B matrices form a universal set of
quantum gates [10] as i · CNOT is entangling.

15.7 Conclusions

As we noted in the introduction of Sect. 15.4 the results that we presented here
are not new. We gave an explicit description of the algebra of anyons in terms of
modular categories, a description that is given in mathematical physics papers that
may not be accessible to everyone.

15 A Categorical Presentation of Quantum Computation with Anyons 1023

The very rich nature of this subject makes the task of writing a complete intro-
duction concisely almost impossible therefore, to complement our attempt, we
now give some additional pointers to the litterature. On the physical side, Frank
Wilczek edited Fractional statistics and anyon superconductivity [54], a book which
comprises papers explaining central concepts related to anyons. This list wouldn’t
be complete without A. Kitaev’s paper Anyons in an exactly solved model and
beyond [29] where the reader can find another introduction on the algebra of anyons
with a more physical flavour in appendix E.

On the quantum computing side, there is a growing interest in topological quan-
tum computation due to the fact that such a model provides a more robust form of
quantum computation. Some papers which emphasise topological quantum compu-
tation are [3, 43]. Perhaps closer to the essence of the present paper are the works
of Freedman, Kitaev, Larsen and Wang presented in [21, 22].

Of course, apart from modular tensor categories, there are other links to draw
between topology and quantum mechanics or quantum computing; for instance, the
works of Louis H. Kaufman and Samuel J. Lomonaco Jr., in particular [26] in which
they describe the role of braiding in quantum computing. There is also the work of S.
Abramsky [1] that describes connections between knot theory, categorical quantum
mechanics, logic and computation.

Finally, although the aim of this paper was to draw parallels between categorical
structures and anyons, there is still work to do; for instance, our exposition was
oriented towards FdHilb, the category of finite-dimensional Hilbert spaces. How-
ever, †-compact categories [2] constitute a correct framework to describe quantum
mechanics and it would be interesting to see the benefits of describing topological
quantum computation within this more abstract context.

Acknowledgments The authors would like to thank Samson Abramsky, Michel Boyer, Ross Dun-
can, Rafael Sorkin, Colin Stephen, Benoît Valiron and Jamie Vicary for useful discussions.

References

1. Abramsky, S.: Temperley-lieb agebra: From knot theory to logic and quantum computation
via quantum mechanics. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) Mathematics of
Quantum Computing and Technology, pp. 515–558. Taylor and Francis, New York (2007) 1023

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS‘04), IEEE Computer
Science Press (2004) 985, 1023

3. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the
jones polynomial. In: STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, pp. 427–436. ACM, New York (2006) 1023

4. Bakalov, B., Kirilov, A. Jr.: On the Lego-teichmüller game. Transf. Groups 5, 7–44 (2000) 985
5. Bakalov, B., Kirillov, A.: Lectures on tensor categories and modular functors. American Math-

ematical Society in University Lecture Series (2001) 984, 994, 998, 1006, 1012, 1013
6. Balachandran, A.P., Daughton, A., Gu, Z., Sorkin, R.D., Marmo, G., Srivastava, A.M.:

Spin-statistics theorems without relativity or field-theory. Int. J. Mod. Phys. A8, 2993–3044
(1993) 989

7. Balachandran, A.P., McGlinn, W.D., O’Raifeartaigh, L., Sen, S., Sorkin, R.D., Srivastava,
A.M.: Topological spin-statistics theorem for strings. Mod. Phys. Lett. A7, 1427–1442 (1992) 989

1024 P. Panangaden and É.O. Paquette

8. Berry, M.V., Robbins, J.M.: Indistinguishability for quantum particles: spin, statistics and the
geometric phase. Proc. Roy. Soc. A 453(1963), 1771–1790 (August 1997) 989

9. Bonesteel, N.E., Hormozi, L., Zikos, G.: Braid topologies for quantum computation. Phys.
Rev. Lett. 95, 140503 (2005) 994, 1014, 1015, 1021

10. Bremner, M.J., Dawson, C.M., Dodd, J.L., Gilchrist, A., Harrow, A.W., Mortimer, D., Nielsen,
M.A., Osborne, T.J.: Practical scheme for quantum computation with any two-qubit entangling
gate. Phys. Rev. Lett. 89, 247902 (2002) 1022

11. Burgoyne, N.: On the connection between spin and statistics. Nuovo Cimento VIII(4), 607–
609 (1958) 988

12. Coecke, B., ´Paquette, E.O.: Categories for the practising physicist. In: Coecke, B. (ed.) New
Structures in Physics. Springer Lecture Notes in Physics, New York (2008) 985, 994

13. Crane, L.: 2-d physics and 3-d topology. Comm. Math. Phys. 135, 615–640 (1991) 985
14. Das Sarma, S., Freedman, M., Nayak, C., Simon, S.H., Stern, A.: Non-abelian anyons and

topological quantum computation. ArXiv e-prints, 707 (July 2007) 994, 1014
15. deWet, J.S.: On the connection between the spin and statistics of elementary particles. Phys.

Rev. 57, 646–652 (1940). Ph.D. thesis, Princeton University 1939 988
16. Dowker, H.F., Sorkin, R.D.: A spin-statistics theorem for certain topological geons. Class.

Quantum Grav. 15(5), 1153–1167 (1998) 989
17. Duck, I., Sudarshan, E.C.G.: Towards an understanding of the spin-statistics theorem. Am. J.

Phys. 66(4), 284–303 (1998) 984, 989
18. Duck, I., Sudarshan, E.C.G., Arthur Wightman, S.: Pauli and the spin-statistics theorem. Am.

J. Phys. 67(8), 742–746 (1999). Review by Wightman of the book by Duck and Sudarshan 984
19. Fierz, M.: Uber die relativische Theorie kr¨aftfreir Teilchen mit beliebigem spin. Helv Phys.

Acta 12(3), 3–37 (1939) 988
20. Finkelstein, D., Rubinstein, J.: Connection between spin statistics and kinks. J. Math. Phys.

9(11), 1762–1779 (1968) 984, 988
21. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum

computers. Comm. Math. Phys. 227, 587–603 (2002) 1023
22. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum

computation. Comm. Math. Phys. 227, 605–622 (2002) 994, 1014, 1023
23. Freyd, P.: Abelian Categories. Harper and Row (1964) 1004
24. Hormozi, L., Zikos, G., Bonesteel, N.E.: Topological quantum compiling. Phys. Rev. B 75,

165310 (2007) 994, 1014
25. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993) 997
26. Kauffman, L.H., Lomonaco, S.J. Jr.: Braiding operators are universal quantum gates. New J.

Phys. 6(134), (2004) 1023
27. Khono, T.: Topological invariants for 3-manifolds using representations of the mapping class

groups i. Topology 31, 203–230 (1992) 985
28. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 3–20 (2003) 983
29. Kitaev, A.: Anyons in an exactly solved model and beyond (2006) 1023
30. Klitzing, K.V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the

fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45(6), 494–497
(Aug 1980) 986

31. Mac Lane, S.: Categories for the working mathematician. Springer graduate text in mathe-
mathics, vol. 5. Springer, New-York (1998) 985, 997, 1004

32. Laughlin, R.B.: Quantized hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632–
5633 (May 1981) 986

33. Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Il Nuovo Cimento 37B, 1–23
(1977) 989

34. Lüders, G., Zumino, B.: Connection between spin and statistics. Phys. Rev. 110, 1450–1453
(1958) 984, 988

35. Messiah, A.: Quantum Mechanics, vol. 1. Wiley, New York (1966) 991

15 A Categorical Presentation of Quantum Computation with Anyons 1025

36. Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett.
B 212(4), 451–460 (1988) 1016, 1018

37. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000) 985, 1021

38. Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940) 984, 988
39. Pauli, W.: On the connection between spin and statistics. Prog. Theor. Phys. 5(4), 526–543

(1950) 988
40. Preskill, J.: Lectures notes physics 219/computer science 219 quantum computation (2004) 994, 1000, 1008, 1
41. Reshetikhin, Y.N., Tuarev, V.G.: Ribbon graphs and their invariants derived from quantum

groups. Comm. Math. Phys. 127, 1–26 (1990) 985, 1002
42. Reshetikhin, Y.N., Tuarev, V.G.: Invariants of 3-manifolds via link polynomials and quantum

groups. Invent. Math. 103, 547–597 (1991) 985
43. Das Sarma, S., Freedman, M., Nayak, C.: Topologically-protected qubits from a possible non-

abelian fractional quantum hall state. Phys. Rev. Lett. 94, 166802 (2005) 1023
44. Schwinger, J.: Spin, statistics and the TCP theorem and Addendum. Proc. Natl. Acad. Sci.

USA 44, 223–228, 617–619 (1958) 984
45. Sorkin, R.D.: Particle-statistics in three dimensions. Phys. Rev. D 27, 1787–1797 (1983) 989
46. Störmer, H.: Nobel Lecture: Physics 1996–2000, Chapter The Fractional Quantum Hall Effect,

pp. 295–326. World Scientific, Singapore (2002) 985, 987
47. Streater, R.F., Wightman, A.S.: PCT, Spin, Statistics and All That. Benjamin, New York (1964) 984, 988
48. Tuarev, V.G.: Quantum Invariant of Knots and 3-Manifolds. W. de Gruyter, Berlin (1994) 985
49. Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nuc.

Phys. B. 300, 360–376 (1988) 1013
50. Wightman, A.S.: Quantum field theory in terms of vacuum expectation values. Phys. Rev.

101(2), 860–866 (January 1956) 988
51. Wightman, A.S.: The spin-statistics connection: Some pedagogical remarks in response to

neuenschwander’s question. Electro. J. Diff. Eq. 207–213 (2000). Conference on Mathemati-
cal Physics and Quantum Field Theory 989

52. Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48(17), 1144–
1146 (April 1982) 989

53. Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49(14), 957–959
(Oct 1982) 989

54. Wilczek, F. (ed.): Fractional Statistics and Anyon Superconductivity. World Scientific, New
Jersey (1990) 1023

Index

Note: ‘f’, ‘n’, ‘t’ and ‘b’ followed by the locators refers to figures, note numbers,
tables and boxes cited in the text

A
Abstract orthogonality, 398–403
Adjoint functor, 281–283, 362, 468–469,

956–957
Anyon, 167, 983–1023
Approximation, 38–39, 41, 439, 494–496,

498, 502–503, 506, 512, 514, 524, 526,
528, 541, 544–545, 547–548, 552, 575,
587, 589, 615, 618–622, 624, 650–652,
674–675, 687, 691, 696, 699, 720, 806,
828, 840, 842, 849–850, 871, 910, 952,
973n6

Autonomous categories, 307–322, 351,
363–364, 366, 368, 370–373, 412,
467–468

B
Bayesian order, 529–531, 587, 596, 630,

638–639, 643, 647–649, 655, 657, 662
Bicontinuous, 535–536, 688, 691, 693, 701
Bifunctor, 193, 196–198, 201, 209, 212, 214,

222, 236, 258, 271–272, 297–298, 482,
994

Bilinear logic, 475, 485–486
Biproduct, 250–253, 251n9, 256–257,

259–260, 262, 331–332, 335–340,
349–350, 353t, 383, 398, 400, 404, 406,
958, 967, 1004n8

Bohm momentum, 744
Boolean algebra, 50, 656–658, 758–759,

767–768, 773, 777, 790–791, 807–808,
855, 907–908

Braided monoidal category, 115–119, 122,
130, 138, 167, 303, 305–306, 315,
329–331, 342, 361, 996–998, 1001

C
λ-Calculus, 50, 53, 57–61, 64, 67, 71, 75, 77,

423, 437–438, 442, 445, 453, 456–457,
459–464, 713, 716, 722–723, 942

Cartesian category, 113–114, 118–119, 122,
140, 145, 154, 159, 233, 241, 333, 335,
361

Cartesian closed category (CCC), 50, 60–61,
80, 122, 128, 136, 154, 156–158, 974

2-Category, 36, 143, 154, 468–469, 471,
475–477, 479, 483–484, 960

Category of categories, 26–27
Causal set, 524, 694–695, 701, 755, 788
Causal structure, 187–188, 534–535, 688,

691–692, 702
Charge conjugation, 997–998
Choi-Jamiołkowski, 953, 963–964, 974
Classical state, 499–500, 504, 524, 528–531,

573, 578–580, 583, 593–596, 598,
600–609, 611–613, 615–616, 618–620,
623–624, 626, 628, 630, 632, 636–639,
643, 646–651, 653–655, 657, 665,
667–669, 673–674, 676, 753, 759, 762,
767, 769, 773, 802, 810, 814, 818, 855,
882, 905

Clifford algebra, 705–750
Clifford bundle, 725, 736–740, 749
Clifford group, 710–712, 720, 735, 744,

969–970, 972
Closed symmetric monoidal category, 138,

142–143, 154, 161–162, 164, 166
Cobordism, 96, 97t–98t, 99, 101–103, 166t,

213, 228–232, 240, 269, 279–281, 292
Coequaliser, 22t, 47
Colimit, 22, 37, 47–48, 309

Coecke, B. (Ed.): Index. Lect. Notes Phys. 813, 1027–1031 (2011)
DOI 10.1007/978-3-642-12821-9 c© Springer-Verlag Berlin Heidelberg 2011

1028 Index

Commutative diagram, 22, 44, 124, 196,
201–202, 214, 216, 235, 244, 270, 291,
474, 823, 826, 870, 881, 884, 892, 919,
929, 931, 933

Comonad, 79–94, 283, 374
Compact (closed) category, 220–221, 223, 228,

262, 276
Continuous dcpo, 494, 496–497, 499–500,

506–508, 513, 519, 521, 523–524, 526,
539–540, 553, 560, 579, 586–587, 589,
615, 690, 696

Contraction, 68, 70, 86, 88–89, 135, 137, 140,
362, 368–369, 369t–370t, 373–376,
383, 390n3, 394, 401–402, 409, 443,
450, 455, 457–459, 462–463, 471–473,
477–478, 519–523, 527, 544–545,
586n3

Contravariant functor, 27, 34, 192–193, 202,
308, 340, 372, 404, 762, 770, 792–793,
807, 906, 908, 930–931

Coproduct, 14–20, 33, 42, 47, 72, 80–81, 91,
244–246, 248–252, 332, 335–340, 349,
353t, 361, 363, 366, 369f–370f, 371,
373–474, 380, 383, 836, 958n8

Curry-Howard correspondence, 51–68
Currying, 49, 59, 121–122, 127–129, 138–139,

141, 155, 948, 953–955, 959, 966
Cut-elimination, 70, 357–358, 366, 371,

373–375, 385–389, 395–397, 410–411,
443, 445, 461, 475

D
Dagger compact (closed) category, 223, 228,

231, 347–348
Dagger monoidal category, 202–203, 212–213,

231, 266, 341–343, 345, 347–348
Daseinisation, 753–754, 762, 770, 794n52,

800–808, 819, 828, 830–840, 837n80,
842–843, 845–846, 848–849, 853,
855–856, 859n96, 860, 863–871, 894,
896–898, 907, 912, 914–915, 924

Decoherence, 577, 674
Density operator, 531–532, 549–550, 575–577,

594, 632–634, 650, 652–654, 666, 671,
738

Dirac notation, 202–206, 211, 945–946, 955,
962, 977–978

Directed suprema, 501–502, 509–510, 556,
608, 612, 617, 621, 649, 689, 699

Direct sum, 16, 19, 110, 212–215, 249–253,
262, 361, 400, 404, 406, 818, 895,
957–958, 1007

Domain theory, 491–589, 594, 598–599, 621,
652–654, 674–682, 687–702, 850,
973–974, 976

E
Entanglement, 680–682, 882, 899–900, 904,

945, 976
Entropy, 493, 504, 524, 529–533, 549–550,

574, 579, 581–582, 584–587, 594–595,
598–600, 608–609, 615, 624, 626–628,
630, 652, 654–655, 672, 676–677, 679,
682

Epic (Epimorphism), 5, 10–13, 875, 893
Equaliser, 20–22, 22t, 47
Exponential, 48–50, 62, 66, 76–77, 86, 88–90,

137, 362, 366, 368–374, 406, 438,
447–459, 461–462, 464, 527, 589n25,
859n94, 926

F
Fan-out, 946–947, 951–952
Feynman diagram, 96–97, 99–100, 103, 108,

123, 437–486
Fibonacci anyons, 992, 1010–1011, 1014,

1020
Fixed point

Banach theorem, 401
least, 379, 491–493, 508, 524, 531, 579,

586
of nonmonotonic mappings, 509–512
unique, 401–403, 519–521, 528, 541, 556

Fixed point theorem, 401, 491–493, 511, 519,
579, 585–587

Formal distribution, 421–435, 445
Free compact 2-category, 475
Frobenius comonoid, 269, 280–281
Functional languages, 975–976
Functor category, 36, 47
Functor, see specific functors
Fusion rules, 991–994, 1002, 1005–1006,

1012–1014, 1016–1017

G
Galois connection, 835–836
General relativity, 98, 492–493, 524, 534,

687–702, 705, 708, 763, 871
Gentzen’s proof theory, 366–371
Geometric logic, 774–775, 785, 890
Globally hyperbolic, 536–538, 688, 690,

692–695, 697–698, 700
GoI (geometry of interaction), 357–414
Gottesman-Knill theorem, 969–970
Grammar, 470–471, 672

Index 1029

Graph, 7, 36, 99, 223, 438, 529, 568, 572, 575,
599, 986

Groupoid, 10, 184, 193, 705–750

H
Hamiltonian, 442, 771, 774, 776n36, 783, 794,

864–865, 870
Heyting algebra, 134, 282, 759, 761, 766–769,

771, 773–774, 776, 797, 801, 803–805,
808–809, 813, 821, 823, 828, 916, 928,
932–933

Hilbert space, 95, 98t, 101–102, 105–106,
110, 122–123, 128, 131, 166t, 182,
184, 188, 192–194, 205, 215, 239, 246,
261, 263, 292, 297, 321, 340, 343,
348, 358, 361–362, 383, 386–387, 389,
398, 404–406, 421–425, 438–439, 531,
549, 587–588, 596, 630–631, 657–658,
661, 675, 681, 718n7, 721–722, 725,
743, 749, 754–755, 758–759, 777–778,
789–790, 793–794, 822, 848, 858,
865, 894–896, 899n122, 911–913, 925,
945–947, 949n5, 952, 955n6, 957–958,
960, 962–963, 965, 968, 974, 976,
987–988, 988n1, 993–994, 1007–1010,
1023

I
Incident algebra, 718–719
Inference rule, 43, 52t, 135–140, 142–146, 149
Informatic derivative, 493, 524, 539–559, 568,

572
Information order, 493–496, 500–501,

503–504, 513, 515, 560, 564, 566, 573,
671, 700

Initial object, 13–14, 20, 22, 33, 42, 185, 246,
251, 335, 877, 928

Interval domain, 491, 497, 504, 513, 522, 524,
537, 571, 688, 691, 695–698, 702, 850,
910

Intuitionistic logic, 51, 60, 133–134, 137,
145–146, 282, 753, 760, 768, 771–773,
778, 781, 926–928

K
Kauffman’s calculus of distinctions, 716
Kleisli construction, 83–85
Kochen-Specker theorem, 757, 759, 762,

770, 788–790, 793b, 800, 807b, 814,
826–827, 839, 851, 909

L
Lambda-abstraction, 49, 53, 55, 150
Left dual, 125, 307, 309, 315

Limit, 47–48, 93, 134, 519, 524, 540–541,
552, 556, 559–560, 579, 584, 593–594,
607, 643–644, 675, 719–720, 747–749,
764–765, 915, 951–953

Linear logic, 70–76, 78, 85–86, 89, 97,
136–138, 140–141, 145, 187, 351–352,
357–360, 363–371, 373–375, 389, 402,
412, 437–438, 442, 444–445, 447, 450,
453, 456, 464, 475, 485n4

Linear realizability algebra, 442–445
Linguistics, 467–486
Liouville equation, 738
Lorentz distance, 538–539, 687, 689, 700–702

M
Modular tensor categories, 130, 166–167, 984,

992–1014, 1023
Monad, 79–94, 282–283, 374, 871n15
Monic (monomorphism), 5, 10–13, 29, 51,

708, 803, 817, 819–820, 823–826, 875,
889, 893, 909, 924, 927, 1002–1003,
1007–1008

Monoid, 8–9, 13–14, 24, 26, 29, 32, 42, 79,
183–184, 186–187, 214–215, 250, 253,
258, 261, 264–267, 281, 360, 362, 381,
388, 391, 430, 469, 500, 583, 754, 762,
854, 858–860, 863, 913, 919–920, 974

Monoidal category
braided, 115, 119, 122, 130, 138, 167,

303, 305–306, 315, 329–331, 342, 361,
996–998, 1001

closed, 121, 126, 129, 138–140, 154
compact, 125–126, 128–129, 477, 486
dagger, 212–213, 231, 266, 341–343, 345,

347–348
strict, 186–187, 194–196, 211, 215, 264,

307, 359–360, 365, 430, 997
strict dagger, 202–203
symmetric, 306, 321, 331, 333, 335–336,

340, 342, 347, 349, 361–362, 365,
376–377, 385, 388, 390, 398–399, 402,
404, 957, 960

traced, 290, 323, 377, 384–385, 402
Monoidal signature, 300–301, 322, 332, 339

N
Natural deduction system, 52t, 59b, 60t, 70
Natural transformation

di, 147–149, 161
monoidal, 87–89, 92, 275, 277, 280,

310–312, 316, 318, 345, 374, 385, 390
unique, 933

No-cloning, 73, 115, 188, 232, 946–947, 947n3

1030 Index

No-deleting, 73, 188, 941, 946–947, 947n3
Nuclear ideal, 398, 423–425, 428, 431–433

P
Partiality, 400, 493–495, 524, 615, 619–620,

622, 624, 651–652
Partial order, 8, 13, 185, 187, 206, 281,

469–471, 476, 478–479, 494, 533, 539,
589, 593–682, 689, 788, 790, 798–799,
830, 836, 866, 932

Partial trace, 376–377, 398–403, 421
Pauli Clifford algebra, 714, 723–724, 732, 742
Pivotal categories, 312–315, 317–320, 322,

326–327, 330, 343, 346–348, 352
Postselection, 967–968
Pregroup, 467–471, 473, 475
Product

bi, 250–253, 251n9, 256–257, 260, 262,
331–332, 335–340, 349–350, 353t, 383,
398, 400, 404, 406, 958, 967, 1004n8

cartesian, 15–16, 20, 73, 92, 106, 110–113,
118, 121, 161, 208, 211, 213, 221, 224,
232, 242, 261, 293, 297, 306, 361, 371,
372f, 378–379, 404, 427, 875, 883,
885–886, 900, 926, 953–954, 957–958

direct, 14, 485
inner, 131, 192–193, 203–204, 214, 365,

383, 440, 531, 630, 648, 945–946, 977
tensor, 73, 106–107, 110–111, 113–115,

118, 120, 122, 140–141, 155, 161,
163–164, 166t, 186, 188, 194, 198,
206, 212–213, 215, 261, 290, 296–297,
298t, 306, 328, 343, 351, 360–364, 367,
377, 380, 383, 387–388, 392, 404, 427,
476–477, 481–484, 878n122, 945n5,
957–958, 962, 968–969, 991–993,
995–996, 999, 1005, 1012

Proof net, 352, 388, 437–465
Pullback, 20–23, 47–48, 927

Q
QED (quantum electro-dynamics), 468,

476–481
Quantum computer, 167, 941–978
Quantum field theory, 96–97, 99, 132, 166,

232, 404, 423–424, 431, 437–442, 447,
464, 983–984, 988

Quantum information theory, 422, 493,
532–533, 550, 761, 944–948

Quantum logic, 249, 282, 524, 533–534, 755,
761n33, 803–808, 828, 967

Quantum measurement, 283, 596, 653
Quantum projection, 630, 657, 662
Quantum searching, 493, 572–575

Quantum state, 188, 239, 505, 524, 531–532,
587, 593–682, 817, 824, 849, 851, 905,
947, 951n10, 971

Quaternions, 486, 709–710

R
Relation

approximation, 498, 526, 618, 620, 651,
675

equivalence, 10, 37, 56, 103, 143–144, 157,
162–165, 321, 385, 792, 859, 919–920,
923

symmetrical, 732
transitive, 9, 58, 180–181, 537, 689, 694

Ribbon category, 320, 1001–1002, 1005–1006
Right dual, 125, 307, 310, 315

S
Schrödinger equation, 439, 739, 822
Scott continuous, 491–492, 501–503, 505–511,

520, 523–524, 526–528, 531, 533,
538–539, 545–546, 551, 576, 580, 582,
584, 586, 608–609, 613, 616, 622,
624–625, 628–629, 645, 649–651, 653,
687, 689, 697, 699, 701–702

Simply-typed λ-calculus, 57–61, 67, 71, 75
Spacetime geometry, 539, 701–702
Spacetime interval, 493, 505, 524, 534–539,

689, 702
Spacetime manifold, 537–539, 702, 705, 765
Spacial monoidal categories, 302, 353t
Spectral order, 532–534, 587, 630, 636,

638–639, 643, 647–649, 662, 665, 672,
828, 830, 832, 835, 837, 840, 842

Spectral presheaf, 753–754, 762, 783, 788,
792–794, 796, 800–803, 806–810, 812,
814, 818, 826–828, 838, 842, 850–851,
855, 860, 894, 896, 898, 900, 902,
905–909, 917, 919

Spinor, 439, 717–718, 720, 723–727, 730–733,
735

Spin statistics, 984, 988–990
Standard model, 98, 468, 479–481
Strict monoidal category, 186–187, 194–196,

202–203, 211, 215, 264, 307, 359–360,
365, 430, 997

Subcategory, 12, 37, 213, 278, 321, 337,
339–340, 361, 364, 383, 425, 432–433

Subobject classifier, 817, 821, 857, 911, 1004
Superposition, 463, 944, 946–947, 950, 952,

1016
Symmetric monoidal 2-category, 120t

Index 1031

Symmetric monoidal category, 74–75, 77, 92,
99, 119, 122, 130, 136, 138, 141–143,
154–155, 161–162, 164, 166, 196, 200,
203, 206, 213, 217, 223, 226, 256, 306,
321, 331, 333, 335–336, 340, 342, 347,
349, 361–362, 365, 376–377, 385, 388,
390, 398–399, 402, 404, 957, 960

Symplectic group, 744–749

T
Teleportation, 120, 128, 188, 221, 422, 953,

963–969
λ-Term, 54t, 56, 59, 65, 67, 78, 149
Terminal object, 13–14, 21, 22t, 32–33, 47–48,

50, 65, 85, 91, 113–114, 128, 133, 156,
185, 235, 246, 251–252, 265, 333, 335,
783, 786, 811, 825, 879, 909, 926–928,
933, 974

Topological quantum computing, 96, 99, 105,
130, 132, 166–167, 177, 188, 232, 271,
279, 984–985, 1013, 1023

Topology
μ, 508, 539–543, 548, 551–552, 556,

560–561
interval, 535–538, 687–688, 691, 693, 695,

697, 700–701
manifold, 536–537, 688, 692–693, 695
Scott, 501–503, 506–508, 512–513, 519,

521, 537, 541, 570, 589, 690–691, 694,
700, 702

Topos, 753–933
Tortile categories, 319–320, 322–323, 348
TQFT (topological quantum field theory), 96,

99, 132, 166, 188, 232, 271, 279–280,
984

Traced (monoidal) categories, 289, 302,
322–332, 348

Truth object, 754, 759, 762, 769, 776, 810,
812–822, 848–849, 891, 896, 904,
910–911

Twistor, 714, 731–734, 737
Types

basic, 156, 162, 164, 445, 470, 873
function, 59, 156, 162
linear theory, 154–155, 159–165
product, 59, 156, 162
trivial, 162

U
Unitary operation, 947, 949–953, 967–969,

971
Universal arrow, 41–47, 49, 75

V
Vector space

algebra, 3
complex, 1004–1005, 1008, 1015

finite dimensional, 29, 33, 131, 274,
290, 306, 361, 378, 399–400, 406,
infinite dimensional, 428

topological, 426, 1009
Vertex group, 424, 433–435
Von Neumann algebra, 358, 386, 404, 412,

793–794, 807–808, 818–819, 832,
835, 838n86, 844–847, 866, 902, 906,
918–919

Von Neumann architecture, 941–978

W
Weakening, 53, 58, 68, 70, 86, 88–89, 135,

137, 140, 282, 368–369, 370f, 373,
390, 395, 409, 443, 447, 452, 457–459,
463n3

	Cover
	Lecture Notes in Physics 813
	New Structures for Physics
	ISBN 9783642128202
	Preface
	References

	Contents
	Part I An ABC on Compositionality
	1 Introduction to Categories and Categorical Logic
	S. Abramsky and N. Tzevelekos
	1.1 Introduction
	1.2 Some Basic Constructions
	1.3 Functors
	1.4 Natural Transformations
	1.5 Universality and Adjoints
	1.6 The Curry--Howard Correspondence
	1.7 Linearity
	1.8 Monads and Comonads
	References

	2 Physics, Topology, Logic and Computation: A Rosetta Stone
	J. Baez and M. Stay
	2.1 Introduction
	2.2 The Analogy Between Physics and Topology
	2.3 Logic
	2.4 Computation
	2.5 Conclusions
	References

	3 Categories for the Practising Physicist
	B. Coecke and É.O. Paquette
	3.1 Prologue: Cooking with Vegetables
	3.2 The 1D Case: New Arrows for Your Quiver
	3.3 The 2D Case: Muscle Power
	3.4 Quantum-Like Tensors
	3.5 Classical-Like Tensors
	3.6 Monoidal Functoriality, Naturality and TQFTs
	3.7 Further Reading
	References

	Part II Manifestations of Linearity
	4 A Survey of Graphical Languages for Monoidal Categories
	P. Selinger
	4.1 Introduction
	4.2 Categories
	4.3 Monoidal Categories
	4.4 Autonomous Categories
	4.5 Traced Categories
	4.6 Products, Coproducts, and Biproducts
	4.7 Dagger Categories
	4.8 Bicategories
	4.9 Beyond a Single Tensor Product
	4.10 Summary
	References

	5 Geometry of Interaction and the Dynamics of Proof Reduction: A Tutorial
	E. Haghverdi and P. Scott
	5.1 Introduction
	5.2 From Monoidal Categories to *-Autonomy
	5.3 Linear Logic and Categorical Proof Theory
	5.4 Traced Monoidal Categories
	5.5 What is the Geometry of Interaction?
	5.6 GoI Interpretation of MELL
	5.7 Partial Trace and Abstract Orthogonality
	5.8 Typed GoI for MELL in *-Categories
	5.9 Concluding Remarks
	Appendix 1: Graphical Representation of The Trace Axioms
	Appendix 2: Comparing GoI Notation
	References

	Part III More Example Applications
	6 Dagger Categories and Formal Distributions
	R. Blute and P. Panangaden
	6.1 Introduction
	6.2 Dagger Categories and Nuclear Ideals
	6.3 Distributions as Relations
	6.4 Categories of Formal Distributions
	6.5 Vertex Groups and Categories
	6.6 Conclusion
	References

	7 Proof Nets as Formal Feynman Diagrams
	R. Blute and P. Panangaden
	7.1 Introduction
	7.2 Functional Integrals in Quantum Field Theory
	7.3 Linear Realizability Algebra
	7.4 The -Calculus
	7.5 Exponential Identities for Operators
	7.6 Interpreting Proof Nets
	7.7 Example Calculations
	7.8 Conclusions
	References

	8 Compact Monoidal Categories from Linguistics to Physics
	J. Lambek
	8.1 Compact 2-Categories and Pregroups
	8.2 Pregroups for Grammar
	8.3 Free Compact 2-Categories
	8.4 In Search of a Compact Feynman Category
	8.5 A Pogroup for QED
	8.6 From QED to the Standard Model
	8.7 From 2-Categories to Bicategories
	8.8 Other Operations in Bilinear Logic
	8.9 Postscript
	References

	Part IV Informatic Geometry
	9 Domain Theory and Measurement
	K. Martin
	9.1 Introduction
	9.2 The Basic Elements
	9.3 Fixed Points
	9.4 Instances of Partiality
	9.5 The Informatic Derivative
	9.6 Forms of Process Evolution
	9.7 Provocation
	References

	10 A Partial Order on Classical and Quantum States
	B. Coecke and K. Martin
	10.1 Introduction
	10.2 Classical States
	10.3 Quantum States
	10.4 Synthesis
	10.5 Applications
	References

	Part V Spatio-Temporal Geometry
	11 Domain Theory and General Relativity
	K. Martin and P. Panangaden
	11.1 Introduction
	11.2 Domains, Continuous Posets and Topology
	11.3 The Causal Structure of Spacetime
	11.4 Global Hyperbolicity
	11.5 Spacetime from a Discrete Causal Set
	11.6 Spacetime as a Domain
	11.7 Time and Measurement
	11.8 Spacetime Geometry from a Discrete Causal Set
	11.9 Conclusions
	References

	12 Process, Distinction, Groupoids and Clifford Algebras: an Alternative View of the Quantum Formalism
	B.J. Hiley
	12.1 The Algebra of Process
	12.2 Some Specific Algebras of Process
	12.3 Connections with Other Mathematical Approaches
	12.4 Some Radical New Ideas
	12.5 The Conformal Clifford C2,4
	12.6 Connections in the Clifford Bundle
	12.7 Expectation Values
	12.8 The Symplectic Group
	12.9 General Conclusions
	References

	13 "What is a Thing?'': Topos Theory in the Foundations of Physics
	A. Döring and C. Isham
	13.1 Introduction
	13.2 The Conceptual Background of Our Scheme
	13.3 Propositional Languages and Theories of Physics
	13.4 A Higher-Order, Typed Language for Physics
	13.5 Quantum Propositions as Sub-objects of the Spectral Presheaf
	13.6 Truth Values in Topos Physics
	13.7 The de Groote Presheaves of Physical Quantities
	13.8 The Presheaves sp(A), R and R
	13.9 Extending the Quantity-Value Presheaf to an AbelianGroup Object
	13.10 The Role of Unitary Operators
	13.11 The Category of Systems
	13.12 Theories of Physics in a General Topos
	13.13 The General Scheme Applied to Quantum Theory
	13.14 Characteristic Properties of Σφ, Rφ and T,w
	13.15 Conclusion
	Appendix 1: Some Theorems and Constructions Used in the Main Text
	Appendix 2: A Short Introduction to the Relevant Parts of Topos Theory
	References

	Part VI Geometry and Topology in Computation
	14 Can a Quantum Computer Run the von Neumann Architecture?
	P. Hines
	14.1 Introduction
	14.2 The von Neumann Architecture
	14.3 Relevant Quantum Information Theory
	14.4 Data/Code Interchangeability, and Evaluation
	14.5 Evaluation in the One-Bit Computer
	14.6 Implementing Evaluation by Unitary Operations?
	14.7 Evaluation as Currying
	14.8 Basic Category Theory
	14.9 Categorical Closure and Hilbert Spaces
	14.10 Abramsky and Coecke's Categorical Foundations for Quantum Mechanics
	14.11 Evaluation by Teleportation, and the vN Architecture
	14.12 Naming an Unknown Arrow
	14.13 Other Aspects
	Appendix
	References

	15 A Categorical Presentation of Quantum Computation with Anyons
	P. Panangaden and É.O. Paquette
	15.1 Introduction
	15.2 Spin and Statistics
	15.3 Anyons and Braids
	15.4 The Algebra of Anyons: Modular Tensor Categories
	15.5 An Example: Fibonacci Anyons
	15.6 Universal Quantum Computation with Fibonacci Anyons
	15.7 Conclusions
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

